session-android/jni/webrtc/common_audio/signal_processing/signal_processing_unittest.cc

621 lines
22 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
static const int kVector16Size = 9;
static const int16_t vector16[kVector16Size] = {1, -15511, 4323, 1963,
WEBRTC_SPL_WORD16_MAX, 0, WEBRTC_SPL_WORD16_MIN + 5, -3333, 345};
class SplTest : public testing::Test {
protected:
SplTest() {
WebRtcSpl_Init();
}
virtual ~SplTest() {
}
};
TEST_F(SplTest, MacroTest) {
// Macros with inputs.
int A = 10;
int B = 21;
int a = -3;
int b = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(10, WEBRTC_SPL_MIN(A, B));
EXPECT_EQ(21, WEBRTC_SPL_MAX(A, B));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W16(a));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W32(a));
EXPECT_EQ(-63, WEBRTC_SPL_MUL(a, B));
EXPECT_EQ(-2147483645, WEBRTC_SPL_MUL(a, b));
EXPECT_EQ(2147483651u, WEBRTC_SPL_UMUL(a, b));
b = WEBRTC_SPL_WORD16_MAX >> 1;
EXPECT_EQ(1073627139u, WEBRTC_SPL_UMUL_16_16(a, b));
EXPECT_EQ(4294918147u, WEBRTC_SPL_UMUL_32_16(a, b));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_U16(a, b));
a = b;
b = -3;
EXPECT_EQ(-5461, WEBRTC_SPL_DIV(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT16(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT15(a, b));
EXPECT_EQ(-3, WEBRTC_SPL_MUL_16_32_RSFT14(a, b));
EXPECT_EQ(-24, WEBRTC_SPL_MUL_16_32_RSFT11(a, b));
EXPECT_EQ(-12288, WEBRTC_SPL_MUL_16_16_RSFT(a, b, 2));
EXPECT_EQ(-12287, WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, 2));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, A, B));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, B, A));
// Shifting with negative numbers allowed
int shift_amount = 1; // Workaround compiler warning using variable here.
// Positive means left shift
EXPECT_EQ(32766, WEBRTC_SPL_SHIFT_W32(a, shift_amount));
// Shifting with negative numbers not allowed
// We cannot do casting here due to signed/unsigned problem
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_W16(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W16(a, 1));
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_W32(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W32(a, 1));
EXPECT_EQ(8191u, WEBRTC_SPL_RSHIFT_U32(a, 1));
EXPECT_EQ(32766u, WEBRTC_SPL_LSHIFT_U32(a, 1));
EXPECT_EQ(1470, WEBRTC_SPL_RAND(A));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_16(a, b));
EXPECT_EQ(1073676289, WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX,
WEBRTC_SPL_WORD16_MAX));
EXPECT_EQ(1073709055, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MAX,
WEBRTC_SPL_WORD32_MAX));
EXPECT_EQ(1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MIN));
#ifdef WEBRTC_ARCH_ARM_V7
EXPECT_EQ(-1073741824,
WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#else
EXPECT_EQ(-1073741823,
WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#endif
}
TEST_F(SplTest, InlineTest) {
int16_t a16 = 121;
int16_t b16 = -17;
int32_t a32 = 111121;
int32_t b32 = -1711;
char bVersion[8];
EXPECT_EQ(17, WebRtcSpl_GetSizeInBits(a32));
EXPECT_EQ(0, WebRtcSpl_NormW32(0));
EXPECT_EQ(31, WebRtcSpl_NormW32(-1));
EXPECT_EQ(0, WebRtcSpl_NormW32(WEBRTC_SPL_WORD32_MIN));
EXPECT_EQ(14, WebRtcSpl_NormW32(a32));
EXPECT_EQ(0, WebRtcSpl_NormW16(0));
EXPECT_EQ(15, WebRtcSpl_NormW16(-1));
EXPECT_EQ(0, WebRtcSpl_NormW16(WEBRTC_SPL_WORD16_MIN));
EXPECT_EQ(4, WebRtcSpl_NormW16(b32));
EXPECT_EQ(0, WebRtcSpl_NormU32(0u));
EXPECT_EQ(0, WebRtcSpl_NormU32(0xffffffff));
EXPECT_EQ(15, WebRtcSpl_NormU32(static_cast<uint32_t>(a32)));
EXPECT_EQ(104, WebRtcSpl_AddSatW16(a16, b16));
EXPECT_EQ(138, WebRtcSpl_SubSatW16(a16, b16));
EXPECT_EQ(109410, WebRtcSpl_AddSatW32(a32, b32));
EXPECT_EQ(112832, WebRtcSpl_SubSatW32(a32, b32));
a32 = 0x80000000;
b32 = 0x80000000;
// Cast to signed int to avoid compiler complaint on gtest.h.
