mirror of
https://github.com/oxen-io/session-android.git
synced 2024-12-04 23:45:14 +00:00
608 lines
18 KiB
C
608 lines
18 KiB
C
|
/* crypto/rand/md_rand.c */
|
||
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.]
|
||
|
*/
|
||
|
/* ====================================================================
|
||
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
*
|
||
|
* 3. All advertising materials mentioning features or use of this
|
||
|
* software must display the following acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||
|
*
|
||
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
|
* endorse or promote products derived from this software without
|
||
|
* prior written permission. For written permission, please contact
|
||
|
* openssl-core@openssl.org.
|
||
|
*
|
||
|
* 5. Products derived from this software may not be called "OpenSSL"
|
||
|
* nor may "OpenSSL" appear in their names without prior written
|
||
|
* permission of the OpenSSL Project.
|
||
|
*
|
||
|
* 6. Redistributions of any form whatsoever must retain the following
|
||
|
* acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
* ====================================================================
|
||
|
*
|
||
|
* This product includes cryptographic software written by Eric Young
|
||
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
||
|
* Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define OPENSSL_FIPSEVP
|
||
|
|
||
|
#ifdef MD_RAND_DEBUG
|
||
|
# ifndef NDEBUG
|
||
|
# define NDEBUG
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "e_os.h"
|
||
|
|
||
|
#include <openssl/crypto.h>
|
||
|
#include <openssl/rand.h>
|
||
|
#include "rand_lcl.h"
|
||
|
|
||
|
#include <openssl/err.h>
|
||
|
|
||
|
#ifdef BN_DEBUG
|
||
|
# define PREDICT
|
||
|
#endif
|
||
|
|
||
|
/* #define PREDICT 1 */
|
||
|
|
||
|
#define STATE_SIZE 1023
|
||
|
static int state_num=0,state_index=0;
|
||
|
static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
|
||
|
static unsigned char md[MD_DIGEST_LENGTH];
|
||
|
static long md_count[2]={0,0};
|
||
|
static double entropy=0;
|
||
|
static int initialized=0;
|
||
|
|
||
|
static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
|
||
|
* holds CRYPTO_LOCK_RAND
|
||
|
* (to prevent double locking) */
|
||
|
/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
|
||
|
static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
|
||
|
|
||
|
|
||
|
#ifdef PREDICT
|
||
|
int rand_predictable=0;
|
||
|
#endif
|
||
|
|
||
|
const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
|
||
|
|
||
|
static void ssleay_rand_cleanup(void);
|
||
|
static void ssleay_rand_seed(const void *buf, int num);
|
||
|
static void ssleay_rand_add(const void *buf, int num, double add_entropy);
|
||
|
static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo);
|
||
|
static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
|
||
|
static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
|
||
|
static int ssleay_rand_status(void);
|
||
|
|
||
|
RAND_METHOD rand_ssleay_meth={
|
||
|
ssleay_rand_seed,
|
||
|
ssleay_rand_nopseudo_bytes,
|
||
|
ssleay_rand_cleanup,
|
||
|
ssleay_rand_add,
|
||
|
ssleay_rand_pseudo_bytes,
|
||
|
ssleay_rand_status
|
||
|
};
|
||
|
|
||
|
RAND_METHOD *RAND_SSLeay(void)
|
||
|
{
|
||
|
return(&rand_ssleay_meth);
|
||
|
}
|
||
|
|
||
|
static void ssleay_rand_cleanup(void)
|
||
|
{
|
||
|
OPENSSL_cleanse(state,sizeof(state));
|
||
|
state_num=0;
|
||
|
state_index=0;
|
||
|
OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
|
||
|
md_count[0]=0;
|
||
|
md_count[1]=0;
|
||
|
entropy=0;
|
||
|
initialized=0;
|
||
|
}
|
||
|
|
||
|
static void ssleay_rand_add(const void *buf, int num, double add)
|
||
|
{
|
||
|
int i,j,k,st_idx;
|
||
|
long md_c[2];
|
||
|
unsigned char local_md[MD_DIGEST_LENGTH];
|
||
|
EVP_MD_CTX m;
|
||
|
int do_not_lock;
|
||
|
|
||
|
if (!num)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* (Based on the rand(3) manpage)
|
||
|
*
|
||
|
* The input is chopped up into units of 20 bytes (or less for
|
||
|
* the last block). Each of these blocks is run through the hash
|
||
|
* function as follows: The data passed to the hash function
|
||
|
* is the current 'md', the same number of bytes from the 'state'
|
||
|
* (the location determined by in incremented looping index) as
|
||
|
* the current 'block', the new key data 'block', and 'count'
|
||
|
* (which is incremented after each use).
|
||
|
* The result of this is kept in 'md' and also xored into the
|
||
|
* 'state' at the same locations that were used as input into the
|
||
|
* hash function.
