jLynx 033c4e9a5b
Formatted code (#1007)
* Updated style

* Updated files

* fixed new line

* Updated spacing

* File fix WIP

* Updated to clang 13

* updated comment style

* Removed old comment code
2023-05-19 08:16:05 +12:00

445 lines
20 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "adsb.hpp"
#include "sine_table.hpp"
#include "utility.hpp"
#include <math.h>
namespace adsb {
void make_frame_adsb(ADSBFrame& frame, const uint32_t ICAO_address) {
frame.clear();
frame.push_byte((DF_ADSB << 3) | 5); // DF=17 and CA
frame.push_byte(ICAO_address >> 16);
frame.push_byte(ICAO_address >> 8);
frame.push_byte(ICAO_address & 0xFF);
}
// Civil aircraft ADS-B message type starts with Dowlink Format (DF=17) and frame is 112 bits long.
// All known DF's >=16 are long (112 bits). All known DF's <=15 are short (56 bits).(In this case 112 bits)
// Msg structure consists of five main parts :|DF=17 (5 bits)|CA (3 bits)|ICAO (24 bits)|ME (56 bits)|CRC (24 bits)
// Aircraft identification and category message structure, the ME (56 bits) = TC,5 bits | CA,3 bits | C1,6 bits | C2,6 bits | C3,6 | C4,6 | C5,6 | C6,6 | C7,6 | C8,6
// TC : (1..4) : Aircraft identification Type Code . // TC : 9 to 18: Airbone postion // TC : 19 Airbone velocity .
// In this encode_frame_identification function we are using DF = 17 (112 bits long) and TC=4)
void encode_frame_id(ADSBFrame& frame, const uint32_t ICAO_address, const std::string& callsign) {
std::string callsign_formatted(8, '_');
uint64_t callsign_coded = 0;
uint32_t c, s;
char ch;
make_frame_adsb(frame, ICAO_address); // Header DF=17 Downlink Format = ADS-B message (frame 112 bits)
frame.push_byte(TC_IDENT << 3); // 5 top bits ME = TC = we use fix 4 , # Type aircraft Identification Category = TC_IDENT = 4,
// Translate and encode callsign
for (c = 0; c < 8; c++) {
ch = callsign[c];
for (s = 0; s < 64; s++)
if (ch == icao_id_lut[s]) break;
if (s == 64) {
ch = ' '; // Invalid character
s = 32;
}
callsign_coded <<= 6;
callsign_coded |= s;
// callsign[c] = ch;
}
// Insert callsign in frame
for (c = 0; c < 6; c++)
frame.push_byte((callsign_coded >> ((5 - c) * 8)) & 0xFF);
frame.make_CRC();
}
std::string decode_frame_id(ADSBFrame& frame) {
std::string callsign = "";
uint8_t* raw_data = frame.get_raw_data();
uint64_t callsign_coded = 0;
uint32_t c;
// Frame bytes to long
for (c = 5; c < 11; c++) {
callsign_coded <<= 8;
callsign_coded |= raw_data[c];
}
// Long to 6-bit characters
for (c = 0; c < 8; c++) {
callsign.append(1, icao_id_lut[(callsign_coded >> 42) & 0x3F]);
callsign_coded <<= 6;
}
return callsign;
}
/*void generate_frame_emergency(ADSBFrame& frame, const uint32_t ICAO_address, const uint8_t code) {
make_frame_mode_s(frame, ICAO_address);
frame.push_byte((28 << 3) + 1); // TC = 28 (Emergency), subtype = 1 (Emergency)
frame.push_byte(code << 5);
frame.make_CRC();
}*/
// Mode S services. (Mode Select Beacon System). There are two types of Mode S interrogations: The short (56 bits) . and the long (112 bits )
// All known DF's >=16 are long frame msg (112 bits). All known DF's <=15 are short frame msgs (56 bits).(In this case 112 bits)
// Identity squawk replies can be DF=5 (Surveillance Identity reply)(56 bits) / DF 21 (Comm-B with Identity reply) (112 bits)
// DF 21: Comm-B with identity reply structure = |DF=21(5 bits)|FS (3 bits)|DR (5 bits)|UM (6 bits) |Identity squawk code (13 bits) |MB (56 bits) |CRC (24 bits) (total 112 bits)
// Comm-B messages count for a large portion of the Mode S selective interrogation responses.(means, only transmitted information upon selective request)
// Comm-B messages protocol supports many different types of msg's (up to 255).The three more popular ones are the following ones:
// (a) Mode S ELementary Surveillance (ELS) / (b) Mode S EnHanced Surveillance (EHS) / (c) Meteorological information
// Comm-B Data Selector (BDS) is an 8-bit code that determines which information to be included in the MB fields
void encode_frame_squawk(ADSBFrame& frame, const uint16_t squawk) {
uint16_t squawk_coded;
uint8_t UM_field = 0b111101, FS = 0b010, DR = 0b00001;
// To be sent those fields, (56 bits). We should store byte by byte into the frame , and It will be transmitted byte to byte same FIFO order.
