Mark Thompson e1cc0b1ad0
Show file count in each directory, and moved "Too many files" message ()
* Added file_count() function
* Show file count in each directory; moved "Too many files!" warning
2023-08-16 10:00:46 +02:00

614 lines
17 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "file.hpp"
#include "complex.hpp"
#include <algorithm>
#include <codecvt>
#include <cstring>
#include <locale>
namespace fs = std::filesystem;
static const fs::path c8_ext{u".C8"};
static const fs::path c16_ext{u".C16"};
Optional<File::Error> File::open_fatfs(const std::filesystem::path& filename, BYTE mode) {
auto result = f_open(&f, reinterpret_cast<const TCHAR*>(filename.c_str()), mode);
if (result == FR_OK) {
if (mode & FA_OPEN_ALWAYS) {
const auto result = f_lseek(&f, f_size(&f));
if (result != FR_OK) {
f_close(&f);
}
}
}
if (result == FR_OK) {
return {};
} else {
return {result};
}
}
Optional<File::Error> File::open(const std::filesystem::path& filename, bool read_only, bool create) {
BYTE mode = read_only ? FA_READ : FA_READ | FA_WRITE;
if (create)
mode |= FA_OPEN_ALWAYS;
return open_fatfs(filename, mode);
}
Optional<File::Error> File::append(const std::filesystem::path& filename) {
return open_fatfs(filename, FA_WRITE | FA_OPEN_ALWAYS);
}
Optional<File::Error> File::create(const std::filesystem::path& filename) {
return open_fatfs(filename, FA_WRITE | FA_CREATE_ALWAYS);
}
File::~File() {
f_close(&f);
}
File::Result<File::Size> File::read(void* data, Size bytes_to_read) {
UINT bytes_read = 0;
const auto result = f_read(&f, data, bytes_to_read, &bytes_read);
if (result == FR_OK) {
return {static_cast<size_t>(bytes_read)};
} else {
return {static_cast<Error>(result)};
}
}
File::Result<File::Size> File::write(const void* data, Size bytes_to_write) {
UINT bytes_written = 0;
const auto result = f_write(&f, data, bytes_to_write, &bytes_written);
if (result == FR_OK) {
if (bytes_to_write == bytes_written) {
return {static_cast<File::Size>(bytes_written)};
} else {
return Error{FR_DISK_FULL};
}
} else {
return {static_cast<Error>(result)};
}
}
File::Offset File::tell() const {
return f_tell(&f);
}
File::Result<File::Offset> File::seek(Offset new_position) {
/* NOTE: Returns *old* position, not new position */
const auto old_position = tell();
const auto result = f_lseek(&f, new_position);
if (result != FR_OK) {
return {static_cast<Error>(result)};
}
if (f_tell(&f) != new_position) {
return {static_cast<Error>(FR_BAD_SEEK)};
}
return {static_cast<File::Offset>(old_position)};
}
File::Result<File::Offset> File::truncate() {
const auto position = f_tell(&f);
const auto result = f_truncate(&f);
if (result != FR_OK) {
return {static_cast<Error>(result)};
}
return {static_cast<File::Offset>(position)};
}
File::Size File::size() const {
return f_size(&f);
}
Optional<File::Error> File::write_line(const std::string& s) {
const auto result_s = write(s.c_str(), s.size());
if (result_s.is_error()) {
return {result_s.error()};
}
const auto result_crlf = write("\r\n", 2);
if (result_crlf.is_error()) {
return {result_crlf.error()};
}
return {};
}
Optional<File::Error> File::sync() {
const auto result = f_sync(&f);
if (result == FR_OK) {
return {};
} else {
return {result};
}
}
File::Result<std::string> File::read_file(const std::filesystem::path& filename) {
constexpr size_t buffer_size = 0x80;
char* buffer[buffer_size];
File f;
auto error = f.open(filename);
if (error)
return *error;
std::string content;
content.resize(f.size());
auto str = &content[0];
auto total_read = 0u;
while (true) {
auto read = f.read(buffer, buffer_size);
if (!read)
return read.error();
memcpy(str, buffer, *read);
str += *read;
total_read += *read;
if (*read < buffer_size)
break;
}
content.resize(total_read);
return content;
}
/* Range used for filename matching.