|
||
|
*/
|
||
|
|
||
|
/* check if we already have the lock */
|
||
|
if (crypto_lock_rand)
|
||
|
{
|
||
|
CRYPTO_THREADID cur;
|
||
|
CRYPTO_THREADID_current(&cur);
|
||
|
CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
|
||
|
do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
|
||
|
CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
|
||
|
}
|
||
|
else
|
||
|
do_not_lock = 0;
|
||
|
|
||
|
if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
||
|
st_idx=state_index;
|
||
|
|
||
|
/* use our own copies of the counters so that even
|
||
|
* if a concurrent thread seeds with exactly the
|
||
|
* same data and uses the same subarray there's _some_
|
||
|
* difference */
|
||
|
md_c[0] = md_count[0];
|
||
|
md_c[1] = md_count[1];
|
||
|
|
||
|
memcpy(local_md, md, sizeof md);
|
||
|
|
||
|
/* state_index <= state_num <= STATE_SIZE */
|
||
|
state_index += num;
|
||
|
if (state_index >= STATE_SIZE)
|
||
|
{
|
||
|
state_index%=STATE_SIZE;
|
||
|
state_num=STATE_SIZE;
|
||
|
}
|
||
|
else if (state_num < STATE_SIZE)
|
||
|
{
|
||
|
if (state_index > state_num)
|
||
|
state_num=state_index;
|
||
|
}
|
||
|
/* state_index <= state_num <= STATE_SIZE */
|
||
|
|
||
|
/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
|
||
|
* are what we will use now, but other threads may use them
|
||
|
* as well */
|
||
|
|
||
|
md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
|
||
|
|
||
|
if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
||
|
|
||
|
EVP_MD_CTX_init(&m);
|
||
|
for (i=0; i<num; i+=MD_DIGEST_LENGTH)
|
||
|
{
|
||
|
j=(num-i);
|
||
|
j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
|
||
|
|
||
|
MD_Init(&m);
|
||
|
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
|
||
|
k=(st_idx+j)-STATE_SIZE;
|
||
|
if (k > 0)
|
||
|
{
|
||
|
MD_Update(&m,&(state[st_idx]),j-k);
|
||
|
MD_Update(&m,&(state[0]),k);
|
||
|
}
|
||
|
else
|
||
|
MD_Update(&m,&(state[st_idx]),j);
|
||
|
|
||
|
/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
|
||
|
MD_Update(&m,buf,j);
|
||
|
/* We know that line may cause programs such as
|
||
|
purify and valgrind to complain about use of
|
||
|
uninitialized data. The problem is not, it's
|
||
|
with the caller. Removing that line will make
|
||
|
sure you get really bad randomness and thereby
|
||
|
other problems such as very insecure keys. */
|
||
|
|
||
|
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
|
||
|
MD_Final(&m,local_md);
|
||
|
md_c[1]++;
|
||
|
|
||
|
buf=(const char *)buf + j;
|
||
|
|
||
|
for (k=0; k<j; k++)
|
||
|
{
|
||
|
/* Parallel threads may interfere with this,
|
||
|
* but always each byte of the new state is
|
||
|
* the XOR of some previous value of its
|
||
|
* and local_md (itermediate values may be lost).
|
||
|
* Alway using locking could hurt performance more
|
||
|
* than necessary given that conflicts occur only
|
||
|
* when the total seeding is longer than the random
|
||
|
* state. */
|
||
|
state[st_idx++]^=local_md[k];
|
||
|
if (st_idx >= STATE_SIZE)
|
||
|
st_idx=0;
|
||
|
}
|
||
|
}
|
||
|
EVP_MD_CTX_cleanup(&m);
|
||
|
|
||
|
if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
||
|
/* Don't just copy back local_md into md -- this could mean that
|
||
|
* other thread's seeding remains without effect (except for
|
||
|
* the incremented counter). By XORing it we keep at least as
|
||
|
* much entropy as fits into md. */
|
||
|
for (k = 0; k < (int)sizeof(md); k++)
|
||
|
{
|
||
|
md[k] ^= local_md[k];
|
||
|
}
|
||
|
if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
|
||
|
entropy += add;
|
||
|
if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
||
|
|
||
|
#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
