mayhem-firmware/firmware/application/apps/ui_looking_glass_app.cpp
gullradriel ec3cc7a859
Looking spectrum tune (#1143)
* finely tuned spectrum and marker precision, all modes

* hidding buttons when mode is not supported

* removing on show hide since widget implementation is buggy. Fine tuned values using signal generator to get around the corners

---------

Co-authored-by: GullCode <gullradriel@hotmail.com>
2023-06-10 17:17:02 +02:00

595 lines
23 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2020 euquiq
* Copyright (C) 2023 gullradriel, Nilorea Studio Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ui_looking_glass_app.hpp"
using namespace portapack;
namespace ui {
void GlassView::focus() {
button_marker.focus();
}
GlassView::~GlassView() {
receiver_model.set_sampling_rate(3072000); // Just a hack to avoid hanging other apps
receiver_model.disable();
baseband::shutdown();
}
void GlassView::get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power) {
if (mode == LOOKING_GLASS_SINGLEPASS) {
// <20MHz spectrum mode
if (bin < 120) {
if (spectrum.db[SPEC_NB_BINS - 120 + bin] > max_power)
max_power = spectrum.db[SPEC_NB_BINS - 120 + bin];
} else {
if (spectrum.db[bin - 120] > max_power)
max_power = spectrum.db[bin - 120];
}
} else {
// FAST or SLOW mode
if (bin < 120) {
if (spectrum.db[134 + bin] > max_power)
max_power = spectrum.db[134 + bin];
} else {
if (spectrum.db[bin - 118] > max_power)
max_power = spectrum.db[bin - 118];
}
}
}
rf::Frequency GlassView::get_freq_from_bin_pos(uint8_t pos) {
rf::Frequency freq_at_pos = 0;
if (mode == LOOKING_GLASS_SINGLEPASS) {
// starting from the middle, minus 8 ignored bin on each side. Since pos is [-120,120] after the (pos - 120), it's divided by SCREEN_W(240)/2 => 120
freq_at_pos = f_center_ini + ((pos - 120) * ((looking_glass_range - ((16 * looking_glass_range) / SPEC_NB_BINS)) / 2)) / (SCREEN_W / 2);
} else
freq_at_pos = f_min + (2 * offset * each_bin_size) + (pos * looking_glass_range) / SCREEN_W;
return freq_at_pos;
}
void GlassView::on_marker_change() {
marker = get_freq_from_bin_pos(marker_pixel_index);
button_marker.set_text(to_string_short_freq(marker));
PlotMarker(marker_pixel_index); // Refresh marker on screen
}
void GlassView::retune() {
// Start a new sweep.
// Tune rx for this new slice directly because the model
// saves to persistent memory which is slower.
radio::set_tuning_frequency(f_center);
chThdSleepMilliseconds(5); // stabilize freq
baseband::spectrum_streaming_start(); // Do the RX
}
void GlassView::on_lna_changed(int32_t v_db) {
receiver_model.set_lna(v_db);
}
void GlassView::on_vga_changed(int32_t v_db) {
receiver_model.set_vga(v_db);
}
void GlassView::reset_live_view(bool clear_screen) {
max_freq_hold = 0;
max_freq_power = -1000;
if (clear_screen) {
// only clear screen in peak mode
if (live_frequency_view == 2) {
display.fill_rectangle({{0, 108 + 16}, {SCREEN_W, 320 - (108 + 16)}}, {0, 0, 0});
}
}
}
void GlassView::add_spectrum_pixel(uint8_t power) {
spectrum_row[pixel_index] = spectrum_rgb3_lut[power]; // row of colors
spectrum_data[pixel_index] = (live_frequency_integrate * spectrum_data[pixel_index] + power) / (live_frequency_integrate + 1); // smoothing
pixel_index++;
if (pixel_index == SCREEN_W) // got an entire waterfall line
{
if (live_frequency_view > 0) {
constexpr int rssi_sample_range = SPEC_NB_BINS;
constexpr float rssi_voltage_min = 0.4;
constexpr float rssi_voltage_max = 2.2;
constexpr float adc_voltage_max = 3.3;
constexpr int raw_min = rssi_sample_range * rssi_voltage_min / adc_voltage_max;
