mirror of
https://github.com/oxen-io/session-android.git
synced 2024-12-21 07:27:30 +00:00
345 lines
9.8 KiB
C
345 lines
9.8 KiB
C
|
/* p5_crpt2.c */
|
||
|
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
||
|
* project 1999.
|
||
|
*/
|
||
|
/* ====================================================================
|
||
|
* Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
*
|
||
|
* 3. All advertising materials mentioning features or use of this
|
||
|
* software must display the following acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
||
|
*
|
||
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
|
* endorse or promote products derived from this software without
|
||
|
* prior written permission. For written permission, please contact
|
||
|
* licensing@OpenSSL.org.
|
||
|
*
|
||
|
* 5. Products derived from this software may not be called "OpenSSL"
|
||
|
* nor may "OpenSSL" appear in their names without prior written
|
||
|
* permission of the OpenSSL Project.
|
||
|
*
|
||
|
* 6. Redistributions of any form whatsoever must retain the following
|
||
|
* acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
* ====================================================================
|
||
|
*
|
||
|
* This product includes cryptographic software written by Eric Young
|
||
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
||
|
* Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
*/
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include "cryptlib.h"
|
||
|
#if !defined(OPENSSL_NO_HMAC) && !defined(OPENSSL_NO_SHA)
|
||
|
#include <openssl/x509.h>
|
||
|
#include <openssl/evp.h>
|
||
|
#include <openssl/hmac.h>
|
||
|
#include "evp_locl.h"
|
||
|
|
||
|
/* set this to print out info about the keygen algorithm */
|
||
|
/* #define DEBUG_PKCS5V2 */
|
||
|
|
||
|
#ifdef DEBUG_PKCS5V2
|
||
|
static void h__dump (const unsigned char *p, int len);
|
||
|
#endif
|
||
|
|
||
|
/* This is an implementation of PKCS#5 v2.0 password based encryption key
|
||
|
* derivation function PBKDF2.
|
||
|
* SHA1 version verified against test vectors posted by Peter Gutmann
|
||
|
* <pgut001@cs.auckland.ac.nz> to the PKCS-TNG <pkcs-tng@rsa.com> mailing list.
|
||
|
*/
|
||
|
|
||
|
int PKCS5_PBKDF2_HMAC(const char *pass, int passlen,
|
||
|
const unsigned char *salt, int saltlen, int iter,
|
||
|
const EVP_MD *digest,
|
||
|
int keylen, unsigned char *out)
|
||
|
{
|
||
|
unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
|
||
|
int cplen, j, k, tkeylen, mdlen;
|
||
|
unsigned long i = 1;
|
||
|
HMAC_CTX hctx_tpl, hctx;
|
||
|
|
||
|
mdlen = EVP_MD_size(digest);
|
||
|
if (mdlen < 0)
|
||
|
return 0;
|
||
|
|
||
|
HMAC_CTX_init(&hctx_tpl);
|
||
|
p = out;
|
||
|
tkeylen = keylen;
|
||
|
if(!pass)
|
||
|
passlen = 0;
|
||
|
else if(passlen == -1)
|
||
|
passlen = strlen(pass);
|
||
|
if (!HMAC_Init_ex(&hctx_tpl, pass, passlen, digest, NULL))
|
||
|
{
|
||
|
HMAC_CTX_cleanup(&hctx_tpl);
|
||
|
return 0;
|
||
|
}
|
||
|
while(tkeylen)
|
||
|
{
|
||
|
if(tkeylen > mdlen)
|
||
|
cplen = mdlen;
|
||
|
else
|
||
|
cplen = tkeylen;
|
||
|
/* We are unlikely to ever use more than 256 blocks (5120 bits!)
|
||
|
* but just in case...