|
||
|
assert(md_c[1] == md_count[1]);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void ssleay_rand_seed(const void *buf, int num)
|
||
|
{
|
||
|
ssleay_rand_add(buf, num, (double)num);
|
||
|
}
|
||
|
|
||
|
static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo)
|
||
|
{
|
||
|
static volatile int stirred_pool = 0;
|
||
|
int i,j,k,st_num,st_idx;
|
||
|
int num_ceil;
|
||
|
int ok;
|
||
|
long md_c[2];
|
||
|
unsigned char local_md[MD_DIGEST_LENGTH];
|
||
|
EVP_MD_CTX m;
|
||
|
#ifndef GETPID_IS_MEANINGLESS
|
||
|
pid_t curr_pid = getpid();
|
||
|
#endif
|
||
|
int do_stir_pool = 0;
|
||
|
|
||
|
#ifdef PREDICT
|
||
|
if (rand_predictable)
|
||
|
{
|
||
|
static unsigned char val=0;
|
||
|
|
||
|
for (i=0; i<num; i++)
|
||
|
buf[i]=val++;
|
||
|
return(1);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (num <= 0)
|
||
|
return 1;
|
||
|
|
||
|
EVP_MD_CTX_init(&m);
|
||
|
/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
|
||
|
num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
|
||
|
|
||
|
/*
|
||
|
* (Based on the rand(3) manpage:)
|
||
|
*
|
||
|
* For each group of 10 bytes (or less), we do the following:
|
||
|
*
|
||
|
* Input into the hash function the local 'md' (which is initialized from
|
||
|
* the global 'md' before any bytes are generated), the bytes that are to
|
||
|
* be overwritten by the random bytes, and bytes from the 'state'
|
||
|
* (incrementing looping index). From this digest output (which is kept
|
||
|
* in 'md'), the top (up to) 10 bytes are returned to the caller and the
|
||
|
* bottom 10 bytes are xored into the 'state'.
|
||
|
*
|
||
|
* Finally, after we have finished 'num' random bytes for the
|
||
|
* caller, 'count' (which is incremented) and the local and global 'md'
|
||
|
* are fed into the hash function and the results are kept in the
|
||
|
* global 'md'.
|
||
|
*/
|
||
|
#ifdef OPENSSL_FIPS
|
||
|
/* NB: in FIPS mode we are already under a lock */
|
||
|
if (!FIPS_mode())
|
||
|
#endif
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
||
|
|
||
|
/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
|
||
|
CRYPTO_THREADID_current(&locking_threadid);
|
||
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
|
||
|
crypto_lock_rand = 1;
|
||
|
|
||
|
if (!initialized)
|
||
|
{
|
||
|
RAND_poll();
|
||
|
initialized = 1;
|
||
|
}
|
||
|
|
||
|
if (!stirred_pool)
|
||
|
do_stir_pool = 1;
|
||
|
|
||
|
ok = (entropy >= ENTROPY_NEEDED);
|
||
|
if (!ok)
|
||
|
{
|
||
|
/* If the PRNG state is not yet unpredictable, then seeing
|
||
|
* the PRNG output may help attackers to determine the new
|
||
|
* state; thus we have to decrease the entropy estimate.
|
||
|
* Once we've had enough initial seeding we don't bother to
|
||
|
* adjust the entropy count, though, because we're not ambitious
|
||
|
* to provide *information-theoretic* randomness.
|
||
|
*
|
||
|
* NOTE: This approach fails if the program forks before
|
||
|
* we have enough entropy. Entropy should be collected
|
||
|
* in a separate input pool and be transferred to the
|
||
|
* output pool only when the entropy limit has been reached.
|
||
|
*/
|
||
|
entropy -= num;
|
||
|
if (entropy < 0)
|
||
|
entropy = 0;
|
||
|
}
|
||
|
|
||
|
if (do_stir_pool)
|
||
|
{
|
||
|
/* In the output function only half of 'md' remains secret,
|
||
|
* so we better make sure that the required entropy gets
|
||
|
* 'evenly distributed' through 'state', our randomness pool.
|
||
|
* The input function (ssleay_rand_add) chains all of 'md',
|
||
|
* which makes it more suitable for this purpose.
|
||
|
*/
|
||
|
|
||
|
int n = STATE_SIZE; /* so that the complete pool gets accessed */
|
||
|
while (n > 0)
