2016-01-27 14:55:03 -08:00

255 lines
6.9 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "max2837.hpp"
#include "hackrf_hal.hpp"
#include "hackrf_gpio.hpp"
using namespace hackrf::one;
#include "ch.h"
#include "hal.h"
#include <algorithm>
namespace max2837 {
namespace lna {
constexpr std::array<uint8_t, 8> lookup_8db_steps {
0b111, 0b011, 0b110, 0b010,
0b100, 0b000, 0b000, 0b000
};
static uint_fast8_t gain_ordinal(const int8_t db) {
const auto db_sat = gain_db_range.clip(db);
return lna::lookup_8db_steps[(db_sat >> 3) & 7];
}
} /* namespace lna */
namespace vga {
static uint_fast8_t gain_ordinal(const int8_t db) {
const auto db_sat = gain_db_range.clip(db);
return ((db_sat >> 1) & 0b11111) ^ 0b11111;
}
} /* namespace vga */
namespace filter {
static uint_fast8_t bandwidth_ordinal(const uint32_t bandwidth) {
/* Determine filter setting that will provide bandwidth greater than or
* equal to requested bandwidth.
*/
return std::lower_bound(bandwidths.cbegin(), bandwidths.cend(), bandwidth) - bandwidths.cbegin();
}
} /* namespace filter */
/* Empirical testing indicates about 25us is necessary to get a valid
* temperature sense conversion from the ADC.
*/
constexpr float seconds_for_temperature_sense_adc_conversion = 30.0e-6;
constexpr halrtcnt_t ticks_for_temperature_sense_adc_conversion = (base_m4_clk_f * seconds_for_temperature_sense_adc_conversion + 1);
constexpr uint32_t reference_frequency = max2837_reference_f;
constexpr uint32_t pll_factor = 1.0 / (4.0 / 3.0 / reference_frequency) + 0.5;
void MAX2837::init() {
set_mode(Mode::Shutdown);
gpio_max2837_enable.output();
gpio_max2837_rxenable.output();
gpio_max2837_txenable.output();
_map.r.tx_gain.TXVGA_GAIN_SPI_EN = 1;
_map.r.tx_gain.TXVGA_GAIN_MSB_SPI_EN = 1;
_map.r.tx_gain.TXVGA_GAIN_SPI = 0x00;
_map.r.lpf_3_vga_1.VGAMUX_enable = 1;
_map.r.lpf_3_vga_1.VGA_EN = 1;
_map.r.hpfsm_3.HPC_STOP = 1; /* 1kHz */
_map.r.rx_top_rx_bias.LNAgain_SPI_EN = 1; /* control LNA gain from SPI */
_map.r.rxrf_2.L = 0b000;
_map.r.rx_top_rx_bias.VGAgain_SPI_EN = 1; /* control VGA gain from SPI */
_map.r.vga_2.VGA = 0b01010;
_map.r.lpf_3_vga_1.BUFF_VCM = 0b00; /* TODO: Check values out of ADC */
_map.r.lpf_1.LPF_EN = 1; /* Enable low-pass filter */
_map.r.lpf_1.ModeCtrl = 0b01; /* Rx LPF */
_map.r.lpf_1.FT = 0b0000; /* 5MHz LPF */
_map.r.spi_en.EN_SPI = 1; /* enable chip functions when ENABLE pin set */
_map.r.lo_gen.LOGEN_2GM = 0;
#if 0
_map.r.rxrf_1.LNA_EN = 1;
_map.r.rxrf_1.Mixer_EN = 1;
_map.r.rxrf_1.RxLO_EN = 1;
_map.r.rx_top.DOUT_DRVH = 0; /* slow down DOUT edges */
_map.r.hpfsm_4.DOUT_CSB_SEL = 0; /* DOUT not tri-stated, is independent of CSB */
_map.r.xtal_cfg.XTAL_CLKOUT_EN = 0; /* CLKOUT pin disabled. (Seems to have no effect.) */
#endif
_map.r.vga_3_rx_top.RSSI_EN_SPIenables = 1;
_map.r.vga_3_rx_top.RSSI_MODE = 1; /* RSSI independent of RXHP */
_dirty.set();
flush();
set_mode(Mode::Standby);
}
void MAX2837::set_mode(const Mode mode) {
gpio_max2837_enable.write(toUType(mode) & toUType(Mode::Mask_Enable));
gpio_max2837_rxenable.write(toUType(mode) & toUType(Mode::Mask_RxEnable));
