session-android/jni/webrtc/modules/audio_coding/neteq/packet_buffer_unittest.cc

530 lines
18 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for PacketBuffer class.
#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
using ::testing::Return;
using ::testing::_;
namespace webrtc {
// Helper class to generate packets. Packets must be deleted by the user.
class PacketGenerator {
public:
PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size);
virtual ~PacketGenerator() {}
Packet* NextPacket(int payload_size_bytes);
void SkipPacket();
uint16_t seq_no_;
uint32_t ts_;
uint8_t pt_;
int frame_size_;
};
PacketGenerator::PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt,
int frame_size)
: seq_no_(seq_no),
ts_(ts),
pt_(pt),
frame_size_(frame_size) {
}
Packet* PacketGenerator::NextPacket(int payload_size_bytes) {
Packet* packet = new Packet;
packet->header.sequenceNumber = seq_no_;
packet->header.timestamp = ts_;
packet->header.payloadType = pt_;
packet->header.markerBit = false;
packet->header.ssrc = 0x12345678;
packet->header.numCSRCs = 0;
packet->header.paddingLength = 0;
packet->payload_length = payload_size_bytes;
packet->primary = true;
packet->payload = new uint8_t[payload_size_bytes];
++seq_no_;
ts_ += frame_size_;
return packet;
}
void PacketGenerator::SkipPacket() {
++seq_no_;
ts_ += frame_size_;
}
// Start of test definitions.
TEST(PacketBuffer, CreateAndDestroy) {
PacketBuffer* buffer = new PacketBuffer(10); // 10 packets.
EXPECT_TRUE(buffer->Empty());
delete buffer;
}
TEST(PacketBuffer, InsertPacket) {
PacketBuffer buffer(10); // 10 packets.
PacketGenerator gen(17u, 4711u, 0, 10);
const int payload_len = 100;
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(0, buffer.InsertPacket(packet));
uint32_t next_ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
EXPECT_EQ(4711u, next_ts);
EXPECT_FALSE(buffer.Empty());
EXPECT_EQ(1, buffer.NumPacketsInBuffer());
const RTPHeader* hdr = buffer.NextRtpHeader();
EXPECT_EQ(&(packet->header), hdr); // Compare pointer addresses.
// Do not explicitly flush buffer or delete packet to test that it is deleted
// with the buffer. (Tested with Valgrind or similar tool.)
}
// Test to flush buffer.
TEST(PacketBuffer, FlushBuffer) {
PacketBuffer buffer(10); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
const int payload_len = 10;
// Insert 10 small packets; should be ok.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet));
}
EXPECT_EQ(10, buffer.NumPacketsInBuffer());
EXPECT_FALSE(buffer.Empty());
buffer.Flush();
// Buffer should delete the payloads itself.
EXPECT_EQ(0, buffer.NumPacketsInBuffer());
EXPECT_TRUE(buffer.Empty());
}
// Test to fill the buffer over the limits, and verify that it flushes.
TEST(PacketBuffer, OverfillBuffer) {
PacketBuffer buffer(10); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
// Insert 10 small packets; should be ok.
const int payload_len = 10;
int i;
for (i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet));
}
EXPECT_EQ(10, buffer.NumPacketsInBuffer());
uint32_t next_ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
EXPECT_EQ(0u, next_ts); // Expect first inserted packet to be first in line.
// Insert 11th packet; should flush the buffer and insert it after flushing.
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kFlushed, buffer.InsertPacket(packet));
EXPECT_EQ(1, buffer.NumPacketsInBuffer());
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
// Expect last inserted packet to be first in line.
EXPECT_EQ(packet->header.timestamp, next_ts);
// Flush buffer to delete all packets.
buffer.Flush();
}
// Test inserting a list of packets.
TEST(PacketBuffer, InsertPacketList) {
PacketBuffer buffer(10); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
list.push_back(packet);
}
MockDecoderDatabase decoder_database;
EXPECT_CALL(decoder_database, IsComfortNoise(0))
.WillRepeatedly(Return(false));
EXPECT_CALL(decoder_database, IsDtmf(0))
.WillRepeatedly(Return(false));
uint8_t current_pt = 0xFF;
uint8_t current_cng_pt = 0xFF;
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(10, buffer.NumPacketsInBuffer());
EXPECT_EQ(0, current_pt); // Current payload type changed to 0.
EXPECT_EQ(0xFF, current_cng_pt); // CNG payload type not changed.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// Test inserting a list of packets. Last packet is of a different payload type.
// Expecting the buffer to flush.
// TODO(hlundin): Remove this test when legacy operation is no longer needed.
TEST(PacketBuffer, InsertPacketListChangePayloadType) {
PacketBuffer buffer(10); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
list.push_back(packet);
}
// Insert 11th packet of another payload type (not CNG).
