mayhem-firmware/firmware/application/freqman.cpp
Kyle Reed 98f3bf151f
Lazy line caching for Notepad (#1042)
* easier 'now', start adding text editor

* Adding scrolling to notepad

* Better scrolling

* Better scrolling, off-by-1 bugs

* MVP fit and finish

* Add tiny font and use in Notepad

* Font tweaking, tiny font cursor

* Fix warning

* Format changed files

* WIP No file limit

* WIP - adding CircularBuffer type

* WIP Caching

* add  unit test for circular_buffer

* WIP still have a bug when moving cache forward

* Finish lazy line caching

---------

Co-authored-by: kallanreed <kallanreed@outlook.com>
2023-05-22 13:08:59 -07:00

471 lines
16 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "freqman.hpp"
#include <algorithm>
using option_t = std::pair<std::string, int32_t>;
using options_t = std::vector<option_t>;
options_t freqman_entry_modulations = {
{"AM", 0},
{"NFM", 1},
{"WFM", 2}};
options_t freqman_entry_bandwidths[4] = {
{// AM
{"DSB 9k", 0},
{"DSB 6k", 1},
{"USB+3k", 2},
{"LSB-3k", 3},
{"CW", 4}},
{// NFM
{"8k5", 0},
{"11k", 1},
{"16k", 2}},
{
// WFM
{"200k", 0},
{"180k", 1},
{"40k", 2},
}};
options_t freqman_entry_steps = {
{"0.1kHz ", 100},
{"1kHz ", 1000},
{"5kHz (SA AM)", 5000},
{"6.25kHz(NFM)", 6250},
{"8.33kHz(AIR)", 8330},
{"9kHz (EU AM)", 9000},
{"10kHz(US AM)", 10000},
{"12.5kHz(NFM)", 12500},
{"15kHz (HFM)", 15000},
{"25kHz (N1)", 25000},
{"30kHz (OIRT)", 30000},
{"50kHz (FM1)", 50000},
{"100kHz (FM2)", 100000},
{"250kHz (N2)", 250000},
{"500kHz (WFM)", 500000},
{"1MHz ", 1000000}};
options_t freqman_entry_steps_short = {
{"0.1kHz", 100},
{"1kHz", 1000},
{"5kHz", 5000},
{"6.25kHz", 6250},
{"8.33kHz", 8330},
{"9kHz", 9000},
{"10kHz", 10000},
{"12.5kHz", 12500},
{"15kHz", 15000},
{"25kHz", 25000},
{"30kHz", 30000},
{"50kHz", 50000},
{"100kHz", 100000},
{"250kHz", 250000},
{"500kHz", 500000},
{"1MHz", 1000000}};
std::vector<std::string> get_freqman_files() {
std::vector<std::string> file_list;
auto files = scan_root_files(u"FREQMAN", u"*.TXT");
for (auto file : files) {
std::string file_name = file.stem().string();
// don't propose tmp / hidden files in freqman's list
if (file_name.length() && file_name[0] != '.') {
file_list.emplace_back(file_name);
}
}
return file_list;
};
bool load_freqman_file(std::string& file_stem, freqman_db& db) {
return load_freqman_file_ex(file_stem, db, true, true, true);
}
bool load_freqman_file_ex(std::string& file_stem, freqman_db& db, bool load_freqs, bool load_ranges, bool load_hamradios) {
File freqman_file;
size_t length, n = 0, file_position = 0;
char* pos;
char* line_start;
char* line_end;
std::string description;
rf::Frequency frequency_a, frequency_b;
char file_data[257];
freqman_entry_type type;
freqman_index_t modulation = 0;
freqman_index_t bandwidth = 0;
freqman_index_t step = 0;
freqman_index_t tone = 0;
db.clear();
auto result = freqman_file.open("FREQMAN/" + file_stem + ".TXT");
if (result.is_valid())
return false;
while (1) {
// Read a 256 bytes block from file
freqman_file.seek(file_position);
memset(file_data, 0, 257);
auto read_size = freqman_file.read(file_data, 256);
if (read_size.is_error())
return false; // Read error
file_position += 256;
// Reset line_start to beginning of buffer
line_start = file_data;
// If EOF reached, insert 0x0A after, in case the last line doesn't have a C/R
if (read_size.value() < 256)
*(line_start + read_size.value()) = 0x0A;
// Look for complete lines in buffer
while ((line_end = strstr(line_start, "\x0A"))) {
*line_end = 0; // Stop strstr() searches below at EOL
modulation = -1;
bandwidth = -1;
step = -1;
tone = -1;
type = ERROR_TYPE;
frequency_a = frequency_b = 0;
// Read frequency
pos = strstr(line_start, "f=");
if (pos) {
pos += 2;
frequency_a = strtoll(pos, nullptr, 10);
type = SINGLE;
} else {
// ...or range
pos = strstr(line_start, "a=");
if (pos) {
pos += 2;
frequency_a = strtoll(pos, nullptr, 10);
type = RANGE;
pos = strstr(line_start, "b=");
if (pos) {
pos += 2;
frequency_b = strtoll(pos, nullptr, 10);
} else
frequency_b = 0;
} else {
// ... or hamradio
pos = strstr(line_start, "r=");
if (pos) {
pos += 2;
frequency_a = strtoll(pos, nullptr, 10);
type = HAMRADIO;
pos = strstr(line_start, "t=");
if (pos) {
pos += 2;