// DF 5 bits 5 DF=21 (5 top bits) Downlink Format
// FS 3 bits 0b000, FS (3 bottom bits) (Flight status ) = 000 : no alert, no SPI, aircraft is airborne
// DR 5 bits 0b00001 DR (Downlink request) (5 top bits) = 00000 : no downlink request (In surveillance replies, only values 0, 1, 4, and 5 are used.)
// UM 6 bits 0b000010 UM (Utility message)= 000000, Utility message (UM): 6 bits, contains transponder communication status information.(IIS + IDS)
// Identity_code 13 bits squawk id_code in special interleaved format.
// MB 56 bits
// CRC partity 24 bits parity checksum , cyclic redundancy chek.
frame.clear();
frame.push_byte((DF_EHS_SQUAWK << 3) | FS); // DF=21 (5bits) + FS (3bits, 010 : alert, NO SPI, aircraft is airborne)
frame.push_byte((DR << 3) | (UM_field >> 3)); // DR (5bits, 00001 : downlink request + 3 top bits of UM , let's use 0b111000
// 12 11 10 9 8 7 6 5 4 3 2 1 0 (Original notes) bit weight position----------------------
// 32 31 30 29 28 27 26 25 24 23 22 21 20 (it was wrong , now corrected) bit order inside frame msg
// D4 B4 D2 B2 D1 B1 __ A4 C4 A2 C2 A1 C1 standard spec order of the 13 bits, to be sent , each octal digit = 3 bits , (example A=7 binary A4 A2 A0 = 111
// ABCD = code (octal, 0000~7777)
// FEDCBA9876543210
// xAAAxBBBxCCCxDDD 4 x 3 bits (each octal digit)
// x421x421x421x421 binary weight of each binary position, example AAA = 7 = 111 -------------------------
// Additional , expanded notes -------------------------------
// Identity squawk code ABCD = code (octal, 0000~7777) , input concatenated squawk : 4 octal digits ,A4 A2 A1-B4 B2 B1-C4 C2 C1-D4 D2 D1.
// 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 bit position of the frame msg, (Squawk id is bit 20-32, from C1..D4).
// UM4 UM2 UM1 C1 A1 C2 A2 C4 A4 X B1 D1 B2 D2 B4 D4 3 lower bit UM4,UM2,UM1 of the UM (6bits), and we should re-order the 13 bits ABCD changing 12 bit poistion based on std.
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Two bytes , bit position to be send.
squawk_coded = (((UM_field & (0b111)) << 13) | ((squawk << 9) & 0x1000)) | // C1 It also leaves in the top 3 lower bottom bitd part of UM field.
((squawk << 2) & 0x0800) | // A1
((squawk << 6) & 0x0400) | // C2
((squawk >> 1) & 0x0200) | // A2
((squawk << 3) & 0x0100) | // C4
((squawk >> 4) & 0x0080) | // A4
((squawk >> 1) & 0x0020) | // B1
((squawk << 4) & 0x0010) | // D1
((squawk >> 4) & 0x0008) | // B2
((squawk << 1) & 0x0004) | // D2
((squawk >> 7) & 0x0002) | // B4
((squawk >> 2) & 0x0001); // D4
frame.push_byte(squawk_coded >> 8); // UM4 UM2 UM1 C1 A1 C2 A2 C4 that is the correct order, confirmed with dump1090
frame.push_byte(squawk_coded); // A4 X(1) B1 D1 B2 D2 B4 D4 that is the correct order, confirmed with dupm1090
// DF 21 messages , has 56 bits more after 13 bits of squawk, we should add MB (56 bits)
// In this example, we are adding fixed MB = Track and turn report (BDS 5,0) decoding MB example = "F9363D3BBF9CE9" (56 bits)
// # -9.7, roll angle (deg)
// # 140.273, track angle (deg)
// # -0.406, track angle rate (deg/s)
// # 476, ground speed (kt)
// # 466, TAS (kt)
frame.push_byte(0xF9);
frame.push_byte(0x36);
frame.push_byte(0x3D);
frame.push_byte(0x3B); // If we deltele those two lines, to send this fixed MB (56 bits),
frame.push_byte(0xBF);
frame.push_byte(0x9C);
frame.push_byte(0xE9); // current fw is padding with 56 x 0's to complete 112 bits msg.