EXPECT_EQ(static_cast<int>(0x80000000), WebRtcSpl_AddSatW32(a32, b32));
a32 = 0x7fffffff;
b32 = 0x7fffffff;
EXPECT_EQ(0x7fffffff, WebRtcSpl_AddSatW32(a32, b32));
a32 = 0;
b32 = 0x80000000;
EXPECT_EQ(0x7fffffff, WebRtcSpl_SubSatW32(a32, b32));
a32 = 0x7fffffff;
b32 = 0x80000000;
EXPECT_EQ(0x7fffffff, WebRtcSpl_SubSatW32(a32, b32));
a32 = 0x80000000;
b32 = 0x7fffffff;
EXPECT_EQ(static_cast<int>(0x80000000), WebRtcSpl_SubSatW32(a32, b32));
EXPECT_EQ(0, WebRtcSpl_get_version(bVersion, 8));
}
TEST_F(SplTest, MathOperationsTest) {
int A = 1134567892;
int32_t num = 117;
int32_t den = -5;
uint16_t denU = 5;
EXPECT_EQ(33700, WebRtcSpl_Sqrt(A));
EXPECT_EQ(33683, WebRtcSpl_SqrtFloor(A));
EXPECT_EQ(-91772805, WebRtcSpl_DivResultInQ31(den, num));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16ResW16(num, (int16_t)den));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16(num, (int16_t)den));
EXPECT_EQ(23u, WebRtcSpl_DivU32U16(num, denU));
EXPECT_EQ(0, WebRtcSpl_DivW32HiLow(128, 0, 256));
}
TEST_F(SplTest, BasicArrayOperationsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t b16[kVectorSize];
int32_t b32[kVectorSize];
int16_t bTmp16[kVectorSize];
int32_t bTmp32[kVectorSize];
WebRtcSpl_MemSetW16(b16, 3, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b16[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_ZerosArrayW16(b16, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b16[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_OnesArrayW16(b16, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(1, b16[kk]);
}
WebRtcSpl_MemSetW32(b32, 3, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b32[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_ZerosArrayW32(b32, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b32[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_OnesArrayW32(b32, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(1, b32[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
bTmp16[kk] = (int16_t)kk;
bTmp32[kk] = (int32_t)kk;
}
WEBRTC_SPL_MEMCPY_W16(b16, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[kk], bTmp16[kk]);
}
// WEBRTC_SPL_MEMCPY_W32(b32, bTmp32, kVectorSize);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(b32[kk], bTmp32[kk]);
// }
EXPECT_EQ(2, WebRtcSpl_CopyFromEndW16(b16, kVectorSize, 2, bTmp16));
for (int kk = 0; kk < 2; ++kk) {
EXPECT_EQ(kk+2, bTmp16[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
b32[kk] = B[kk];
b16[kk] = (int16_t)B[kk];
}
WebRtcSpl_VectorBitShiftW32ToW16(bTmp16, kVectorSize, b32, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW16(bTmp16, kVectorSize, b16, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW32(bTmp32, kVectorSize, b32, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp32[kk]);
}
WebRtcSpl_MemCpyReversedOrder(&bTmp16[3], b16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[3-kk], bTmp16[kk]);
}
}
TEST_F(SplTest, ExeptionsHandlingMinMaxOperationsTest) {
// Test how the functions handle exceptional cases.
const int kVectorSize = 2;
int16_t vector16[kVectorSize] = {0};
int32_t vector32[kVectorSize] = {0};
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW16(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, WebRtcSpl_MaxValueW16(vector16, 0));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, WebRtcSpl_MaxValueW16(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MinValueW16(vector16, 0));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MinValueW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW32(vector32, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW32(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN, WebRtcSpl_MaxValueW32(vector32, 0));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN, WebRtcSpl_MaxValueW32(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MinValueW32(vector32, 0));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MinValueW32(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsIndexW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsIndexW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW32(vector32, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW32(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW32(vector32, 0));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW32(NULL, kVectorSize));
}
TEST_F(SplTest, MinMaxOperationsTest) {
const int kVectorSize = 17;
// Vectors to test the cases where minimum values have to be caught
// outside of the unrolled loops in ARM-Neon.
int16_t vector16[kVectorSize] = {-1, 7485, 0, 3333,
-18283, 0, 12334, -29871, 988, -3333,
345, -456, 222, 999, 888, 8774, WEBRTC_SPL_WORD16_MIN};
int32_t vector32[kVectorSize] = {-1, 0, 283211, 3333,
8712345, 0, -3333, 89345, -374585456, 222, 999, 122345334,
-12389756, -987329871, 888, -2, WEBRTC_SPL_WORD32_MIN};
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
// Test the cases where maximum values have to be caught
// outside of the unrolled loops in ARM-Neon.