* Start and end are inclusive positions of "???" */
struct pattern_range {
size_t start;
size_t end;
};
/* Finds the last file matching the specified pattern that
* can be automatically incremented (digits in pattern).
* NB: assumes a patten with contiguous '?' like "FOO_???.txt". */
static std::filesystem::path find_last_ordinal_match(
const std::filesystem::path& folder,
const std::filesystem::path& pattern,
pattern_range range) {
auto last_match = std::filesystem::path();
auto can_increment = [range](const auto& path) {
for (auto i = range.start; i <= range.end; ++i)
if (!isdigit(path.native()[i]))
return false;
return true;
};
for (const auto& entry : std::filesystem::directory_iterator(folder, pattern)) {
if (std::filesystem::is_regular_file(entry.status()) && can_increment(entry.path())) {
const auto& match = entry.path();
if (match > last_match) {
last_match = match;
}
}
}
return last_match;
}
/* Given a file path like "FOO_0001.txt" increment it to "FOO_0002.txt". */
static std::filesystem::path increment_filename_ordinal(
const std::filesystem::path& path,
pattern_range range) {
auto name = path.filename().native();
for (auto i = range.end; i >= range.start; --i) {
auto& c = name[i];
// Not a digit or would overflow the counter.
if (c < u'0' || c > u'9' || (c == u'9' && i == range.start))
return {};
if (c == u'9')
c = '0';
else {
c++;
break;
}
}
return {name};
}
std::filesystem::path next_filename_matching_pattern(const std::filesystem::path& filename_pattern) {
auto path = filename_pattern.parent_path();
auto pattern = filename_pattern.filename();
auto range = pattern_range{
pattern.native().find_first_of(u'?'),
pattern.native().find_last_of(u'?')};
const auto match = find_last_ordinal_match(path, pattern, range);
if (match.empty()) {
auto pattern_str = pattern.native();
for (auto i = range.start; i <= range.end; ++i)
pattern_str[i] = u'0';
return path / pattern_str;
}
auto next_name = increment_filename_ordinal(match, range);
return next_name.empty() ? next_name : path / next_name;
}
std::vector<std::filesystem::path> scan_root_files(const std::filesystem::path& directory,
const std::filesystem::path& extension) {
std::vector<std::filesystem::path> file_list{};
scan_root_files(directory, extension, [&file_list](const std::filesystem::path& p) {
file_list.push_back(p);
});
return file_list;
}
std::vector<std::filesystem::path> scan_root_directories(const std::filesystem::path& directory) {
std::vector<std::filesystem::path> directory_list{};
for (const auto& entry : std::filesystem::directory_iterator(directory, "*")) {
if (std::filesystem::is_directory(entry.status())) {
directory_list.push_back(entry.path());
}
}
return directory_list;
}
std::filesystem::filesystem_error delete_file(const std::filesystem::path& file_path) {
return {f_unlink(reinterpret_cast<const TCHAR*>(file_path.c_str()))};
}
std::filesystem::filesystem_error rename_file(
const std::filesystem::path& file_path,
const std::filesystem::path& new_name) {
return {f_rename(reinterpret_cast<const TCHAR*>(file_path.c_str()), reinterpret_cast<const TCHAR*>(new_name.c_str()))};
}
std::filesystem::filesystem_error copy_file(
const std::filesystem::path& file_path,
const std::filesystem::path& dest_path) {
// 512 seems to be the largest block size FatFS likes.
