Mark Thompson 22430fb8d4
Support frequency files that don't have a C/R at the end of the last line (#997)
* Support FREQ files that don't have 0x0A at end of last line
2023-05-15 09:11:56 +02:00

524 lines
16 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "freqman.hpp"
#include <algorithm>
using option_t = std::pair<std::string, int32_t>;
using options_t = std::vector<option_t>;
options_t freqman_entry_modulations = {
{ "AM", 0 },
{ "NFM", 1 },
{ "WFM", 2 }
};
options_t freqman_entry_bandwidths[ 4 ] = {
{ //AM
{ "DSB 9k" , 0 },
{ "DSB 6k" , 1 },
{ "USB+3k" , 2 },
{ "LSB-3k" , 3 },
{ "CW" , 4 }
},
{ //NFM
{ "8k5" , 0 },
{ "11k" , 1 },
{ "16k" , 2 }
},
{ //WFM
{ "200k" , 0 },
{ "180k" , 1 },
{ "40k" , 2 },
}
};
options_t freqman_entry_steps = {
{ "0.1kHz " , 100 },
{ "1kHz " , 1000 },
{ "5kHz (SA AM)" , 5000 },
{ "6.25kHz(NFM)" , 6250 },
{ "8.33kHz(AIR)" , 8330 },
{ "9kHz (EU AM)" , 9000 },
{ "10kHz(US AM)" , 10000 },
{ "12.5kHz(NFM)" , 12500 },
{ "15kHz (HFM)" , 15000 },
{ "25kHz (N1)" , 25000 },
{ "30kHz (OIRT)" , 30000 },
{ "50kHz (FM1)" , 50000 },
{ "100kHz (FM2)" , 100000 },
{ "250kHz (N2)" , 250000 },
{ "500kHz (WFM)" , 500000 },
{ "1MHz " , 1000000 }
};
options_t freqman_entry_steps_short = {
{ "0.1kHz" , 100 },
{ "1kHz" , 1000 },
{ "5kHz" , 5000 },
{ "6.25kHz" , 6250 },
{ "8.33kHz" , 8330 },
{ "9kHz" , 9000 },
{ "10kHz" , 10000 },
{ "12.5kHz" , 12500 },
{ "15kHz" , 15000 },
{ "25kHz" , 25000 },
{ "30kHz" , 30000 },
{ "50kHz" , 50000 },
{ "100kHz" , 100000 },
{ "250kHz" , 250000 },
{ "500kHz" , 500000 },
{ "1MHz" , 1000000 }
};
std::vector<std::string> get_freqman_files() {
std::vector<std::string> file_list;
auto files = scan_root_files(u"FREQMAN", u"*.TXT");
for (auto file : files) {
std::string file_name = file.stem().string();
// don't propose tmp / hidden files in freqman's list
if (file_name.length() && file_name[0] != '.') {
file_list.emplace_back(file_name);
}
}
return file_list;
};
bool load_freqman_file(std::string& file_stem, freqman_db &db) {
return load_freqman_file_ex( file_stem , db , true , true , true );
}
bool load_freqman_file_ex(std::string& file_stem, freqman_db& db, bool load_freqs , bool load_ranges , bool load_hamradios ) {
File freqman_file;
size_t length, n = 0, file_position = 0;
char * pos;
char * line_start;
char * line_end;
std::string description;
rf::Frequency frequency_a, frequency_b;
char file_data[257];
freqman_entry_type type;
freqman_index_t modulation = 0 ;
freqman_index_t bandwidth = 0 ;
freqman_index_t step = 0 ;
freqman_index_t tone = 0 ;
db.clear();
auto result = freqman_file.open("FREQMAN/" + file_stem + ".TXT");
if (result.is_valid())
return false;
while (1) {
// Read a 256 bytes block from file
freqman_file.seek(file_position);
memset(file_data, 0, 257);
auto read_size = freqman_file.read(file_data, 256);
if (read_size.is_error())
return false; // Read error
file_position += 256;
// Reset line_start to beginning of buffer
line_start = file_data;
// If EOF reached, insert 0x0A after, in case the last line doesn't have a C/R
if (read_size.value() < 256)
*(line_start + read_size.value()) = 0x0A;
// Look for complete lines in buffer
while ((line_end = strstr(line_start, "\x0A"))) {