frame.make_CRC();
}
float cpr_mod(float a, float b) {
return a - (b * floor(a / b));
}
int cpr_NL_precise(float lat) {
return (int)floor(2 * PI / acos(1 - ((1 - cos(PI / (2 * NZ))) / pow(cos(PI * lat / 180), 2))));
}
int cpr_NL_approx(float lat) {
if (lat < 0)
lat = -lat; // Symmetry
for (size_t c = 0; c < 58; c++) {
if (lat < adsb_lat_lut[c])
return 59 - c;
}
return 1;
}
int cpr_NL(float lat) {
// TODO prove that the approximate function is good
// enough for the precision we need. Uncomment if
// that is true. No performance penalty was noticed
// from testing, but if you find it might be an issue,
// switch to cpr_NL_approx() instead:
// return cpr_NL_approx(lat);
return cpr_NL_precise(lat);
}
int cpr_N(float lat, int is_odd) {
int nl = cpr_NL(lat) - is_odd;
if (nl < 1)
nl = 1;
return nl;
}
float cpr_Dlon(float lat, int is_odd) {
return 360.0 / cpr_N(lat, is_odd);
}
// An ADS-B frame Civil aircraft message type starts with Dowlink Format (DF=17) and frame is 112 bits long.
// All known DF's >=16 are long (112 bits). All known DF's <=15 are short (56 bits). (In this case 112 bits)
// Msg structure consists of five main parts :|DF=17 (5 bits)|CA (3 bits)|ICAO (24 bits)|ME (56 bits)|CRC (24 bits)
// Airborne position msg struct, the ME (56 bits) = |TC,5 bits| SS, 2 bits | SAF, 1 | ALT, 12 | T, 1 | F, 1 | LAT-CPR, 17 | LON-CPR, 17
// TC : (1..4) : Aircraft identification Type Code. // TC : 9 to 18: Airbone postion and altitude // TC : 19 Airbone velocity .
// Airborne position message is used to broadcast the position and altitude of the aircraft. It has the Type Code 918 and 2022. (here , we use TC=11)
void encode_frame_pos(ADSBFrame& frame, const uint32_t ICAO_address, const int32_t altitude, const float latitude, const float longitude, const uint32_t time_parity) {
uint32_t altitude_coded;
uint32_t lat, lon;
float delta_lat, yz, rlat, delta_lon, xz;
make_frame_adsb(frame, ICAO_address); // Header DF=17 (long frame 112 bits)
frame.push_byte(TC_AIRBORNE_POS << 3); // Bits 2~1: Surveillance Status, bit 0: NICsb
altitude_coded = (altitude + 1000) / 25; // 25ft precision, insert Q-bit (1)
altitude_coded = ((altitude_coded & 0x7F0) << 1) | 0x10 | (altitude_coded & 0x0F);
frame.push_byte(altitude_coded >> 4); // Top-most altitude bits
// CPR encoding
// Info from: http://antena.fe.uni-lj.si/literatura/Razno/Avionika/modes/CPRencoding.pdf
delta_lat = 360.0 / ((4.0 * NZ) - time_parity); // NZ = 15
yz = floor(CPR_MAX_VALUE * (cpr_mod(latitude, delta_lat) / delta_lat) + 0.5);
rlat = delta_lat * ((yz / CPR_MAX_VALUE) + floor(latitude / delta_lat));
if ((cpr_NL(rlat) - time_parity) > 0)
delta_lon = 360.0 / cpr_N(rlat, time_parity);
else
delta_lon = 360.0;
xz = floor(CPR_MAX_VALUE * (cpr_mod(longitude, delta_lon) / delta_lon) + 0.5);
lat = cpr_mod(yz, CPR_MAX_VALUE);
lon = cpr_mod(xz, CPR_MAX_VALUE);
frame.push_byte((altitude_coded << 4) | ((uint32_t)time_parity << 2) | (lat >> 15)); // T = 0
frame.push_byte(lat >> 7);
frame.push_byte((lat << 1) | (lon >> 16));
frame.push_byte(lon >> 8);
frame.push_byte(lon);
frame.make_CRC();
}
// Decoding method from dump1090
adsb_pos decode_frame_pos(ADSBFrame& frame_even, ADSBFrame& frame_odd) {
uint8_t* raw_data;
uint32_t latcprE, latcprO, loncprE, loncprO;
float latE, latO, m, Dlon, cpr_lon_odd, cpr_lon_even, cpr_lat_odd, cpr_lat_even;
int ni;
adsb_pos position{false, 0, 0, 0};
uint32_t time_even = frame_even.get_rx_timestamp();
uint32_t time_odd = frame_odd.get_rx_timestamp();
uint8_t* frame_data_even = frame_even.get_raw_data();
uint8_t* frame_data_odd = frame_odd.get_raw_data();
// Return most recent altitude
if (time_even > time_odd)
raw_data = frame_data_even;
