mirror of
https://github.com/oxen-io/session-android.git
synced 2024-12-19 14:37:32 +00:00
426 lines
16 KiB
C++
426 lines
16 KiB
C++
|
/*
|
||
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "webrtc/modules/audio_coding/neteq/delay_manager.h"
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
#include <algorithm> // max, min
|
||
|
|
||
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||
|
#include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
|
||
|
#include "webrtc/modules/interface/module_common_types.h"
|
||
|
#include "webrtc/system_wrappers/interface/logging.h"
|
||
|
|
||
|
namespace webrtc {
|
||
|
|
||
|
DelayManager::DelayManager(int max_packets_in_buffer,
|
||
|
DelayPeakDetector* peak_detector)
|
||
|
: first_packet_received_(false),
|
||
|
max_packets_in_buffer_(max_packets_in_buffer),
|
||
|
iat_vector_(kMaxIat + 1, 0),
|
||
|
iat_factor_(0),
|
||
|
packet_iat_count_ms_(0),
|
||
|
base_target_level_(4), // In Q0 domain.
|
||
|
target_level_(base_target_level_ << 8), // In Q8 domain.
|
||
|
packet_len_ms_(0),
|
||
|
streaming_mode_(false),
|
||
|
last_seq_no_(0),
|
||
|
last_timestamp_(0),
|
||
|
minimum_delay_ms_(0),
|
||
|
least_required_delay_ms_(target_level_),
|
||
|
maximum_delay_ms_(target_level_),
|
||
|
iat_cumulative_sum_(0),
|
||
|
max_iat_cumulative_sum_(0),
|
||
|
max_timer_ms_(0),
|
||
|
peak_detector_(*peak_detector),
|
||
|
last_pack_cng_or_dtmf_(1) {
|
||
|
assert(peak_detector); // Should never be NULL.
|
||
|
Reset();
|
||
|
}
|
||
|
|
||
|
DelayManager::~DelayManager() {}
|
||
|
|
||
|
const DelayManager::IATVector& DelayManager::iat_vector() const {
|
||
|
return iat_vector_;
|
||
|
}
|
||
|
|
||
|
// Set the histogram vector to an exponentially decaying distribution
|
||
|
// iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ...
|
||
|
// iat_vector_ is in Q30.
|
||
|
void DelayManager::ResetHistogram() {
|
||
|
// Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
|
||
|
// of iat_vector_ is 1.
|
||
|
uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary.
|
||
|
IATVector::iterator it = iat_vector_.begin();
|
||
|
for (; it < iat_vector_.end(); it++) {
|
||
|
temp_prob >>= 1;
|
||
|
(*it) = temp_prob << 16;
|
||
|
}
|
||
|
base_target_level_ = 4;
|
||
|
target_level_ = base_target_level_ << 8;
|
||
|
}
|
||
|
|
||
|
int DelayManager::Update(uint16_t sequence_number,
|
||
|
uint32_t timestamp,
|
||
|
int sample_rate_hz) {
|
||
|
if (sample_rate_hz <= 0) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (!first_packet_received_) {
|
||
|
// Prepare for next packet arrival.
|
||
|
packet_iat_count_ms_ = 0;
|
||
|
last_seq_no_ = sequence_number;
|
||
|
last_timestamp_ = timestamp;
|
||
|
first_packet_received_ = true;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Try calculating packet length from current and previous timestamps.
|
||
|
int packet_len_ms;
|
||
|
if (!IsNewerTimestamp(timestamp, last_timestamp_) ||
|
||
|
!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
|
||
|
// Wrong timestamp or sequence order; use stored value.
|
||
|
packet_len_ms = packet_len_ms_;
|
||
|
} else {
|
||
|
// Calculate timestamps per packet and derive packet length in ms.
|
||
|
int packet_len_samp =
|
||
|
static_cast<uint32_t>(timestamp - last_timestamp_) /
|
||
|
static_cast<uint16_t>(sequence_number - last_seq_no_);
|
||
|
packet_len_ms = (1000 * packet_len_samp) / sample_rate_hz;
|
||
|
}
|
||
|
|
||
|
if (packet_len_ms > 0) {
|
||
|
// Cannot update statistics unless |packet_len_ms| is valid.