constexpr int raw_max = rssi_sample_range * rssi_voltage_max / adc_voltage_max;
constexpr int raw_delta = raw_max - raw_min;
const range_t<int> y_max_range{0, 320 - (108 + 16)};
// drawing and keeping track of max freq
for (uint16_t xpos = 0; xpos < SCREEN_W; xpos++) {
// save max powerwull freq
if (spectrum_data[xpos] > max_freq_power) {
max_freq_power = spectrum_data[xpos];
max_freq_hold = get_freq_from_bin_pos(xpos);
}
int16_t point = y_max_range.clip(((spectrum_data[xpos] - raw_min) * (320 - (108 + 16))) / raw_delta);
uint8_t color_gradient = (point * 255) / 212;
// clear if not in peak view
if (live_frequency_view != 2) {
display.fill_rectangle({{xpos, 108 + 16}, {1, 320 - point}}, {0, 0, 0});
}
display.fill_rectangle({{xpos, 320 - point}, {1, point}}, {color_gradient, 0, uint8_t(255 - color_gradient)});
}
if (last_max_freq != max_freq_hold) {
last_max_freq = max_freq_hold;
freq_stats.set("MAX HOLD: " + to_string_short_freq(max_freq_hold));
}
PlotMarker(marker_pixel_index);
} else {
display.draw_pixels({{0, display.scroll(1)}, {SCREEN_W, 1}}, spectrum_row); // new line at top, one less var, speedier
}
pixel_index = 0; // Start New cascade line
}
}
bool GlassView::process_bins(uint8_t* powerlevel) {
bins_Hz_size += each_bin_size; // add pixel to fulfilled bag of Hz
if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled
{
if (*powerlevel > min_color_power)
add_spectrum_pixel(*powerlevel); // Pixel will represent max_power
else
add_spectrum_pixel(0); // Filtered out, show black
*powerlevel = 0;
if (!pixel_index) // Received indication that a waterfall line has been completed
{
bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
if (mode != LOOKING_GLASS_SINGLEPASS) {
f_center = f_center_ini;
retune();
} else
baseband::spectrum_streaming_start();
return true; // signal a new line
}
bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
}
return false;
}
// Apparently, the spectrum object returns an array of SPEC_NB_BINS (256) bins
// Each having the radio signal power for it's corresponding frequency slot
void GlassView::on_channel_spectrum(const ChannelSpectrum& spectrum) {
baseband::spectrum_streaming_stop();
// Convert bins of this spectrum slice into a representative max_power and when enough, into pixels
// we actually need SCREEN_W (240) of those bins
for (bin = 0; bin < bin_length; bin++) {
get_max_power(spectrum, bin, max_power);
// process dc spike if enable
if (bin == 119) {
uint8_t next_max_power = 0;
get_max_power(spectrum, bin + 1, next_max_power);
for (uint8_t it = 0; it < ignore_dc; it++) {
uint8_t med_max_power = (max_power + next_max_power) / 2; // due to the way process_bins works we have to keep resetting the color
if (process_bins(&med_max_power) == true)
return; // new line signaled, return
}
}
// process actual bin
if (process_bins(&max_power) == true)
return; // new line signaled, return
}
if (mode != LOOKING_GLASS_SINGLEPASS) {
f_center += looking_glass_step;
retune();
} else
baseband::spectrum_streaming_start();
}
void GlassView::on_hide() {
baseband::spectrum_streaming_stop();
display.scroll_disable();
}
void GlassView::on_show() {
display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates
baseband::spectrum_streaming_start();
}
void GlassView::on_range_changed() {
reset_live_view(true);
f_min = field_frequency_min.value();
f_max = field_frequency_max.value();
f_min = f_min * MHZ_DIV; // Transpose into full frequency realm
f_max = f_max * MHZ_DIV;
looking_glass_range = f_max - f_min;
if (looking_glass_range <= LOOKING_GLASS_SLICE_WIDTH_MAX) {
// if the view is done in one pass, show it like in analog_audio_app