else
raw_data = frame_data_odd;
// Q-bit must be present
if (raw_data[5] & 1)
position.altitude = ((((raw_data[5] & 0xFE) << 3) | ((raw_data[6] & 0xF0) >> 4)) * 25) - 1000;
// Position
latcprE = ((frame_data_even[6] & 3) << 15) | (frame_data_even[7] << 7) | (frame_data_even[8] >> 1);
loncprE = ((frame_data_even[8] & 1) << 16) | (frame_data_even[9] << 8) | frame_data_even[10];
latcprO = ((frame_data_odd[6] & 3) << 15) | (frame_data_odd[7] << 7) | (frame_data_odd[8] >> 1);
loncprO = ((frame_data_odd[8] & 1) << 16) | (frame_data_odd[9] << 8) | frame_data_odd[10];
// Calculate the coefficients
cpr_lon_even = loncprE / CPR_MAX_VALUE;
cpr_lon_odd = loncprO / CPR_MAX_VALUE;
cpr_lat_odd = latcprO / CPR_MAX_VALUE;
cpr_lat_even = latcprE / CPR_MAX_VALUE;
// Compute latitude index
float j = floor(((59.0 * cpr_lat_even) - (60.0 * cpr_lat_odd)) + 0.5);
latE = (360.0 / 60.0) * (cpr_mod(j, 60) + cpr_lat_even);
latO = (360.0 / 59.0) * (cpr_mod(j, 59) + cpr_lat_odd);
if (latE >= 270) latE -= 360;
if (latO >= 270) latO -= 360;
// Both frames must be in the same latitude zone
if (cpr_NL(latE) != cpr_NL(latO))
return position;
// Compute longitude
if (time_even > time_odd) {
// Use even frame2
ni = cpr_N(latE, 0);
Dlon = 360.0 / ni;
m = floor((cpr_lon_even * (cpr_NL(latE) - 1)) - (cpr_lon_odd * cpr_NL(latE)) + 0.5);
position.longitude = Dlon * (cpr_mod(m, ni) + cpr_lon_even);
position.latitude = latE;
} else {
// Use odd frame
ni = cpr_N(latO, 1);
Dlon = 360.0 / ni;
m = floor((cpr_lon_even * (cpr_NL(latO) - 1)) - (cpr_lon_odd * cpr_NL(latO)) + 0.5);
position.longitude = Dlon * (cpr_mod(m, ni) + cpr_lon_odd);
position.latitude = latO;
}
if (position.longitude >= 180) position.longitude -= 360;
position.valid = true;
return position;
}
// An ADS-B frame is 112 bits long. Civil aircraft ADS-B message starts with the Downlink Format ,DF=17.
// Msg structure consists of five main parts :|DF=17 (5 bits)|CA (3 bits)|ICAO (24 bits)|ME (56 bits)|CRC (24 bits)
// Airborne velocities are all transmitted with Type Code 19 ( TC=19 ) inside ME (56 bits)
// [units] : speed is in knots, vertical rate climb / descend is in ft/min
void encode_frame_velo(ADSBFrame& frame, const uint32_t ICAO_address, const uint32_t speed, const float angle, const int32_t v_rate) {
int32_t velo_ew, velo_ns;
uint32_t velo_ew_abs, velo_ns_abs, v_rate_coded_abs;
// To get NS and EW speeds from speed and bearing, a polar to cartesian conversion is enough
velo_ew = static_cast<int32_t>(sin_f32(DEG_TO_RAD(angle)) * speed); // East direction, is the projection from West -> East is directly sin(angle=Compas Bearing) , (90º is the max +1, EAST) max velo_EW
velo_ns = static_cast<int32_t>(sin_f32((pi / 2 - DEG_TO_RAD(angle))) * speed); // North direction,is the projection of North = cos(angle=Compas Bearing), cos(angle)= sen(90-angle) (0º is the max +1 NORTH) max velo_NS
v_rate_coded_abs = (abs(v_rate) / 64) + 1; // encoding vertical rate source. (Decoding, VR ft/min = (Decimal v_rate_value - 1)* 64)
velo_ew_abs = abs(velo_ew) + 1; // encoding Velo speed EW , when sign Direction is 0 (+): West->East, (-) 1: East->West
velo_ns_abs = abs(velo_ns) + 1; // encoding Velo speed NS , when sign Direction is 0 (+): South->North , (-) 1: North->South
make_frame_adsb(frame, ICAO_address); // Header DF=17 (long frame 112 bits)
// Airborne velocities are all transmitted with Type Code 19 ( TC=19, using 5 bits ,TC=19 [Binary: 10011]), the following 3 bits are Subt-type Code ,SC= 1,2,3,4
// SC Subtypes code 1 and 2 are used to report ground speeds of aircraft. (SC 3,4 to used to report true airspeed. SC 2,4 are for supersonic aircraft (not used in commercial airline).