|
||
|
// Calculate inter-arrival time (IAT) in integer "packet times"
|
||
|
// (rounding down). This is the value used as index to the histogram
|
||
|
// vector |iat_vector_|.
|
||
|
int iat_packets = packet_iat_count_ms_ / packet_len_ms;
|
||
|
|
||
|
if (streaming_mode_) {
|
||
|
UpdateCumulativeSums(packet_len_ms, sequence_number);
|
||
|
}
|
||
|
|
||
|
// Check for discontinuous packet sequence and re-ordering.
|
||
|
if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) {
|
||
|
// Compensate for gap in the sequence numbers. Reduce IAT with the
|
||
|
// expected extra time due to lost packets, but ensure that the IAT is
|
||
|
// not negative.
|
||
|
iat_packets -= static_cast<uint16_t>(sequence_number - last_seq_no_ - 1);
|
||
|
iat_packets = std::max(iat_packets, 0);
|
||
|
} else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
|
||
|
iat_packets += static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number);
|
||
|
}
|
||
|
|
||
|
// Saturate IAT at maximum value.
|
||
|
const int max_iat = kMaxIat;
|
||
|
iat_packets = std::min(iat_packets, max_iat);
|
||
|
UpdateHistogram(iat_packets);
|
||
|
// Calculate new |target_level_| based on updated statistics.
|
||
|
target_level_ = CalculateTargetLevel(iat_packets);
|
||
|
if (streaming_mode_) {
|
||
|
target_level_ = std::max(target_level_, max_iat_cumulative_sum_);
|
||
|
}
|
||
|
|
||
|
LimitTargetLevel();
|
||
|
} // End if (packet_len_ms > 0).
|
||
|
|
||
|
// Prepare for next packet arrival.
|
||
|
packet_iat_count_ms_ = 0;
|
||
|
last_seq_no_ = sequence_number;
|
||
|
last_timestamp_ = timestamp;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void DelayManager::UpdateCumulativeSums(int packet_len_ms,
|
||
|
uint16_t sequence_number) {
|
||
|
// Calculate IAT in Q8, including fractions of a packet (i.e., more
|
||
|
// accurate than |iat_packets|.
|
||
|
int iat_packets_q8 = (packet_iat_count_ms_ << 8) / packet_len_ms;
|
||
|
// Calculate cumulative sum IAT with sequence number compensation. The sum
|
||
|
// is zero if there is no clock-drift.
|
||
|
iat_cumulative_sum_ += (iat_packets_q8 -
|
||
|
(static_cast<int>(sequence_number - last_seq_no_) << 8));
|
||
|
// Subtract drift term.
|
||
|
iat_cumulative_sum_ -= kCumulativeSumDrift;
|
||
|
// Ensure not negative.
|
||
|
iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0);
|
||
|
if (iat_cumulative_sum_ > max_iat_cumulative_sum_) {
|
||
|
// Found a new maximum.
|
||
|
max_iat_cumulative_sum_ = iat_cumulative_sum_;
|
||
|
max_timer_ms_ = 0;
|
||
|
}
|
||
|
if (max_timer_ms_ > kMaxStreamingPeakPeriodMs) {
|
||
|
// Too long since the last maximum was observed; decrease max value.
|
||
|
max_iat_cumulative_sum_ -= kCumulativeSumDrift;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Each element in the vector is first multiplied by the forgetting factor
|
||
|
// |iat_factor_|. Then the vector element indicated by |iat_packets| is then
|
||
|
// increased (additive) by 1 - |iat_factor_|. This way, the probability of
|
||
|
// |iat_packets| is slightly increased, while the sum of the histogram remains
|
||
|
// constant (=1).
|
||
|
// Due to inaccuracies in the fixed-point arithmetic, the histogram may no
|
||
|
// longer sum up to 1 (in Q30) after the update. To correct this, a correction
|
||
|
// term is added or subtracted from the first element (or elements) of the
|
||
|
// vector.
|
||
|
// The forgetting factor |iat_factor_| is also updated. When the DelayManager
|
||
|
// is reset, the factor is set to 0 to facilitate rapid convergence in the
|
||
|
// beginning. With each update of the histogram, the factor is increased towards
|
||
|
// the steady-state value |kIatFactor_|.