*line_end = 0; // Stop strstr() searches below at EOL
modulation = -1 ;
bandwidth = -1 ;
step = -1 ;
tone = -1 ;
type = ERROR_TYPE;
frequency_a = frequency_b = 0;
// Read frequency
pos = strstr(line_start, "f=");
if(pos) {
pos += 2;
frequency_a = strtoll(pos, nullptr, 10);
type = SINGLE;
} else {
// ...or range
pos = strstr(line_start, "a=");
if (pos) {
pos += 2;
frequency_a = strtoll(pos, nullptr, 10);
type = RANGE;
pos = strstr(line_start, "b=");
if (pos) {
pos += 2;
frequency_b = strtoll(pos, nullptr, 10);
} else
frequency_b = 0;
}else {
// ... or hamradio
pos = strstr(line_start, "r=");
if (pos) {
pos += 2;
frequency_a = strtoll(pos, nullptr, 10);
type = HAMRADIO;
pos = strstr(line_start, "t=");
if (pos) {
pos += 2;
frequency_b = strtoll(pos, nullptr, 10);
} else
frequency_b = frequency_a ;
} else
frequency_a = 0;
}
}
// modulation if any
pos = strstr(line_start, "m=");
if (pos) {
pos += 2;
modulation = freqman_entry_get_modulation_from_str( pos );
}
// bandwidth if any
pos = strstr(line_start, "bw=");
if (pos) {
pos += 3;
bandwidth = freqman_entry_get_bandwidth_from_str( modulation , pos );
}
// step if any
pos = strstr(line_start, "s=");
if (pos) {
pos += 2;
step = freqman_entry_get_step_from_str_short( pos );
}
// ctcss tone if any
/* disabled until better form
pos = strstr(line_start, "c=");
if (pos) {
pos += 2;
tone = tone_key_index_by_value( strtoll( pos , nullptr , 10 ) );
} */
// Read description until , or LF
pos = strstr(line_start, "d=");
if (pos) {
pos += 2;
length = std::min(strcspn(pos, ",\x0A"), (size_t)FREQMAN_DESC_MAX_LEN);
description = string(pos, length);
} else
description = "-";
if( (type == SINGLE && load_freqs) || (type == RANGE && load_ranges) || (type == HAMRADIO && load_hamradios) )
{
db.push_back({ frequency_a, frequency_b, description, type , modulation , bandwidth , step , tone });
n++;
if (n > FREQMAN_MAX_PER_FILE) return true;
}
line_start = line_end + 1;
if (line_start - file_data >= 256) break;
}
if (read_size.value() != 256)
break; // End of file
// Restart at beginning of last incomplete line
file_position -= (file_data + 256 - line_start);
}
/* populate implicitly specified modulation / bandwidth */
if( db.size() > 2 )
{
modulation = db[ 0 ] . modulation;
bandwidth = db[ 0 ] . bandwidth;
for( unsigned int it = 1 ; it < db.size() ; it ++ )
{
if( db[ it ] . modulation < 0 )
{
db[ it ] . modulation = modulation ;
}
else
{
modulation = db[ it ] . modulation ;
}
if( db[ it ] . bandwidth < 0 )
{
db[ it ] . bandwidth = bandwidth ;
}
else
{
modulation = db[ it ] . bandwidth ;
}
}
}
return true;
}
bool get_freq_string( freqman_entry &entry , std::string &item_string )
{
rf::Frequency frequency_a, frequency_b;
frequency_a = entry.frequency_a;
if (entry.type == SINGLE) {
// Single
item_string = "f=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0');
} else if( entry.type == RANGE ) {
// Range
frequency_b = entry.frequency_b;
item_string = "a=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0');
item_string += ",b=" + to_string_dec_uint(frequency_b / 1000) + to_string_dec_uint(frequency_b % 1000UL, 3, '0');
if( entry.step >= 0 )
{
item_string += ",s=" + freqman_entry_get_step_string_short( entry.step );
}
} else if( entry.type == HAMRADIO ) {
