2015-07-08 08:39:24 -07:00

230 lines
6.1 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "cpld_max5.hpp"
#include "jtag.hpp"
#include <cstdint>
#include <array>
namespace cpld {
namespace max5 {
/* Enter ISP:
* Ensures that the I/O pins transition smoothly from user mode to ISP
* mode.
*/
void CPLD::enter_isp() {
/* Enter ISP */
shift_ir(0x2cc); //(199);
jtag.runtest_tck(18003); // 1ms
}
void CPLD::exit_isp() {
/* Exit ISP? Reset? */
shift_ir(0x201); //166);
jtag.runtest_tck(18003); // 1ms
shift_ir(0x3FF);
jtag.runtest_tck(18000); // 1ms
}
/* Sector erase:
* Involves shifting in the instruction to erase the device and applying
* an erase pulse or pulses. The erase pulse is automatically generated
* internally by waiting in the run, test, or idle state for the
* specified erase pulse time of 500 ms for the CFM block and 500 ms for
* each sector of the user flash memory (UFM) block.
*/
void CPLD::bulk_erase() {
erase_sector(0x0011);
erase_sector(0x0001);
erase_sector(0x0000);
}
bool CPLD::program(
const std::array<uint16_t, 3328>& block_0,
const std::array<uint16_t, 512>& block_1
) {
bulk_erase();
/* Program:
* involves shifting in the address, data, and program instruction and
* generating the program pulse to program the flash cells. The program
* pulse is automatically generated internally by waiting in the run/test/
* idle state for the specified program pulse time of 75 μs. This process
* is repeated for each address in the CFM and UFM blocks.
*/
program_block(0x0000, block_0);
program_block(0x0001, block_1);
const auto verify_ok = verify(block_0, block_1);
if( verify_ok ) {
/* Do "something". Not sure what, but it happens after verify. */
/* Starts with a sequence the same as Program: Block 0. */
/* Perhaps it is a write to tell the CPLD that the bitstream
* verified OK, and it's OK to load and execute? And despite only
* one bit changing, a write must be a multiple of a particular
* length (64 bits)? */
sector_select(0x0000);
shift_ir(0x2F4); // Program
jtag.runtest_tck(93); // 5 us
/* TODO: Use data from cpld_block_0, with appropriate bit(s) changed */
/* Perhaps this is the "ISP_DONE" bit? */
jtag.shift_dr(16, block_0[0] & 0xfbff);
jtag.runtest_tck(1800); // 100us
jtag.shift_dr(16, block_0[1]);
jtag.runtest_tck(1800); // 100us
jtag.shift_dr(16, block_0[2]);
jtag.runtest_tck(1800); // 100us
jtag.shift_dr(16, block_0[3]);
jtag.runtest_tck(1800); // 100us
}
return verify_ok;
}
bool CPLD::verify(
const std::array<uint16_t, 3328>& block_0,
const std::array<uint16_t, 512>& block_1
) {
/* Verify */
const auto block_0_success = verify_block(0x0000, block_0);
const auto block_1_success = verify_block(0x0001, block_1);
return block_0_success && block_1_success;
}
void CPLD::sector_select(const uint16_t id) {
shift_ir(0x203); // Sector select
jtag.runtest_tck(93); // 5us
jtag.shift_dr(13, id); // Sector ID
}
bool CPLD::idcode_ok() {
shift_ir(Instruction::IDCODE);
const auto idcode = jtag.shift_dr(32, 0);
return (idcode == IDCODE);
}
std::array<uint16_t, 5> CPLD::read_silicon_id() {
sector_select(0x0089);
shift_ir(0x205);
jtag.runtest_tck(93); // 5us
std::array<uint16_t, 5> silicon_id;
silicon_id[0] = jtag.shift_dr(16, 0xffff);
silicon_id[1] = jtag.shift_dr(16, 0xffff);
silicon_id[2] = jtag.shift_dr(16, 0xffff);
silicon_id[3] = jtag.shift_dr(16, 0xffff);
silicon_id[4] = jtag.shift_dr(16, 0xffff);
return silicon_id;
}
/* Check ID:
* The silicon ID is checked before any Program or Verify process. The
* time required to read this silicon ID is relatively small compared to
* the overall programming time.
*/
bool CPLD::silicon_id_ok() {
const auto silicon_id = read_silicon_id();
return (
(silicon_id[0] == 0x8232) &&
(silicon_id[1] == 0x2aa2) &&
(silicon_id[2] == 0x4a82) &&
(silicon_id[3] == 0x8c0c) &&
(silicon_id[4] == 0x0000)
);
}
void CPLD::erase_sector(const uint16_t id) {
sector_select(id);
shift_ir(0x2F2); // Erase pulse
jtag.runtest_tck(9000003); // 500ms
}
void CPLD::program_block(
const uint16_t id,
const uint16_t* const data,
const size_t count
) {
sector_select(id);
shift_ir(0x2F4); // Program
jtag.runtest_tck(93); // 5us
for(size_t i=0; i<count; i++) {
jtag.shift_dr(16, data[i]);
jtag.runtest_tck(1800);
}
}
bool CPLD::verify_block(
const uint16_t id,
const uint16_t* const data,
const size_t count
) {
sector_select(id);
shift_ir(0x205); // Read
jtag.runtest_tck(93); // 5us
bool success = true;
for(size_t i=0; i<count; i++) {
const auto from_device = jtag.shift_dr(16, 0xffff);
if( (id == 0) && (i == 0) ) {
// Account for bit that indicates bitstream is valid.
if( (from_device & 0xfbff) != (data[i] & 0xfbff) ) {
success = false;
}
} else {
if( from_device != data[i] ) {
success = false;
}
}
}
return success;
}
bool CPLD::is_blank_block(const uint16_t id, const size_t count) {
sector_select(id);
shift_ir(0x205); // Read
jtag.runtest_tck(93); // 5us
bool success = true;
for(size_t i=0; i<count; i++) {
const auto from_device = jtag.shift_dr(16, 0xffff);
if( from_device != 0xffff ) {
success = false;
}
}
return success;
}
bool CPLD::is_blank() {
const auto block_0_blank = is_blank_block(0x0000, 3328);
const auto block_1_blank = is_blank_block(0x0001, 512);
return block_0_blank && block_1_blank;
}
} /* namespace max5 */
} /* namespace cpld */