|
||
|
void DelayManager::UpdateHistogram(size_t iat_packets) {
|
||
|
assert(iat_packets < iat_vector_.size());
|
||
|
int vector_sum = 0; // Sum up the vector elements as they are processed.
|
||
|
// Multiply each element in |iat_vector_| with |iat_factor_|.
|
||
|
for (IATVector::iterator it = iat_vector_.begin();
|
||
|
it != iat_vector_.end(); ++it) {
|
||
|
*it = (static_cast<int64_t>(*it) * iat_factor_) >> 15;
|
||
|
vector_sum += *it;
|
||
|
}
|
||
|
|
||
|
// Increase the probability for the currently observed inter-arrival time
|
||
|
// by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30.
|
||
|
// Thus, left-shift 15 steps to obtain result in Q30.
|
||
|
iat_vector_[iat_packets] += (32768 - iat_factor_) << 15;
|
||
|
vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum.
|
||
|
|
||
|
// |iat_vector_| should sum up to 1 (in Q30), but it may not due to
|
||
|
// fixed-point rounding errors.
|
||
|
vector_sum -= 1 << 30; // Should be zero. Compensate if not.
|
||
|
if (vector_sum != 0) {
|
||
|
// Modify a few values early in |iat_vector_|.
|
||
|
int flip_sign = vector_sum > 0 ? -1 : 1;
|
||
|
IATVector::iterator it = iat_vector_.begin();
|
||
|
while (it != iat_vector_.end() && abs(vector_sum) > 0) {
|
||
|
// Add/subtract 1/16 of the element, but not more than |vector_sum|.
|
||
|
int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4);
|
||
|
*it += correction;
|
||
|
vector_sum += correction;
|
||
|
++it;
|
||
|
}
|
||
|
}
|
||
|
assert(vector_sum == 0); // Verify that the above is correct.
|
||
|
|
||
|
// Update |iat_factor_| (changes only during the first seconds after a reset).
|
||
|
// The factor converges to |kIatFactor_|.
|
||
|
iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2;
|
||
|
}
|
||
|
|
||
|
// Enforces upper and lower limits for |target_level_|. The upper limit is
|
||
|
// chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some
|
||
|
// headroom for natural fluctuations around the target, and ii) equivalent of
|
||
|
// |maximum_delay_ms_| in packets. Note that in practice, if no
|
||
|
// |maximum_delay_ms_| is specified, this does not have any impact, since the
|
||
|
// target level is far below the buffer capacity in all reasonable cases.
|
||
|
// The lower limit is equivalent of |minimum_delay_ms_| in packets. We update
|
||
|
// |least_required_level_| while the above limits are applied.
|
||
|
// TODO(hlundin): Move this check to the buffer logistics class.
|
||
|
void DelayManager::LimitTargetLevel() {
|
||
|
least_required_delay_ms_ = (target_level_ * packet_len_ms_) >> 8;
|
||
|
|
||
|
if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) {
|
||
|
int minimum_delay_packet_q8 = (minimum_delay_ms_ << 8) / packet_len_ms_;
|
||
|
target_level_ = std::max(target_level_, minimum_delay_packet_q8);
|
||
|
}
|
||
|
|
||
|
if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) {
|
||
|
int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_;
|
||
|
target_level_ = std::min(target_level_, maximum_delay_packet_q8);
|
||
|
}
|
||
|
|
||
|
// Shift to Q8, then 75%.;
|
||
|
int max_buffer_packets_q8 = (3 * (max_packets_in_buffer_ << 8)) / 4;
|
||
|
target_level_ = std::min(target_level_, max_buffer_packets_q8);
|
||
|
|
||
|
// Sanity check, at least 1 packet (in Q8).
|
||
|
target_level_ = std::max(target_level_, 1 << 8);
|
||
|
}
|
||
|
|
||
|
int DelayManager::CalculateTargetLevel(int iat_packets) {
|
||
|
int limit_probability = kLimitProbability;
|
||
|
if (streaming_mode_) {
|
||
|
limit_probability = kLimitProbabilityStreaming;
|
||
|
}
|
||
|
|
||
|
// Calculate target buffer level from inter-arrival time histogram.