Packet* packet = gen.NextPacket(payload_len);
packet->header.payloadType = 1;
list.push_back(packet);
MockDecoderDatabase decoder_database;
EXPECT_CALL(decoder_database, IsComfortNoise(_))
.WillRepeatedly(Return(false));
EXPECT_CALL(decoder_database, IsDtmf(_))
.WillRepeatedly(Return(false));
uint8_t current_pt = 0xFF;
uint8_t current_cng_pt = 0xFF;
EXPECT_EQ(PacketBuffer::kFlushed, buffer.InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(1, buffer.NumPacketsInBuffer()); // Only the last packet.
EXPECT_EQ(1, current_pt); // Current payload type changed to 0.
EXPECT_EQ(0xFF, current_cng_pt); // CNG payload type not changed.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// Test inserting a number of packets, and verifying correct extraction order.
// The packets inserted are as follows:
// Packet no. Seq. no. Primary TS Secondary TS
// 0 0xFFFD 0xFFFFFFD7 -
// 1 0xFFFE 0xFFFFFFE1 0xFFFFFFD7
// 2 0xFFFF 0xFFFFFFEB 0xFFFFFFE1
// 3 0x0000 0xFFFFFFF5 0xFFFFFFEB
// 4 0x0001 0xFFFFFFFF 0xFFFFFFF5
// 5 0x0002 0x0000000A 0xFFFFFFFF
// 6 MISSING--0x0003------0x00000014----0x0000000A--MISSING
// 7 0x0004 0x0000001E 0x00000014
// 8 0x0005 0x00000028 0x0000001E
// 9 0x0006 0x00000032 0x00000028
TEST(PacketBuffer, ExtractOrderRedundancy) {
PacketBuffer buffer(100); // 100 packets.
const uint32_t ts_increment = 10; // Samples per packet.
const uint16_t start_seq_no = 0xFFFF - 2; // Wraps after 3 packets.
const uint32_t start_ts = 0xFFFFFFFF -
4 * ts_increment; // Wraps after 5 packets.
const uint8_t primary_pt = 0;
const uint8_t secondary_pt = 1;
PacketGenerator gen(start_seq_no, start_ts, primary_pt, ts_increment);
// Insert secondary payloads too. (Simulating RED.)
PacketGenerator red_gen(start_seq_no + 1, start_ts, secondary_pt,
ts_increment);
// Insert 9 small packets (skip one).
for (int i = 0; i < 10; ++i) {
const int payload_len = 10;
if (i == 6) {
// Skip this packet.
gen.SkipPacket();
red_gen.SkipPacket();
continue;
}
// Primary payload.
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet));
if (i >= 1) {
// Secondary payload.
packet = red_gen.NextPacket(payload_len);
packet->primary = false;
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet));
}
}
EXPECT_EQ(17, buffer.NumPacketsInBuffer()); // 9 primary + 8 secondary
uint16_t current_seq_no = start_seq_no;
uint32_t current_ts = start_ts;
for (int i = 0; i < 10; ++i) {
// Extract packets.
int drop_count = 0;
Packet* packet = buffer.GetNextPacket(&drop_count);
ASSERT_FALSE(packet == NULL);
if (i == 6) {
// Special case for the dropped primary payload.
// Expect secondary payload, and one step higher sequence number.
EXPECT_EQ(current_seq_no + 1, packet->header.sequenceNumber);
EXPECT_EQ(current_ts, packet->header.timestamp);
EXPECT_FALSE(packet->primary);
EXPECT_EQ(1, packet->header.payloadType);
EXPECT_EQ(0, drop_count);
} else {
EXPECT_EQ(current_seq_no, packet->header.sequenceNumber);
EXPECT_EQ(current_ts, packet->header.timestamp);
EXPECT_TRUE(packet->primary);
EXPECT_EQ(0, packet->header.payloadType);
if (i == 5 || i == 9) {
// No duplicate TS for dropped packet or for last primary payload.
EXPECT_EQ(0, drop_count);
} else {
EXPECT_EQ(1, drop_count);
}
}
++current_seq_no;
current_ts += ts_increment;
delete [] packet->payload;
delete packet;
}
}
TEST(PacketBuffer, DiscardPackets) {
PacketBuffer buffer(100); // 100 packets.
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
buffer.InsertPacket(packet);
}
EXPECT_EQ(10, buffer.NumPacketsInBuffer());
// Discard them one by one and make sure that the right packets are at the
// front of the buffer.
uint32_t current_ts = start_ts;
for (int i = 0; i < 10; ++i) {
uint32_t ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&ts));
EXPECT_EQ(current_ts, ts);
EXPECT_EQ(PacketBuffer::kOK, buffer.DiscardNextPacket());
current_ts += ts_increment;
}
EXPECT_TRUE(buffer.Empty());
}
TEST(PacketBuffer, Reordering) {
PacketBuffer buffer(100); // 100 packets.
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
const int payload_len = 10;
// Generate 10 small packets and insert them into a PacketList. Insert every
// odd packet to the front, and every even packet to the back, thus creating
// a (rather strange) reordering.