mode = LOOKING_GLASS_SINGLEPASS;
offset = 2;
bin_length = SCREEN_W;
ignore_dc = 0;
looking_glass_bandwidth = looking_glass_range;
looking_glass_sampling_rate = looking_glass_bandwidth;
each_bin_size = looking_glass_bandwidth / SCREEN_W;
looking_glass_step = looking_glass_bandwidth;
f_center_ini = f_min + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
portapack::display.fill_rectangle({17 * 8, 4 * 16, 2 * 8, 16}, Color::black()); // Clear old marker and whole marker rectangle btw
} else {
// view is made in multiple pass, use original bin picking
mode = scan_type.selected_index_value();
looking_glass_bandwidth = LOOKING_GLASS_SLICE_WIDTH_MAX;
looking_glass_sampling_rate = LOOKING_GLASS_SLICE_WIDTH_MAX;
each_bin_size = LOOKING_GLASS_SLICE_WIDTH_MAX / SPEC_NB_BINS;
if (mode == LOOKING_GLASS_FASTSCAN) {
offset = 2;
ignore_dc = 4;
bin_length = SCREEN_W;
} else { // if( mode == LOOKING_GLASS_SLOWSCAN )
offset = 2;
bin_length = 80;
ignore_dc = 0;
}
looking_glass_step = (bin_length + ignore_dc) * each_bin_size;
f_center_ini = f_min - (offset * each_bin_size) + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
}
search_span = looking_glass_range / MHZ_DIV;
marker_pixel_step = looking_glass_range / SCREEN_W; // Each pixel value in Hz
//
button_range.set_text(" "); // clear up to 6 chars
if (locked_range) {
button_range.set_text(">" + to_string_dec_uint(search_span) + "<");
} else {
button_range.set_text(" " + to_string_dec_uint(search_span) + " ");
}
pixel_index = 0; // reset pixel counter
max_power = 0; // reset save max power level
bins_Hz_size = 0; // reset amount of Hz filled up by pixels
//
on_marker_change();
// set the sample rate and bandwidth
receiver_model.set_sampling_rate(looking_glass_sampling_rate);
receiver_model.set_baseband_bandwidth(looking_glass_bandwidth);
receiver_model.set_squelch_level(0);
f_center = f_center_ini; // Reset sweep into first slice
baseband::set_spectrum(looking_glass_bandwidth, field_trigger.value());
receiver_model.set_tuning_frequency(f_center); // tune rx for this slice
}
void GlassView::PlotMarker(uint8_t pos) {
uint8_t shift_y = 0;
if (live_frequency_view > 0) // plot one line down when in live view
{
shift_y = 16;
}
portapack::display.fill_rectangle({0, 100 + shift_y, SCREEN_W, 8}, Color::black()); // Clear old marker and whole marker rectangle btw
portapack::display.fill_rectangle({pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top
portapack::display.fill_rectangle({pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle
portapack::display.fill_rectangle({pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom
}
void GlassView::clip_min(int32_t v) {
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v > 7200 - min_size) {
v = 7200 - min_size;
}
if (v > (field_frequency_max.value() - min_size))
field_frequency_max.set_value(v + min_size);
if (locked_range)
field_frequency_max.set_value(v + min_size);
else
field_frequency_min.set_value(v);
on_range_changed();
}
void GlassView::clip_max(int32_t v) {
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v < min_size) {
v = min_size;
}
if (v < (field_frequency_min.value() + min_size))
field_frequency_min.set_value(v - min_size);
if (locked_range)
field_frequency_min.set_value(v - min_size);
else
field_frequency_max.set_value(v);
on_range_changed();
}
GlassView::GlassView(
NavigationView& nav)
: nav_(nav) {
baseband::run_image(portapack::spi_flash::image_tag_wideband_spectrum);
add_children({&labels,
&field_frequency_min,
&field_frequency_max,
&field_lna,
&field_vga,
&button_range,
&steps_config,
&scan_type,