constexpr size_t buffer_size = 512;
uint8_t buffer[buffer_size];
File src;
File dst;
auto error = src.open(file_path);
if (error) return error.value();
error = dst.create(dest_path);
if (error) return error.value();
while (true) {
auto result = src.read(buffer, buffer_size);
if (result.is_error()) return result.error();
result = dst.write(buffer, *result);
if (result.is_error()) return result.error();
if (*result < buffer_size)
break;
}
return {};
}
FATTimestamp file_created_date(const std::filesystem::path& file_path) {
FILINFO filinfo;
f_stat(reinterpret_cast<const TCHAR*>(file_path.c_str()), &filinfo);
return {filinfo.fdate, filinfo.ftime};
}
std::filesystem::filesystem_error make_new_file(
const std::filesystem::path& file_path) {
File f;
auto error = f.create(file_path);
if (error)
return *error;
return {};
}
std::filesystem::filesystem_error make_new_directory(
const std::filesystem::path& dir_path) {
return {f_mkdir(reinterpret_cast<const TCHAR*>(dir_path.c_str()))};
}
std::filesystem::filesystem_error ensure_directory(
const std::filesystem::path& dir_path) {
if (dir_path.empty() || std::filesystem::file_exists(dir_path))
return {};
auto result = ensure_directory(dir_path.parent_path());
if (result.code())
return result;
return make_new_directory(dir_path);
}
namespace std {
namespace filesystem {
std::string filesystem_error::what() const {
switch (err) {
case FR_OK:
return "ok";
case FR_DISK_ERR:
return "disk error";
case FR_INT_ERR:
return "insanity detected";
case FR_NOT_READY:
return "SD card not ready";
case FR_NO_FILE:
return "no file";
case FR_NO_PATH:
return "no path";
case FR_INVALID_NAME:
return "invalid name";
case FR_DENIED:
return "denied";
case FR_EXIST:
return "exists";
case FR_INVALID_OBJECT:
return "invalid object";
case FR_WRITE_PROTECTED:
return "write protected";
case FR_INVALID_DRIVE:
return "invalid drive";
case FR_NOT_ENABLED:
return "not enabled";
case FR_NO_FILESYSTEM:
return "no filesystem";
case FR_MKFS_ABORTED:
return "mkfs aborted";
case FR_TIMEOUT:
return "timeout";
case FR_LOCKED:
return "locked";
case FR_NOT_ENOUGH_CORE:
return "not enough core";
case FR_TOO_MANY_OPEN_FILES:
return "too many open files";
case FR_INVALID_PARAMETER:
return "invalid parameter";
case FR_EOF:
return "end of file";
case FR_DISK_FULL:
return "disk full";
case FR_BAD_SEEK:
return "bad seek";
case FR_UNEXPECTED:
return "unexpected";
default:
return "unknown";
}
}
path path::parent_path() const {
const auto index = _s.find_last_of(preferred_separator);
if (index == _s.npos) {
return {}; // NB: Deviation from STL.
} else {
return _s.substr(0, index);
}
}
path path::extension() const {
const auto t = filename().native();
const auto index = t.find_last_of(u'.');
if (index == t.npos) {
return {};
} else {
return t.substr(index);
}
}
path path::filename() const {
const auto index = _s.find_last_of(preferred_separator);
if (index == _s.npos) {
return _s;
} else {
return _s.substr(index + 1);
}
}
path path::stem() const {
const auto t = filename().native();
const auto index = t.find_last_of(u'.');
if (index == t.npos) {
return t;
} else {
return t.substr(0, index);
}
}
std::string path::string() const {
std::wstring_convert<std::codecvt_utf8_utf16<path::value_type>, path::value_type> conv;
return conv.to_bytes(native());
}
path& path::replace_extension(const path& replacement) {
const auto t = extension().native();
_s.erase(_s.size() - t.size());
if (!replacement._s.empty()) {
if (replacement._s.front() != u'.') {
_s += u'.';
}
_s += replacement._s;
}
return *this;
}
bool operator==(const path& lhs, const path& rhs) {
return lhs.native() == rhs.native();
}
bool operator!=(const path& lhs, const path& rhs) {
return !(lhs == rhs);
}
bool operator<(const path& lhs, const path& rhs) {
return lhs.native() < rhs.native();
}
bool operator>(const path& lhs, const path& rhs) {
return lhs.native() > rhs.native();
}
path operator+(const path& lhs, const path& rhs) {
path result = lhs;
result += rhs;
return result;
}
path operator/(const path& lhs, const path& rhs) {
path result = lhs;
result /= rhs;
return result;
}
bool path_iequal(
const path& lhs,
const path& rhs) {
const auto& lhs_str = lhs.native();
const auto& rhs_str = rhs.native();
// NB: Not correct for Unicode/locales.