frequency_b = entry.frequency_b;
item_string = "r=" + to_string_dec_uint(frequency_a / 1000) + to_string_dec_uint(frequency_a % 1000UL, 3, '0');
item_string += ",t=" + to_string_dec_uint(frequency_b / 1000) + to_string_dec_uint(frequency_b % 1000UL, 3, '0');
if( entry.tone >= 0 )
{
item_string += ",c=" + tone_key_string( entry.tone );
}
}
if( entry.modulation >= 0 && (unsigned)entry.modulation < freqman_entry_modulations . size() )
{
item_string += ",m=" + freqman_entry_get_modulation_string( entry.modulation );
if( entry.bandwidth >= 0 && (unsigned)entry.bandwidth < freqman_entry_bandwidths[ entry.modulation ] . size() )
{
item_string += ",bw=" + freqman_entry_get_bandwidth_string( entry.modulation , entry.bandwidth );
}
}
if (entry.description.size())
item_string += ",d=" + entry.description;
return true ;
}
bool save_freqman_file(std::string &file_stem, freqman_db &db) {
File freqman_file;
std::string freq_file_path = "FREQMAN/" + file_stem + ".TXT";
std::string tmp_freq_file_path = "FREQMAN/" + file_stem + ".TXT.TMP";
if( !db.size() )
{
delete_file( "FREQMAN/"+file_stem+".TXT" );
return true ;
}
delete_file( tmp_freq_file_path );
auto result = freqman_file.open( tmp_freq_file_path );
if ( !result.is_valid() ) {
for (size_t n = 0; n < db.size(); n++) {
std::string item_string;
auto& entry = db[n];
get_freq_string( entry , item_string );
freqman_file.write_line( item_string );
delete &item_string;
}
delete_file( freq_file_path );
rename_file( tmp_freq_file_path , freq_file_path );
return true;
}
return false ;
}
bool create_freqman_file(std::string& file_stem, File& freqman_file) {
auto result = freqman_file.create( "FREQMAN/" + file_stem + ".TXT" );
if (result.is_valid())
return false;
return true;
}
std::string freqman_item_string(freqman_entry &entry, size_t max_length) {
std::string item_string;
switch( entry.type ){
case SINGLE:
item_string = to_string_short_freq(entry.frequency_a) + "M: " + entry.description;
break;
case RANGE:
item_string = "R: " + entry.description;
break;
case HAMRADIO:
item_string = "H: " + entry.description;
break;
default:
item_string = "!UNKNOW TYPE " + entry.description;
break;
}
if (item_string.size() > max_length)
return item_string.substr(0, max_length - 3) + "...";
return item_string;
}
void freqman_set_modulation_option( OptionsField &option )
{
option.set_options( freqman_entry_modulations );
}
void freqman_set_bandwidth_option( freqman_index_t modulation , OptionsField &option )
{
option.set_options( freqman_entry_bandwidths[ modulation ] );
}
void freqman_set_step_option( OptionsField &option )
{
option.set_options( freqman_entry_steps );
}
void freqman_set_step_option_short( OptionsField &option )
{
option.set_options( freqman_entry_steps_short );
}
std::string freqman_entry_get_modulation_string( freqman_index_t modulation )
{
if( modulation < 0 || (unsigned)modulation >= freqman_entry_modulations . size() )
{
return std::string( "" ); // unknown modulation
}
return freqman_entry_modulations[ modulation ] . first ;
}
std::string freqman_entry_get_bandwidth_string( freqman_index_t modulation , freqman_index_t bandwidth )
{
if( modulation < 0 || (unsigned)modulation >= freqman_entry_modulations . size() )
{