|
||
|
// Find the |iat_index| for which the probability of observing an
|
||
|
// inter-arrival time larger than or equal to |iat_index| is less than or
|
||
|
// equal to |limit_probability|. The sought probability is estimated using
|
||
|
// the histogram as the reverse cumulant PDF, i.e., the sum of elements from
|
||
|
// the end up until |iat_index|. Now, since the sum of all elements is 1
|
||
|
// (in Q30) by definition, and since the solution is often a low value for
|
||
|
// |iat_index|, it is more efficient to start with |sum| = 1 and subtract
|
||
|
// elements from the start of the histogram.
|
||
|
size_t index = 0; // Start from the beginning of |iat_vector_|.
|
||
|
int sum = 1 << 30; // Assign to 1 in Q30.
|
||
|
sum -= iat_vector_[index]; // Ensure that target level is >= 1.
|
||
|
|
||
|
do {
|
||
|
// Subtract the probabilities one by one until the sum is no longer greater
|
||
|
// than limit_probability.
|
||
|
++index;
|
||
|
sum -= iat_vector_[index];
|
||
|
} while ((sum > limit_probability) && (index < iat_vector_.size() - 1));
|
||
|
|
||
|
// This is the base value for the target buffer level.
|
||
|
int target_level = static_cast<int>(index);
|
||
|
base_target_level_ = static_cast<int>(index);
|
||
|
|
||
|
// Update detector for delay peaks.
|
||
|
bool delay_peak_found = peak_detector_.Update(iat_packets, target_level);
|
||
|
if (delay_peak_found) {
|
||
|
target_level = std::max(target_level, peak_detector_.MaxPeakHeight());
|
||
|
}
|
||
|
|
||
|
// Sanity check. |target_level| must be strictly positive.
|
||
|
target_level = std::max(target_level, 1);
|
||
|
// Scale to Q8 and assign to member variable.
|
||
|
target_level_ = target_level << 8;
|
||
|
return target_level_;
|
||
|
}
|
||
|
|
||
|
int DelayManager::SetPacketAudioLength(int length_ms) {
|
||
|
if (length_ms <= 0) {
|
||
|
LOG_F(LS_ERROR) << "length_ms = " << length_ms;
|
||
|
return -1;
|
||
|
}
|
||
|
packet_len_ms_ = length_ms;
|
||
|
peak_detector_.SetPacketAudioLength(packet_len_ms_);
|
||
|
packet_iat_count_ms_ = 0;
|
||
|
last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove?
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void DelayManager::Reset() {
|
||
|
packet_len_ms_ = 0; // Packet size unknown.
|
||
|
streaming_mode_ = false;
|
||
|
peak_detector_.Reset();
|
||
|
ResetHistogram(); // Resets target levels too.
|
||
|
iat_factor_ = 0; // Adapt the histogram faster for the first few packets.
|
||
|
packet_iat_count_ms_ = 0;
|
||
|
max_timer_ms_ = 0;
|
||
|
iat_cumulative_sum_ = 0;
|
||
|
max_iat_cumulative_sum_ = 0;
|
||
|
last_pack_cng_or_dtmf_ = 1;
|
||
|
}
|
||
|
|
||
|
int DelayManager::AverageIAT() const {
|
||
|
int32_t sum_q24 = 0;
|
||
|
// Using an int for the upper limit of the following for-loop so the
|
||
|
// loop-counter can be int. Otherwise we need a cast where |sum_q24| is
|
||
|
// updated.
|
||
|
const int iat_vec_size = static_cast<int>(iat_vector_.size());
|
||
|
assert(iat_vector_.size() == 65); // Algorithm is hard-coded for this size.
|
||
|
for (int i = 0; i < iat_vec_size; ++i) {
|
||
|
// Shift 6 to fit worst case: 2^30 * 64.
|
||
|
sum_q24 += (iat_vector_[i] >> 6) * i;
|
||
|
}
|
||
|
// Subtract the nominal inter-arrival time 1 = 2^24 in Q24.
|
||
|
sum_q24 -= (1 << 24);
|
||
|
// Multiply with 1000000 / 2^24 = 15625 / 2^18 to get in parts-per-million.
|
||
|
// Shift 7 to Q17 first, then multiply with 15625 and shift another 11.