if (lhs_str.length() == rhs_str.length()) {
for (size_t i = 0; i < lhs_str.length(); ++i)
if (towupper(lhs_str[i]) != towupper(rhs_str[i]))
return false;
return true;
}
return false;
}
bool is_cxx_capture_file(const path& filename) {
auto ext = filename.extension();
return path_iequal(c8_ext, ext) || path_iequal(c16_ext, ext);
}
uint8_t capture_file_sample_size(const path& filename) {
if (path_iequal(filename.extension(), c8_ext))
return sizeof(complex8_t);
if (path_iequal(filename.extension(), c16_ext))
return sizeof(complex16_t);
return 0;
}
directory_iterator::directory_iterator(
const std::filesystem::path& path,
const std::filesystem::path& wild)
: path_{path}, wild_{wild} {
impl = std::make_shared<Impl>();
auto result = f_findfirst(&impl->dir, &impl->filinfo,
path_.tchar(), wild_.tchar());
if (result != FR_OK || impl->filinfo.fname[0] == (TCHAR)'\0') {
impl.reset();
// TODO: Throw exception if/when I enable exceptions...
}
}
directory_iterator& directory_iterator::operator++() {
const auto result = f_findnext(&impl->dir, &impl->filinfo);
if ((result != FR_OK) || (impl->filinfo.fname[0] == 0)) {
impl.reset();
}
return *this;
}
bool is_directory(const file_status s) {
return (s & AM_DIR);
}
bool is_regular_file(const file_status s) {
return !(s & AM_DIR);
}
bool file_exists(const path& file_path) {
FILINFO filinfo;
auto fr = f_stat(reinterpret_cast<const TCHAR*>(file_path.c_str()), &filinfo);
return fr == FR_OK;
}
bool is_directory(const path& file_path) {
FILINFO filinfo;
auto fr = f_stat(reinterpret_cast<const TCHAR*>(file_path.c_str()), &filinfo);
return fr == FR_OK && is_directory(static_cast<file_status>(filinfo.fattrib));
}
bool is_empty_directory(const path& file_path) {
DIR dir;
FILINFO filinfo;
if (!is_directory(file_path))
return false;
auto result = f_findfirst(&dir, &filinfo, reinterpret_cast<const TCHAR*>(file_path.c_str()), (const TCHAR*)u"*");
return !((result == FR_OK) && (filinfo.fname[0] != (TCHAR)'\0'));
}
int file_count(const path& directory) {
int count{0};
for (auto& entry : std::filesystem::directory_iterator(directory, (const TCHAR*)u"*")) {
(void)entry; // avoid unused warning
++count;
}
return count;
}
space_info space(const path& p) {
DWORD free_clusters{0};
FATFS* fs;
if (f_getfree(reinterpret_cast<const TCHAR*>(p.c_str()), &free_clusters, &fs) == FR_OK) {
#if _MAX_SS != _MIN_SS
static_assert(false, "FatFs not configured for fixed sector size");
#else
const std::uintmax_t cluster_bytes = fs->csize * _MIN_SS;
return {
(fs->n_fatent - 2) * cluster_bytes,
free_clusters * cluster_bytes,
free_clusters * cluster_bytes,
};
#endif
} else {
return {0, 0, 0};
}
}
} /* namespace filesystem */
} /* namespace std */