|
||
|
{
|
||
|
#if MD_DIGEST_LENGTH > 20
|
||
|
# error "Please adjust DUMMY_SEED."
|
||
|
#endif
|
||
|
#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
|
||
|
/* Note that the seed does not matter, it's just that
|
||
|
* ssleay_rand_add expects to have something to hash. */
|
||
|
ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
|
||
|
n -= MD_DIGEST_LENGTH;
|
||
|
}
|
||
|
if (ok)
|
||
|
stirred_pool = 1;
|
||
|
}
|
||
|
|
||
|
st_idx=state_index;
|
||
|
st_num=state_num;
|
||
|
md_c[0] = md_count[0];
|
||
|
md_c[1] = md_count[1];
|
||
|
memcpy(local_md, md, sizeof md);
|
||
|
|
||
|
state_index+=num_ceil;
|
||
|
if (state_index > state_num)
|
||
|
state_index %= state_num;
|
||
|
|
||
|
/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
|
||
|
* are now ours (but other threads may use them too) */
|
||
|
|
||
|
md_count[0] += 1;
|
||
|
|
||
|
/* before unlocking, we must clear 'crypto_lock_rand' */
|
||
|
crypto_lock_rand = 0;
|
||
|
#ifdef OPENSSL_FIPS
|
||
|
if (!FIPS_mode())
|
||
|
#endif
|
||
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
||
|
|
||
|
while (num > 0)
|
||
|
{
|
||
|
/* num_ceil -= MD_DIGEST_LENGTH/2 */
|
||
|
j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
|
||
|
num-=j;
|
||
|
MD_Init(&m);
|
||
|
#ifndef GETPID_IS_MEANINGLESS
|
||
|
if (curr_pid) /* just in the first iteration to save time */
|
||
|
{
|
||
|
MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
|
||
|
curr_pid = 0;
|
||
|
}
|
||
|
#endif
|
||
|
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
|
||
|
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
|
||
|
|
||
|
#ifndef PURIFY /* purify complains */
|
||
|
/* The following line uses the supplied buffer as a small
|
||
|
* source of entropy: since this buffer is often uninitialised
|
||
|
* it may cause programs such as purify or valgrind to
|
||
|
* complain. So for those builds it is not used: the removal
|
||
|
* of such a small source of entropy has negligible impact on
|
||
|
* security.
|
||
|
*/
|
||
|
MD_Update(&m,buf,j);
|
||
|
#endif
|
||
|
|
||
|
k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
|
||
|
if (k > 0)
|
||
|
{
|
||
|
MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
|
||
|
MD_Update(&m,&(state[0]),k);
|
||
|
}
|
||
|
else
|
||
|
MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
|
||
|
MD_Final(&m,local_md);
|
||
|
|
||
|
for (i=0; i<MD_DIGEST_LENGTH/2; i++)
|
||
|
{
|
||
|
state[st_idx++]^=local_md[i]; /* may compete with other threads */
|
||
|
if (st_idx >= st_num)
|
||
|
st_idx=0;
|
||
|
if (i < j)
|
||
|
*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MD_Init(&m);
|
||
|
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
|
||
|
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
|
||
|
#ifdef OPENSSL_FIPS
|
||
|
if (!FIPS_mode())
|
||
|
#endif
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
||
|
MD_Update(&m,md,MD_DIGEST_LENGTH);
|
||
|
MD_Final(&m,md);
|
||
|
#ifdef OPENSSL_FIPS
|
||
|
if (!FIPS_mode())
|
||
|
#endif
|
||
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
||
|
|
||
|
EVP_MD_CTX_cleanup(&m);
|
||
|
if (ok)
|
||
|
return(1);
|
||
|
else if (pseudo)
|
||
|
return 0;
|
||
|
else
|
||
|
{
|
||
|
RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
|
||
|
ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
|
||
|
"http://www.openssl.org/support/faq.html");
|
||
|
return(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
|
||
|
{
|
||
|
return ssleay_rand_bytes(buf, num, 0);
|
||
|
}
|
||
|
|
||
|
/* pseudo-random bytes that are guaranteed to be unique but not
|
||
|
unpredictable */
|
||
|
static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
|
||
|
{
|
||
|
return ssleay_rand_bytes(buf, num, 1);
|
||
|
}
|
||
|
|
||
|
static int ssleay_rand_status(void)
|
||
|
{
|
||
|
CRYPTO_THREADID cur;
|
||
|
int ret;
|
||
|
int do_not_lock;
|
||
|
|
||
|
CRYPTO_THREADID_current(&cur);
|
||
|
/* check if we already have the lock
|
||
|
* (could happen if a RAND_poll() implementation calls RAND_status()) */
|
||
|
if (crypto_lock_rand)
|
||
|
{
|
||
|
CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
|
||
|
do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
|
||
|
CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
|
||
|
}
|
||
|
else
|
||
|
do_not_lock = 0;
|
||
|
|
||
|
if (!do_not_lock)
|
||
|
{
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
||
|
|
||
|
/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
|
||
|
CRYPTO_THREADID_cpy(&locking_threadid, &cur);
|
||
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
|
||
|
crypto_lock_rand = 1;
|
||
|
}
|
||
|
|
||
|
if (!initialized)
|
||
|
{
|
||
|
RAND_poll();
|
||
|
initialized = 1;
|
||
|
}
|
||
|
|
||
|
ret = entropy >= ENTROPY_NEEDED;
|
||
|
|
||
|
if (!do_not_lock)
|
||
|
{
|
||
|
/* before unlocking, we must clear 'crypto_lock_rand' */
|
||
|
crypto_lock_rand = 0;
|
||
|
|
||
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|