mayhem-firmware/firmware/baseband/proc_replay.cpp
Kyle Reed 37386c29cb
Oversample (#1336)
* WIP Oversample cleanup

* WIP

* WIP

* WIP dynamic interpolation

* WIP cleanup

* Fix math errors

* Add some optional assertions

* Add support for x32 interpolation

* Update proc_replay.cpp

Typo
2023-08-02 21:59:26 +02:00

169 lines
5.9 KiB
C++

/*
* Copyright (C) 2016 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_replay.hpp"
#include "sine_table_int8.hpp"
#include "portapack_shared_memory.hpp"
#include "event_m4.hpp"
#include "utility.hpp"
ReplayProcessor::ReplayProcessor() {
channel_filter_low_f = taps_200k_decim_1.low_frequency_normalized * 1000000;
channel_filter_high_f = taps_200k_decim_1.high_frequency_normalized * 1000000;
channel_filter_transition = taps_200k_decim_1.transition_normalized * 1000000;
spectrum_samples = 0;
channel_spectrum.set_decimation_factor(1);
configured = false;
baseband_thread.start();
}
// Change to 1 to enable buffer assertions in replay.
#define BUFFER_SIZE_ASSERT 0
void ReplayProcessor::execute(const buffer_c8_t& buffer) {
if (!configured || !stream) return;
// Because this is actually adding samples, alias
// oversample_rate so the math below is more clear.
const size_t interpolation_factor = toUType(oversample_rate);
// Wrap the IQ data array in a buffer with the correct sample_rate.
buffer_c16_t iq_buffer{iq.data(), iq.size(), baseband_fs / interpolation_factor};
// The IQ data in stream is C16 format and needs to be converted to C8 (N * 2).
// The data also needs to be interpolated so the effective sample rate is closer
// to 4Mhz. Because interpolation repeats a sample multiple times, fewer bytes
// are needed from the source stream in order to fill the buffer (count / oversample).
// Together the C16->C8 conversion and the interpolation give the number of
// bytes that need to be read from the source stream.
const size_t samples_to_read = buffer.count / interpolation_factor;
const size_t bytes_to_read = samples_to_read * sizeof(buffer_c16_t::Type);
#if BUFFER_SIZE_ASSERT
// Verify the output buffer size is divisible by the interpolation factor.
if (samples_to_read * interpolation_factor != buffer.count)
chDbgPanic("Output not div.");
// Is the input smaple buffer big enough?
if (samples_to_read > iq_buffer.size())
chDbgPanic("IQ buf ovf.");
#endif
// Read the C16 IQ data from the source stream.
size_t current_bytes_read = stream->read(iq_buffer.p, bytes_to_read);
// Compute the number of samples were actually read from the source.
size_t samples_read = current_bytes_read / sizeof(buffer_c16_t::Type);
// Write converted source samples to the output buffer with interpolation.
for (auto i = 0u; i < samples_read; ++i) {
int8_t re_out = iq_buffer.p[i].real() >> 8;
int8_t im_out = iq_buffer.p[i].imag() >> 8;
auto out_value = buffer_c8_t::Type{re_out, im_out};
// Interpolate sample.
for (auto j = 0u; j < interpolation_factor; ++j) {
size_t index = i * interpolation_factor + j;
buffer.p[index] = out_value;
#if BUFFER_SIZE_ASSERT
// Verify the index is within bounds.
if (index >= buffer.count)
chDbgPanic("Output bounds");
#endif
}
}
// Update tracking stats.
bytes_read += current_bytes_read;
spectrum_samples += samples_read * interpolation_factor;
if (spectrum_samples >= spectrum_interval_samples) {
spectrum_samples -= spectrum_interval_samples;
channel_spectrum.feed(
iq_buffer, channel_filter_low_f,
channel_filter_high_f, channel_filter_transition);
// Inform UI about progress.
txprogress_message.progress = bytes_read;
txprogress_message.done = false;
shared_memory.application_queue.push(txprogress_message);
}
}
void ReplayProcessor::on_message(const Message* const message) {
switch (message->id) {
case Message::ID::UpdateSpectrum:
case Message::ID::SpectrumStreamingConfig:
channel_spectrum.on_message(message);
break;
case Message::ID::SampleRateConfig:
sample_rate_config(*reinterpret_cast<const SampleRateConfigMessage*>(message));
break;
case Message::ID::ReplayConfig:
configured = false;
bytes_read = 0;
replay_config(*reinterpret_cast<const ReplayConfigMessage*>(message));
break;
// App has prefilled the buffers, we're ready to go now
case Message::ID::FIFOData:
configured = true;
break;
default:
break;
}
}
void ReplayProcessor::sample_rate_config(const SampleRateConfigMessage& message) {
baseband_fs = message.sample_rate * toUType(message.oversample_rate);
oversample_rate = message.oversample_rate;
baseband_thread.set_sampling_rate(baseband_fs);
spectrum_interval_samples = baseband_fs / spectrum_rate_hz;
}
void ReplayProcessor::replay_config(const ReplayConfigMessage& message) {
if (message.config) {
stream = std::make_unique<StreamOutput>(message.config);
// Tell application that the buffers and FIFO pointers are ready, prefill
shared_memory.application_queue.push(sig_message);
} else {
stream.reset();
}
}
int main() {
EventDispatcher event_dispatcher{std::make_unique<ReplayProcessor>()};
event_dispatcher.run();
return 0;
}