|
||
|
return ((sum_q24 >> 7) * 15625) >> 11;
|
||
|
}
|
||
|
|
||
|
bool DelayManager::PeakFound() const {
|
||
|
return peak_detector_.peak_found();
|
||
|
}
|
||
|
|
||
|
void DelayManager::UpdateCounters(int elapsed_time_ms) {
|
||
|
packet_iat_count_ms_ += elapsed_time_ms;
|
||
|
peak_detector_.IncrementCounter(elapsed_time_ms);
|
||
|
max_timer_ms_ += elapsed_time_ms;
|
||
|
}
|
||
|
|
||
|
void DelayManager::ResetPacketIatCount() { packet_iat_count_ms_ = 0; }
|
||
|
|
||
|
// Note that |low_limit| and |higher_limit| are not assigned to
|
||
|
// |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this
|
||
|
// class. They are computed from |target_level_| and used for decision making.
|
||
|
void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const {
|
||
|
if (!lower_limit || !higher_limit) {
|
||
|
LOG_F(LS_ERROR) << "NULL pointers supplied as input";
|
||
|
assert(false);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness.
|
||
|
if (packet_len_ms_ > 0) {
|
||
|
window_20ms = (20 << 8) / packet_len_ms_;
|
||
|
}
|
||
|
|
||
|
// |target_level_| is in Q8 already.
|
||
|
*lower_limit = (target_level_ * 3) / 4;
|
||
|
// |higher_limit| is equal to |target_level_|, but should at
|
||
|
// least be 20 ms higher than |lower_limit_|.
|
||
|
*higher_limit = std::max(target_level_, *lower_limit + window_20ms);
|
||
|
}
|
||
|
|
||
|
int DelayManager::TargetLevel() const {
|
||
|
return target_level_;
|
||
|
}
|
||
|
|
||
|
void DelayManager::LastDecoderType(NetEqDecoder decoder_type) {
|
||
|
if (decoder_type == kDecoderAVT ||
|
||
|
decoder_type == kDecoderCNGnb ||
|
||
|
decoder_type == kDecoderCNGwb ||
|
||
|
decoder_type == kDecoderCNGswb32kHz ||
|
||
|
decoder_type == kDecoderCNGswb48kHz) {
|
||
|
last_pack_cng_or_dtmf_ = 1;
|
||
|
} else if (last_pack_cng_or_dtmf_ != 0) {
|
||
|
last_pack_cng_or_dtmf_ = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool DelayManager::SetMinimumDelay(int delay_ms) {
|
||
|
// Minimum delay shouldn't be more than maximum delay, if any maximum is set.
|
||
|
// Also, if possible check |delay| to less than 75% of
|
||
|
// |max_packets_in_buffer_|.
|
||
|
if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) ||
|
||
|
(packet_len_ms_ > 0 &&
|
||
|
delay_ms > 3 * max_packets_in_buffer_ * packet_len_ms_ / 4)) {
|
||
|
return false;
|
||
|
}
|
||
|
minimum_delay_ms_ = delay_ms;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool DelayManager::SetMaximumDelay(int delay_ms) {
|
||
|
if (delay_ms == 0) {
|
||
|
// Zero input unsets the maximum delay.
|
||
|
maximum_delay_ms_ = 0;
|
||
|
return true;
|
||
|
} else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) {
|
||
|
// Maximum delay shouldn't be less than minimum delay or less than a packet.
|
||
|
return false;
|
||
|
}
|
||
|
maximum_delay_ms_ = delay_ms;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int DelayManager::least_required_delay_ms() const {
|
||
|
return least_required_delay_ms_;
|
||
|
}
|
||
|
|
||
|
int DelayManager::base_target_level() const { return base_target_level_; }
|
||
|
void DelayManager::set_streaming_mode(bool value) { streaming_mode_ = value; }
|
||
|
int DelayManager::last_pack_cng_or_dtmf() const {
|
||
|
return last_pack_cng_or_dtmf_;
|
||
|
}
|
||
|
|
||
|
void DelayManager::set_last_pack_cng_or_dtmf(int value) {
|
||
|
last_pack_cng_or_dtmf_ = value;
|
||
|
}
|
||
|
} // namespace webrtc
|