PacketList list;
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
if (i % 2) {
list.push_front(packet);
} else {
list.push_back(packet);
}
}
MockDecoderDatabase decoder_database;
EXPECT_CALL(decoder_database, IsComfortNoise(0))
.WillRepeatedly(Return(false));
EXPECT_CALL(decoder_database, IsDtmf(0))
.WillRepeatedly(Return(false));
uint8_t current_pt = 0xFF;
uint8_t current_cng_pt = 0xFF;
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_EQ(10, buffer.NumPacketsInBuffer());
// Extract them and make sure that come out in the right order.
uint32_t current_ts = start_ts;
for (int i = 0; i < 10; ++i) {
Packet* packet = buffer.GetNextPacket(NULL);
ASSERT_FALSE(packet == NULL);
EXPECT_EQ(current_ts, packet->header.timestamp);
current_ts += ts_increment;
delete [] packet->payload;
delete packet;
}
EXPECT_TRUE(buffer.Empty());
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
TEST(PacketBuffer, Failures) {
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
int payload_len = 100;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
PacketBuffer* buffer = new PacketBuffer(100); // 100 packets.
Packet* packet = NULL;
EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacket(packet));
packet = gen.NextPacket(payload_len);
delete [] packet->payload;
packet->payload = NULL;
EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacket(packet));
// Packet is deleted by the PacketBuffer.
// Buffer should still be empty. Test all empty-checks.
uint32_t temp_ts;
EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->NextTimestamp(&temp_ts));
EXPECT_EQ(PacketBuffer::kBufferEmpty,
buffer->NextHigherTimestamp(0, &temp_ts));
EXPECT_EQ(NULL, buffer->NextRtpHeader());
EXPECT_EQ(NULL, buffer->GetNextPacket(NULL));
EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->DiscardNextPacket());
EXPECT_EQ(0, buffer->DiscardOldPackets(0)); // 0 packets discarded.
// Insert one packet to make the buffer non-empty.
packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kOK, buffer->InsertPacket(packet));
EXPECT_EQ(PacketBuffer::kInvalidPointer, buffer->NextTimestamp(NULL));
EXPECT_EQ(PacketBuffer::kInvalidPointer,
buffer->NextHigherTimestamp(0, NULL));
delete buffer;
// Insert packet list of three packets, where the second packet has an invalid
// payload. Expect first packet to be inserted, and the remaining two to be
// discarded.
buffer = new PacketBuffer(100); // 100 packets.
PacketList list;
list.push_back(gen.NextPacket(payload_len)); // Valid packet.
packet = gen.NextPacket(payload_len);
delete [] packet->payload;
packet->payload = NULL; // Invalid.
list.push_back(packet);
list.push_back(gen.NextPacket(payload_len)); // Valid packet.
MockDecoderDatabase decoder_database;
EXPECT_CALL(decoder_database, IsComfortNoise(0))
.WillRepeatedly(Return(false));
EXPECT_CALL(decoder_database, IsDtmf(0))
.WillRepeatedly(Return(false));
uint8_t current_pt = 0xFF;
uint8_t current_cng_pt = 0xFF;
EXPECT_EQ(PacketBuffer::kInvalidPacket,
buffer->InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(1, buffer->NumPacketsInBuffer());
delete buffer;
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// Test packet comparison function.
// The function should return true if the first packet "goes before" the second.
TEST(PacketBuffer, ComparePackets) {
PacketGenerator gen(0, 0, 0, 10);
Packet* a = gen.NextPacket(10); // SN = 0, TS = 0.
Packet* b = gen.NextPacket(10); // SN = 1, TS = 10.
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Testing wrap-around case; 'a' is earlier but has a larger timestamp value.
a->header.timestamp = 0xFFFFFFFF - 10;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Test equal packets.
EXPECT_TRUE(*a == *a);
EXPECT_FALSE(*a != *a);
EXPECT_FALSE(*a < *a);
EXPECT_FALSE(*a > *a);
EXPECT_TRUE(*a <= *a);
EXPECT_TRUE(*a >= *a);
// Test equal timestamps but different sequence numbers (0 and 1).
a->header.timestamp = b->header.timestamp;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Test equal timestamps but different sequence numbers (32767 and 1).
a->header.sequenceNumber = 0xFFFF;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Test equal timestamps and sequence numbers, but only 'b' is primary.
a->header.sequenceNumber = b->header.sequenceNumber;
a->primary = false;
b->primary = true;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_FALSE(*a < *b);
EXPECT_TRUE(*a > *b);
EXPECT_FALSE(*a <= *b);
EXPECT_TRUE(*a >= *b);
delete [] a->payload;
delete a;
delete [] b->payload;
delete b;
}
// Test the DeleteFirstPacket DeleteAllPackets methods.
TEST(PacketBuffer, DeleteAllPackets) {
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
list.push_back(packet);
}
EXPECT_TRUE(PacketBuffer::DeleteFirstPacket(&list));
EXPECT_EQ(9u, list.size());
PacketBuffer::DeleteAllPackets(&list);
EXPECT_TRUE(list.empty());
EXPECT_FALSE(PacketBuffer::DeleteFirstPacket(&list));
}
} // namespace webrtc