|
||
|
*/
|
||
|
itmp[0] = (unsigned char)((i >> 24) & 0xff);
|
||
|
itmp[1] = (unsigned char)((i >> 16) & 0xff);
|
||
|
itmp[2] = (unsigned char)((i >> 8) & 0xff);
|
||
|
itmp[3] = (unsigned char)(i & 0xff);
|
||
|
if (!HMAC_CTX_copy(&hctx, &hctx_tpl))
|
||
|
{
|
||
|
HMAC_CTX_cleanup(&hctx_tpl);
|
||
|
return 0;
|
||
|
}
|
||
|
if (!HMAC_Update(&hctx, salt, saltlen)
|
||
|
|| !HMAC_Update(&hctx, itmp, 4)
|
||
|
|| !HMAC_Final(&hctx, digtmp, NULL))
|
||
|
{
|
||
|
HMAC_CTX_cleanup(&hctx_tpl);
|
||
|
HMAC_CTX_cleanup(&hctx);
|
||
|
return 0;
|
||
|
}
|
||
|
HMAC_CTX_cleanup(&hctx);
|
||
|
memcpy(p, digtmp, cplen);
|
||
|
for(j = 1; j < iter; j++)
|
||
|
{
|
||
|
if (!HMAC_CTX_copy(&hctx, &hctx_tpl))
|
||
|
{
|
||
|
HMAC_CTX_cleanup(&hctx_tpl);
|
||
|
return 0;
|
||
|
}
|
||
|
if (!HMAC_Update(&hctx, digtmp, mdlen)
|
||
|
|| !HMAC_Final(&hctx, digtmp, NULL))
|
||
|
{
|
||
|
HMAC_CTX_cleanup(&hctx_tpl);
|
||
|
HMAC_CTX_cleanup(&hctx);
|
||
|
return 0;
|
||
|
}
|
||
|
HMAC_CTX_cleanup(&hctx);
|
||
|
for(k = 0; k < cplen; k++)
|
||
|
p[k] ^= digtmp[k];
|
||
|
}
|
||
|
tkeylen-= cplen;
|
||
|
i++;
|
||
|
p+= cplen;
|
||
|
}
|
||
|
HMAC_CTX_cleanup(&hctx_tpl);
|
||
|
#ifdef DEBUG_PKCS5V2
|
||
|
fprintf(stderr, "Password:\n");
|
||
|
h__dump (pass, passlen);
|
||
|
fprintf(stderr, "Salt:\n");
|
||
|
h__dump (salt, saltlen);
|
||
|
fprintf(stderr, "Iteration count %d\n", iter);
|
||
|
fprintf(stderr, "Key:\n");
|
||
|
h__dump (out, keylen);
|
||
|
#endif
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen,
|
||
|
const unsigned char *salt, int saltlen, int iter,
|
||
|
int keylen, unsigned char *out)
|
||
|
{
|
||
|
return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(),
|
||
|
keylen, out);
|
||
|
}
|
||
|
|
||
|
#ifdef DO_TEST
|
||
|
main()
|
||
|
{
|
||
|
unsigned char out[4];
|
||
|
unsigned char salt[] = {0x12, 0x34, 0x56, 0x78};
|
||
|
PKCS5_PBKDF2_HMAC_SHA1("password", -1, salt, 4, 5, 4, out);
|
||
|
fprintf(stderr, "Out %02X %02X %02X %02X\n",
|
||
|
out[0], out[1], out[2], out[3]);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* Now the key derivation function itself. This is a bit evil because
|
||
|
* it has to check the ASN1 parameters are valid: and there are quite a
|
||
|
* few of them...
|
||
|
*/
|
||
|
|
||
|
int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
|
||
|
ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md,
|
||
|
int en_de)
|
||
|
{
|
||
|
const unsigned char *pbuf;
|
||
|
int plen;
|
||
|
PBE2PARAM *pbe2 = NULL;
|
||
|
const EVP_CIPHER *cipher;
|
||
|
|
||
|
int rv = 0;
|
||
|
|
||
|
if (param == NULL || param->type != V_ASN1_SEQUENCE ||
|
||
|
param->value.sequence == NULL) {
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,EVP_R_DECODE_ERROR);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
pbuf = param->value.sequence->data;
|
||
|
plen = param->value.sequence->length;
|
||
|
if(!(pbe2 = d2i_PBE2PARAM(NULL, &pbuf, plen))) {
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,EVP_R_DECODE_ERROR);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* See if we recognise the key derivation function */
|
||
|
|
||
|
if(OBJ_obj2nid(pbe2->keyfunc->algorithm) != NID_id_pbkdf2) {
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,
|
||
|
EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* lets see if we recognise the encryption algorithm.