frame.push_byte((TC_AIRBORNE_VELO << 3) | 1); // 1st byte , top 5 bits Type Code TC=19, and lower 3 bits (38-40 bits), SC=001 Subtype Code SC: 1 (subsonic) ,
// Message A, (ME bits from 14-35) , 22 bits = Sign ew(1 bit) + V_ew (10 bits) + Sign_ns (1 bit) + V_ns (10 bits)
// Vertical rate source bit VrSrc (ME bit 36) indicates source of the altitude measurements. GNSS altitude(0) / , barometric altitude(1).
// Vertical rate source direction,(ME bit 37) movement can be read from Svr bit , with 0 and 1 referring to climb and descent, respectively (ft/min)
// The encoded vertical rate value VR can be computed using message (ME bits 38 to 46). If the 9-bit block contains all zeros, the vertical rate information is not available.
// + Sign VrSrc (vert rate src) (1 bit)+ VrSrc (9 bits).
frame.push_byte(((velo_ew < 0 ? 1 : 0) << 2) | (velo_ew_abs >> 8));
frame.push_byte(velo_ew_abs);
frame.push_byte(((velo_ns < 0 ? 1 : 0) << 7) | (velo_ns_abs >> 3));
frame.push_byte((velo_ns_abs << 5) | ((v_rate < 0 ? 1 : 0) << 3) | (v_rate_coded_abs >> 6)); // VrSrc = 0
frame.push_byte(v_rate_coded_abs << 2);
frame.push_byte(0);
frame.make_CRC();
}
// Decoding method from dump1090
adsb_vel decode_frame_velo(ADSBFrame& frame) {
adsb_vel velo{false, 0, 0, 0};
uint8_t* frame_data = frame.get_raw_data();
uint8_t velo_type = frame.get_msg_sub();
if (velo_type >= 1 && velo_type <= 4) { // vertical rate is always present
velo.v_rate = (((frame_data[8] & 0x07) << 6) | ((frame_data[9] >> 2) - 1)) * 64;
if ((frame_data[8] & 0x8) >> 3) velo.v_rate *= -1; // check v_rate sign
}
if (velo_type == 1 || velo_type == 2) { // Ground Speed
int32_t raw_ew = ((frame_data[5] & 0x03) << 8) | frame_data[6];
int32_t velo_ew = raw_ew - 1; // velocities are all offset by one (this is part of the spec)
int32_t raw_ns = ((frame_data[7] & 0x7f) << 3) | (frame_data[8] >> 5);
int32_t velo_ns = raw_ns - 1;
if (velo_type == 2) { // supersonic indicator so multiply by 4
velo_ew = velo_ew << 2;
velo_ns = velo_ns << 2;
}
if (frame_data[5] & 0x04) velo_ew *= -1; // check ew direction sign
if (frame_data[7] & 0x80) velo_ns *= -1; // check ns direction sign
velo.speed = fast_int_magnitude(velo_ns, velo_ew);
if (velo.speed) {
// calculate heading in degrees from ew/ns velocities
int16_t heading_temp = (int16_t)(int_atan2(velo_ew, velo_ns)); // Nearest degree
// We don't want negative values but a 0-360 scale.
if (heading_temp < 0) heading_temp += 360.0;
velo.heading = (uint16_t)heading_temp;
}
} else if (velo_type == 3 || velo_type == 4) { // Airspeed
velo.valid = frame_data[5] & (1 << 2);
velo.heading = ((((frame_data[5] & 0x03) << 8) | frame_data[6]) * 45) << 7;
}
return velo;
}
} /* namespace adsb */