&view_config,
&level_integration,
&filter_config,
&field_rf_amp,
&range_presets,
&button_marker,
&field_trigger,
&button_jump,
&button_rst,
&freq_stats});
load_Presets(); // Load available presets from TXT files (or default)
field_frequency_min.on_change = [this](int32_t v) {
clip_min(v);
};
field_frequency_min.set_value(presets_db[0].min); // Defaults to first preset
field_frequency_min.set_step(steps);
field_frequency_min.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_min.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) {
clip_min(f / MHZ_DIV);
};
};
field_frequency_max.on_change = [this](int32_t v) {
clip_max(v);
};
field_frequency_max.set_value(presets_db[0].max); // Defaults to first preset
field_frequency_max.set_step(steps);
field_frequency_max.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_max.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) {
clip_max(f / MHZ_DIV);
};
};
field_lna.on_change = [this](int32_t v) {
reset_live_view(true);
this->on_lna_changed(v);
};
field_lna.set_value(receiver_model.lna());
field_vga.on_change = [this](int32_t v_db) {
reset_live_view(true);
this->on_vga_changed(v_db);
};
field_vga.set_value(receiver_model.vga());
steps_config.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
field_frequency_min.set_step(v);
field_frequency_max.set_step(v);
steps = v;
};
steps_config.set_selected_index(0); // default of 1 Mhz steps
scan_type.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
mode = v;
on_range_changed();
};
scan_type.set_selected_index(0); // default legacy fast scan
view_config.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
// clear between changes
reset_live_view(true);
if (v == 0) {
live_frequency_view = 0;
level_integration.hidden(true);
freq_stats.hidden(true);
button_jump.hidden(true);
button_rst.hidden(true);
display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates
} else if (v == 1) {
display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0});
live_frequency_view = 1;
display.scroll_disable();
level_integration.hidden(false);
freq_stats.hidden(false);
button_jump.hidden(false);
button_rst.hidden(false);
} else if (v == 2) {
display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0});
live_frequency_view = 2;
display.scroll_disable();
level_integration.hidden(false);
freq_stats.hidden(false);
button_jump.hidden(false);
button_rst.hidden(false);
}
set_dirty();
};
view_config.set_selected_index(0); // default spectrum
level_integration.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
reset_live_view(true);
live_frequency_integrate = v;
};
level_integration.set_selected_index(3); // default integration of ( 3 * old value + new_value ) / 4
filter_config.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
reset_live_view(true);
min_color_power = v;
};
filter_config.set_selected_index(0);
range_presets.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
field_frequency_min.set_value(presets_db[v].min, false);
field_frequency_max.set_value(presets_db[v].max, false);
on_range_changed();
};
button_marker.on_change = [this]() {
if (((int)marker_pixel_index + button_marker.get_encoder_delta()) < 0) {
marker_pixel_index = 0;
} else if (((int)marker_pixel_index + button_marker.get_encoder_delta()) > SCREEN_W) {
marker_pixel_index = SCREEN_W;
} else {
marker_pixel_index = marker_pixel_index + button_marker.get_encoder_delta();
}
on_marker_change();
button_marker.set_encoder_delta(0);
};
button_marker.on_select = [this](ButtonWithEncoder&) {
receiver_model.set_tuning_frequency(marker); // Center tune rx in marker freq.