frequency_b = strtoll(pos, nullptr, 10);
} else
frequency_b = frequency_a;
} else
frequency_a = 0;
}
}
// modulation if any
pos = strstr(line_start, "m=");
if (pos) {
pos += 2;
modulation = freqman_entry_get_modulation_from_str(pos);
}
// bandwidth if any
pos = strstr(line_start, "bw=");
if (pos) {
pos += 3;
bandwidth = freqman_entry_get_bandwidth_from_str(modulation, pos);
}
// step if any
pos = strstr(line_start, "s=");
if (pos) {
pos += 2;
step = freqman_entry_get_step_from_str_short(pos);
}
// ctcss tone if any
/* disabled until better form
pos = strstr(line_start, "c=");
if (pos) {
pos += 2;
tone = tone_key_index_by_value( strtoll( pos , nullptr , 10 ) );
} */
// Read description until , or LF
pos = strstr(line_start, "d=");
if (pos) {
pos += 2;
length = std::min(strcspn(pos, ",\x0A"), (size_t)FREQMAN_DESC_MAX_LEN);
description = string(pos, length);
} else
description = "-";
if ((type == SINGLE && load_freqs) || (type == RANGE && load_ranges) || (type == HAMRADIO && load_hamradios)) {
db.push_back({frequency_a, frequency_b, description, type, modulation, bandwidth, step, tone});
n++;
if (n > FREQMAN_MAX_PER_FILE) return true;
}
line_start = line_end + 1;
if (line_start - file_data >= 256) break;
}
if (read_size.value() != 256)
break; // End of file
// Restart at beginning of last incomplete line
file_position -= (file_data + 256 - line_start);
}
/* populate implicitly specified modulation / bandwidth */
if (db.size() > 2) {
modulation = db[0].modulation;
bandwidth = db[0].bandwidth;
for (unsigned int it = 1; it < db.size(); it++) {
if (db[it].modulation < 0) {
db[it].modulation = modulation;
} else {
modulation = db[it].modulation;
}
if (db[it].bandwidth < 0) {
db[it].bandwidth = bandwidth;
} else {
modulation = db[it].bandwidth;
}
}
}
return true;
}
bool get_freq_string(freqman_entry& entry, std::string& item_string) {
rf::Frequency frequency_a, frequency_b;
frequency_a = entry.frequency_a;
if (entry.type == SINGLE) {
// Single
item_string = "f=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0');
} else if (entry.type == RANGE) {
// Range
frequency_b = entry.frequency_b;
item_string = "a=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0');
item_string += ",b=" + to_string_dec_uint(frequency_b / 1000) + to_string_dec_uint(frequency_b % 1000UL, 3, '0');
if (entry.step >= 0) {
item_string += ",s=" + freqman_entry_get_step_string_short(entry.step);
}
} else if (entry.type == HAMRADIO) {
frequency_b = entry.frequency_b;
item_string = "r=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0');
item_string += ",t=" + to_string_dec_uint(frequency_b / 1000) + to_string_dec_uint(frequency_b % 1000UL, 3, '0');
if (entry.tone >= 0) {
item_string += ",c=" + tone_key_string(entry.tone);
}
}
if (entry.modulation >= 0 && (unsigned)entry.modulation < freqman_entry_modulations.size()) {
item_string += ",m=" + freqman_entry_get_modulation_string(entry.modulation);
if (entry.bandwidth >= 0 && (unsigned)entry.bandwidth < freqman_entry_bandwidths[entry.modulation].size()) {
item_string += ",bw=" + freqman_entry_get_bandwidth_string(entry.modulation, entry.bandwidth);
}
}
if (entry.description.size())
item_string += ",d=" + entry.description;
return true;
}
bool save_freqman_file(std::string& file_stem, freqman_db& db) {
File freqman_file;
std::string freq_file_path = "FREQMAN/" + file_stem + ".TXT";
std::string tmp_freq_file_path = "FREQMAN/" + file_stem + ".TXT.TMP";
if (!db.size()) {
delete_file("FREQMAN/" + file_stem + ".TXT");
return true;
}
delete_file(tmp_freq_file_path);
auto result = freqman_file.open(tmp_freq_file_path);
if (!result.is_valid()) {
for (size_t n = 0; n < db.size(); n++) {
std::string item_string;
auto& entry = db[n];
get_freq_string(entry, item_string);
freqman_file.write_line(item_string);
}
delete_file(freq_file_path);
rename_file(tmp_freq_file_path, freq_file_path);
return true;
}
return false;
}
bool create_freqman_file(std::string& file_stem, File& freqman_file) {
auto result = freqman_file.create("FREQMAN/" + file_stem + ".TXT");
if (result.is_valid())
return false;
return true;
}
std::string freqman_item_string(freqman_entry& entry, size_t max_length) {
std::string item_string;
switch (entry.type) {
case SINGLE:
item_string = to_string_short_freq(entry.frequency_a) + "M: " + entry.description;
break;
case RANGE:
item_string = "R: " + entry.description;
break;
case HAMRADIO:
item_string = "H: " + entry.description;
break;
default:
item_string = "!UNKNOW TYPE " + entry.description;
break;
}
if (item_string.size() > max_length)
return item_string.substr(0, max_length - 3) + "...";
return item_string;
}
void freqman_set_modulation_option(OptionsField& option) {
option.set_options(freqman_entry_modulations);
}
void freqman_set_bandwidth_option(freqman_index_t modulation, OptionsField& option) {
option.set_options(freqman_entry_bandwidths[modulation]);
}
void freqman_set_step_option(OptionsField& option) {
option.set_options(freqman_entry_steps);
}
void freqman_set_step_option_short(OptionsField& option) {
option.set_options(freqman_entry_steps_short);
}
std::string freqman_entry_get_modulation_string(freqman_index_t modulation) {
if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) {
return std::string(""); // unknown modulation
}
return freqman_entry_modulations[modulation].first;
}
std::string freqman_entry_get_bandwidth_string(freqman_index_t modulation, freqman_index_t bandwidth) {
if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) {
return std::string(""); // unknown modulation
}
if (bandwidth < 0 || (unsigned)bandwidth > freqman_entry_bandwidths[modulation].size()) {
return std::string(""); // unknown modulation
}
return freqman_entry_bandwidths[modulation][bandwidth].first;
}
std::string freqman_entry_get_step_string(freqman_index_t step) {
if (step < 0 || (unsigned)step >= freqman_entry_steps.size()) {
return std::string(""); // unknown modulation
}
return freqman_entry_steps[step].first;
}
std::string freqman_entry_get_step_string_short(freqman_index_t step) {
if (step < 0 || (unsigned)step >= freqman_entry_steps_short.size()) {
return std::string(""); // unknown modulation
}
return freqman_entry_steps_short[step].first;
}
int32_t freqman_entry_get_modulation_value(freqman_index_t modulation) {
if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) {
return -1; // unknown modulation
}
return freqman_entry_modulations[modulation].second;
}
int32_t freqman_entry_get_bandwidth_value(freqman_index_t modulation, freqman_index_t bandwidth) {
if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size()) {
return -1; // unknown modulation
}
if (bandwidth < 0 || (unsigned)bandwidth > freqman_entry_bandwidths[modulation].size()) {
return -1; // unknown bandwidth for modulation
}
return freqman_entry_bandwidths[modulation][bandwidth].second;
}
int32_t freqman_entry_get_step_value(freqman_index_t step) {
if (step < 0 || (unsigned)step >= freqman_entry_steps.size()) {
return -1; // unknown modulation
}
return freqman_entry_steps[step].second;
}
freqman_index_t freqman_entry_get_modulation_from_str(char* str) {
if (!str)
return -1;
for (freqman_index_t index = 0; (unsigned)index < freqman_entry_modulations.size(); index++) {
if (strncmp(freqman_entry_modulations[index].first.c_str(), str, freqman_entry_modulations[index].first.size()) == 0)
return index;
}
return -1;
}
freqman_index_t freqman_entry_get_bandwidth_from_str(freqman_index_t modulation, char* str) {
if (!str)
return -1;
if (modulation < 0 || (unsigned)modulation >= freqman_entry_modulations.size())
return -1;
for (freqman_index_t index = 0; (unsigned)index < freqman_entry_bandwidths[modulation].size(); index++) {
if (strncmp(freqman_entry_bandwidths[modulation][index].first.c_str(), str, freqman_entry_bandwidths[modulation][index].first.size()) == 0)
return index;
}
return -1;
}
freqman_index_t freqman_entry_get_step_from_str(char* str) {
if (!str)
return -1;
for (freqman_index_t index = 0; (unsigned)index < freqman_entry_steps.size(); index++) {
if (strncmp(freqman_entry_steps[index].first.c_str(), str, freqman_entry_steps[index].first.size()) == 0)
return index;
}
return -1;
}
freqman_index_t freqman_entry_get_step_from_str_short(char* str) {
if (!str)
return -1;
for (freqman_index_t index = 0; (unsigned)index < freqman_entry_steps_short.size(); index++) {
if (strncmp(freqman_entry_steps_short[index].first.c_str(), str, freqman_entry_steps_short[index].first.size()) == 0)
return index;
}
return -1;
}