|
||
|
*/
|
||
|
|
||
|
cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm);
|
||
|
|
||
|
if(!cipher) {
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,
|
||
|
EVP_R_UNSUPPORTED_CIPHER);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* Fixup cipher based on AlgorithmIdentifier */
|
||
|
if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de))
|
||
|
goto err;
|
||
|
if(EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) {
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,
|
||
|
EVP_R_CIPHER_PARAMETER_ERROR);
|
||
|
goto err;
|
||
|
}
|
||
|
rv = PKCS5_v2_PBKDF2_keyivgen(ctx, pass, passlen,
|
||
|
pbe2->keyfunc->parameter, c, md, en_de);
|
||
|
err:
|
||
|
PBE2PARAM_free(pbe2);
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
|
||
|
ASN1_TYPE *param,
|
||
|
const EVP_CIPHER *c, const EVP_MD *md, int en_de)
|
||
|
{
|
||
|
unsigned char *salt, key[EVP_MAX_KEY_LENGTH];
|
||
|
const unsigned char *pbuf;
|
||
|
int saltlen, iter, plen;
|
||
|
int rv = 0;
|
||
|
unsigned int keylen = 0;
|
||
|
int prf_nid, hmac_md_nid;
|
||
|
PBKDF2PARAM *kdf = NULL;
|
||
|
const EVP_MD *prfmd;
|
||
|
|
||
|
if (EVP_CIPHER_CTX_cipher(ctx) == NULL)
|
||
|
{
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_NO_CIPHER_SET);
|
||
|
goto err;
|
||
|
}
|
||
|
keylen = EVP_CIPHER_CTX_key_length(ctx);
|
||
|
OPENSSL_assert(keylen <= sizeof key);
|
||
|
|
||
|
/* Decode parameter */
|
||
|
|
||
|
if(!param || (param->type != V_ASN1_SEQUENCE))
|
||
|
{
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_DECODE_ERROR);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
pbuf = param->value.sequence->data;
|
||
|
plen = param->value.sequence->length;
|
||
|
|
||
|
if(!(kdf = d2i_PBKDF2PARAM(NULL, &pbuf, plen)) ) {
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_DECODE_ERROR);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
keylen = EVP_CIPHER_CTX_key_length(ctx);
|
||
|
|
||
|
/* Now check the parameters of the kdf */
|
||
|
|
||
|
if(kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)){
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,
|
||
|
EVP_R_UNSUPPORTED_KEYLENGTH);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (kdf->prf)
|
||
|
prf_nid = OBJ_obj2nid(kdf->prf->algorithm);
|
||
|
else
|
||
|
prf_nid = NID_hmacWithSHA1;
|
||
|
|
||
|
if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0))
|
||
|
{
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
prfmd = EVP_get_digestbynid(hmac_md_nid);
|
||
|
if (prfmd == NULL)
|
||
|
{
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if(kdf->salt->type != V_ASN1_OCTET_STRING) {
|
||
|
EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,
|
||
|
EVP_R_UNSUPPORTED_SALT_TYPE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* it seems that its all OK */
|
||
|
salt = kdf->salt->value.octet_string->data;
|
||
|
saltlen = kdf->salt->value.octet_string->length;
|
||
|
iter = ASN1_INTEGER_get(kdf->iter);
|
||
|
if(!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd,
|
||
|
keylen, key))
|
||
|
goto err;
|
||
|
rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de);
|
||
|
err:
|
||
|
OPENSSL_cleanse(key, keylen);
|
||
|
PBKDF2PARAM_free(kdf);
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
#ifdef DEBUG_PKCS5V2
|
||
|
static void h__dump (const unsigned char *p, int len)
|
||
|
{
|
||
|
for (; len --; p++) fprintf(stderr, "%02X ", *p);
|
||
|
fprintf(stderr, "\n");
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|