gpio_max2837_txenable.write(toUType(mode) & toUType(Mode::Mask_TxEnable));
}
void MAX2837::flush() {
if( _dirty ) {
for(size_t n=0; n<reg_count; n++) {
if( _dirty[n] ) {
write(n, _map.w[n]);
}
}
_dirty.clear();
}
}
void MAX2837::flush_one(const Register reg) {
const auto reg_num = toUType(reg);
write(reg_num, _map.w[reg_num]);
_dirty.clear(reg_num);
}
void MAX2837::write(const address_t reg_num, const reg_t value) {
uint16_t t = (0U << 15) | (reg_num << 10) | (value & 0x3ffU);
_target.transfer(&t, 1);
}
reg_t MAX2837::read(const address_t reg_num) {
uint16_t t = (1U << 15) | (reg_num << 10);
_target.transfer(&t, 1U);
return t & 0x3ffU;
}
void MAX2837::write(const Register reg, const reg_t value) {
write(toUType(reg), value);
}
reg_t MAX2837::read(const Register reg) {
return read(toUType(reg));
}
void MAX2837::set_tx_vga_gain(const int_fast8_t value) {
_map.r.tx_gain.TXVGA_GAIN_SPI = value;
_dirty[Register::TX_GAIN] = 1;
flush();
}
void MAX2837::set_lna_gain(const int_fast8_t db) {
_map.r.rxrf_2.L = lna::gain_ordinal(db);
_dirty[Register::RXRF_2] = 1;
flush();
}
void MAX2837::set_vga_gain(const int_fast8_t db) {
_map.r.vga_2.VGA = vga::gain_ordinal(db);
_dirty[Register::VGA_2] = 1;
flush();
}
void MAX2837::set_lpf_rf_bandwidth(const uint32_t bandwidth_minimum) {
_map.r.lpf_1.FT = filter::bandwidth_ordinal(bandwidth_minimum);
_dirty[Register::LPF_1] = 1;
flush();
}
bool MAX2837::set_frequency(const rf::Frequency lo_frequency) {
/* TODO: This is a sad implementation. Refactor. */
if( lo::band[0].contains(lo_frequency) ) {
_map.r.syn_int_div.LOGEN_BSW = 0b00; /* 2300 - 2399.99MHz */
_map.r.rxrf_1.LNAband = 0; /* 2.3 - 2.5GHz */
} else if( lo::band[1].contains(lo_frequency) ) {
_map.r.syn_int_div.LOGEN_BSW = 0b01; /* 2400 - 2499.99MHz */
_map.r.rxrf_1.LNAband = 0; /* 2.3 - 2.5GHz */
} else if( lo::band[2].contains(lo_frequency) ) {
_map.r.syn_int_div.LOGEN_BSW = 0b10; /* 2500 - 2599.99MHz */
_map.r.rxrf_1.LNAband = 1; /* 2.5 - 2.7GHz */
} else if( lo::band[3].contains(lo_frequency) ) {
_map.r.syn_int_div.LOGEN_BSW = 0b11; /* 2600 - 2700Hz */
_map.r.rxrf_1.LNAband = 1; /* 2.5 - 2.7GHz */
} else {
return false;
}
_dirty[Register::SYN_INT_DIV] = 1;
_dirty[Register::RXRF_1] = 1;
const uint64_t div_q20 = (lo_frequency * (1 << 20)) / pll_factor;
_map.r.syn_int_div.SYN_INTDIV = div_q20 >> 20;
_dirty[Register::SYN_INT_DIV] = 1;
_map.r.syn_fr_div_2.SYN_FRDIV_19_10 = (div_q20 >> 10) & 0x3ff;
_dirty[Register::SYN_FR_DIV_2] = 1;
/* flush to commit high FRDIV first, as low FRDIV commits the change */
flush();
_map.r.syn_fr_div_1.SYN_FRDIV_9_0 = (div_q20 & 0x3ff);
_dirty[Register::SYN_FR_DIV_1] = 1;
flush();
return true;
}
reg_t MAX2837::temp_sense() {
if( !_map.r.rx_top.ts_en ) {
_map.r.rx_top.ts_en = 1;
flush_one(Register::RX_TOP);
chThdSleepMilliseconds(1);
}
_map.r.rx_top.ts_adc_trigger = 1;
flush_one(Register::RX_TOP);
halPolledDelay(ticks_for_temperature_sense_adc_conversion);
const auto value = read(Register::TEMP_SENSE);
_map.r.rx_top.ts_adc_trigger = 0;
flush_one(Register::RX_TOP);
return value;
}
}