return std::string( "" ); // unknown modulation
}
if( bandwidth < 0 || (unsigned)bandwidth > freqman_entry_bandwidths[ modulation ] . size() )
{
return std::string( "" ); // unknown modulation
}
return freqman_entry_bandwidths[ modulation ][ bandwidth ] . first ;
}
std::string freqman_entry_get_step_string( freqman_index_t step )
{
if( step < 0 || (unsigned)step >= freqman_entry_steps . size() )
{
return std::string( "" ); // unknown modulation
}
return freqman_entry_steps[ step ] . first ;
}
std::string freqman_entry_get_step_string_short( freqman_index_t step )
{
if( step < 0 || (unsigned)step >= freqman_entry_steps_short . size() )
{
return std::string( "" ); // unknown modulation
}
return freqman_entry_steps_short[ step ] . first ;
}
int32_t freqman_entry_get_modulation_value( freqman_index_t modulation )
{
if( modulation < 0 || (unsigned)modulation >= freqman_entry_modulations . size() )
{
return -1 ; // unknown modulation
}
return freqman_entry_modulations[ modulation ] . second ;
}
int32_t freqman_entry_get_bandwidth_value( freqman_index_t modulation , freqman_index_t bandwidth )
{
if( modulation < 0 || (unsigned)modulation >= freqman_entry_modulations . size() )
{
return -1 ; // unknown modulation
}
if( bandwidth < 0 || (unsigned)bandwidth > freqman_entry_bandwidths[ modulation ] . size() )
{
return -1 ; // unknown bandwidth for modulation
}
return freqman_entry_bandwidths[ modulation ][ bandwidth ] . second ;
}
int32_t freqman_entry_get_step_value( freqman_index_t step )
{
if( step < 0 || (unsigned)step >= freqman_entry_steps . size() )
{
return -1 ; // unknown modulation
}
return freqman_entry_steps[ step ] . second ;
}
freqman_index_t freqman_entry_get_modulation_from_str( char *str )
{
if( !str )
return -1 ;
for( freqman_index_t index = 0 ; (unsigned)index < freqman_entry_modulations . size() ; index ++ )
{
if( strncmp( freqman_entry_modulations[ index ] . first . c_str() , str , freqman_entry_modulations[ index ] . first . size() ) == 0 )
return index ;
}
return -1 ;
}
freqman_index_t freqman_entry_get_bandwidth_from_str( freqman_index_t modulation , char *str )
{
if( !str )
return -1 ;
if( modulation < 0 || (unsigned)modulation >= freqman_entry_modulations . size() )
return -1 ;
for( freqman_index_t index = 0 ; (unsigned)index < freqman_entry_bandwidths[ modulation ] . size() ; index ++ )
{
if( strncmp( freqman_entry_bandwidths[ modulation ][ index ] . first . c_str() , str , freqman_entry_bandwidths[ modulation ][ index ] . first . size() ) == 0 )
return index ;
}
return -1 ;
}
freqman_index_t freqman_entry_get_step_from_str( char *str )
{
if( !str )
return -1 ;
for( freqman_index_t index = 0 ; (unsigned)index < freqman_entry_steps . size() ; index ++ )
{
if( strncmp( freqman_entry_steps[ index ] . first . c_str() , str , freqman_entry_steps[ index ] . first . size() ) == 0 )
return index ;
}
return -1 ;
}
freqman_index_t freqman_entry_get_step_from_str_short( char *str )
{
if( !str )
return -1 ;
for( freqman_index_t index = 0 ; (unsigned)index < freqman_entry_steps_short . size() ; index ++ )
{
if( strncmp( freqman_entry_steps_short[ index ] . first . c_str() , str , freqman_entry_steps_short[ index ] . first . size() ) == 0 )
return index ;
}
return -1 ;
}