receiver_model.set_frequency_step(MHZ_DIV); // Preset a 1 MHz frequency step into RX -> AUDIO
nav_.pop();
nav_.push<AnalogAudioView>(); // Jump into audio view
};
field_trigger.on_change = [this](int32_t v) {
baseband::set_spectrum(looking_glass_bandwidth, v);
};
field_trigger.set_value(32); // Defaults to 32, as normal triggering resolution
button_range.on_select = [this](Button&) {
if (locked_range) {
locked_range = false;
button_range.set_style(&Styles::white);
button_range.set_text(" " + to_string_dec_uint(search_span) + " ");
} else {
locked_range = true;
button_range.set_style(&Styles::red);
button_range.set_text(">" + to_string_dec_uint(search_span) + "<");
}
};
button_jump.on_select = [this](Button&) {
receiver_model.set_tuning_frequency(max_freq_hold); // Center tune rx in marker freq.
receiver_model.set_frequency_step(MHZ_DIV); // Preset a 1 MHz frequency step into RX -> AUDIO
nav_.pop();
nav_.push<AnalogAudioView>(); // Jump into audio view
};
button_rst.on_select = [this](Button&) {
reset_live_view(true);
};
display.scroll_set_area(109, 319);
baseband::set_spectrum(looking_glass_bandwidth, field_trigger.value()); // trigger:
// Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute ,
// it keeps adding the output of the fft to the buffer until "trigger" number of calls are made,
// at which time it pushes the buffer up with channel_spectrum.feed
marker_pixel_index = 120;
on_range_changed();
receiver_model.set_modulation(ReceiverModel::Mode::SpectrumAnalysis);
receiver_model.set_sampling_rate(looking_glass_sampling_rate); // 20mhz
receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz
receiver_model.set_squelch_level(0);
receiver_model.enable();
}
void GlassView::load_Presets() {
File presets_file; // LOAD /WHIPCALC/ANTENNAS.TXT from microSD
auto result = presets_file.open("LOOKINGGLASS/PRESETS.TXT");
presets_db.clear(); // Start with fresh db
if (result.is_valid()) {
presets_Default(); // There is no txt, store a default range
} else {
std::string line; // There is a txt file
char one_char[1]; // Read it char by char
for (size_t pointer = 0; pointer < presets_file.size(); pointer++) {
presets_file.seek(pointer);
presets_file.read(one_char, 1);
if ((int)one_char[0] > 31) { // ascii space upwards
line += one_char[0]; // Add it to the textline
} else if (one_char[0] == '\n') { // New Line
txtline_process(line); // make sense of this textline
line.clear(); // Ready for next textline
}
}
if (line.length() > 0)
txtline_process(line); // Last line had no newline at end ?
if (!presets_db.size())
presets_Default(); // no antenna on txt, use default
}
populate_Presets();
}
void GlassView::txtline_process(std::string& line) {
if (line.find("#") != std::string::npos)
return; // Line is just a comment
size_t comma = line.find(","); // Get first comma position
if (comma == std::string::npos)
return; // No comma at all
size_t previous = 0;
preset_entry new_preset;
new_preset.min = std::stoi(line.substr(0, comma));
if (!new_preset.min)
return; // No frequency!
previous = comma + 1;
comma = line.find(",", previous); // Search for next delimiter
if (comma == std::string::npos)
return; // No comma at all
new_preset.max = std::stoi(line.substr(previous, comma - previous));
if (!new_preset.max)
return; // No frequency!
new_preset.label = line.substr(comma + 1);
if (new_preset.label.size() == 0)
return; // No label ?
presets_db.push_back(new_preset); // Add this preset.
}
void GlassView::populate_Presets() {
using option_t = std::pair<std::string, int32_t>;
using options_t = std::vector<option_t>;
options_t entries;
for (preset_entry preset : presets_db) { // go thru all available presets
entries.emplace_back(preset.label, entries.size());
}
range_presets.set_options(entries);
}
void GlassView::presets_Default() {
presets_db.clear();
presets_db.push_back({2320, 2560, "DEFAULT WIFI 2.4GHz"});
}
} // namespace ui