vector16[kVectorSize - 1] = WEBRTC_SPL_WORD16_MAX;
vector32[kVectorSize - 1] = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
// Test the cases where multiple maximum and minimum values are present.
vector16[1] = WEBRTC_SPL_WORD16_MAX;
vector16[6] = WEBRTC_SPL_WORD16_MIN;
vector16[11] = WEBRTC_SPL_WORD16_MIN;
vector32[1] = WEBRTC_SPL_WORD32_MAX;
vector32[6] = WEBRTC_SPL_WORD32_MIN;
vector32[11] = WEBRTC_SPL_WORD32_MIN;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(6, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(1, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(1, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
EXPECT_EQ(6, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(6, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
}
TEST_F(SplTest, VectorOperationsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t a16[kVectorSize];
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
for (int kk = 0; kk < kVectorSize; ++kk) {
a16[kk] = B[kk];
b16[kk] = B[kk];
}
WebRtcSpl_AffineTransformVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]*3+7)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectorsWithRound(b16, 3, b16, 2, 2, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]*3+B[kk]*2+2)>>2, bTmp16[kk]);
}
WebRtcSpl_AddAffineVectorToVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((B[kk]*3+B[kk]*2+2)>>2)+((b16[kk]*3+7)>>2), bTmp16[kk]);
}
WebRtcSpl_ScaleVector(b16, bTmp16, 13, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleVectorWithSat(b16, bTmp16, 13, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectors(a16, 13, 2, b16, 7, 2, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((a16[kk]*13)>>2)+((b16[kk]*7)>>2), bTmp16[kk]);
}
WebRtcSpl_AddVectorsAndShift(bTmp16, a16, b16, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(B[kk] >> 1, bTmp16[kk]);
}
WebRtcSpl_ReverseOrderMultArrayElements(bTmp16, a16, &b16[3], kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk]*b16[3-kk])>>2, bTmp16[kk]);
}
WebRtcSpl_ElementwiseVectorMult(bTmp16, a16, b16, kVectorSize, 6);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk]*b16[kk])>>6, bTmp16[kk]);
}
WebRtcSpl_SqrtOfOneMinusXSquared(b16, kVectorSize, bTmp16);
for (int kk = 0; kk < kVectorSize - 1; ++kk) {
EXPECT_EQ(32767, bTmp16[kk]);
}
EXPECT_EQ(32749, bTmp16[kVectorSize - 1]);
EXPECT_EQ(0, WebRtcSpl_GetScalingSquare(b16, kVectorSize, 1));
}
TEST_F(SplTest, EstimatorsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t b16[kVectorSize];
int32_t b32[kVectorSize];
int16_t bTmp16[kVectorSize];
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = B[kk];
b32[kk] = B[kk];
}
EXPECT_EQ(0, WebRtcSpl_LevinsonDurbin(b32, b16, bTmp16, 2));
}
TEST_F(SplTest, FilterTest) {
const int kVectorSize = 4;
const int kFilterOrder = 3;
int16_t A[] = {1, 2, 33, 100};
int16_t A5[] = {1, 2, 33, 100, -5};
int16_t B[] = {4, 12, 133, 110};
int16_t data_in[kVectorSize];
int16_t data_out[kVectorSize];
int16_t bTmp16Low[kVectorSize];
int16_t bState[kVectorSize];
int16_t bStateLow[kVectorSize];
WebRtcSpl_ZerosArrayW16(bState, kVectorSize);
WebRtcSpl_ZerosArrayW16(bStateLow, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
data_in[kk] = A[kk];
data_out[kk] = 0;
}
// MA filters.
// Note that the input data has |kFilterOrder| states before the actual
// data (one sample).
WebRtcSpl_FilterMAFastQ12(&data_in[kFilterOrder], data_out, B,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[0]);
// AR filters.
// Note that the output data has |kFilterOrder| states before the actual
// data (one sample).
WebRtcSpl_FilterARFastQ12(data_in, &data_out[kFilterOrder], A,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[kFilterOrder]);
EXPECT_EQ(kVectorSize, WebRtcSpl_FilterAR(A5,
5,
data_in,
kVectorSize,
bState,
kVectorSize,
bStateLow,
kVectorSize,
data_out,
bTmp16Low,
kVectorSize));
}
TEST_F(SplTest, RandTest) {
const int kVectorSize = 4;
int16_t BU[] = {3653, 12446, 8525, 30691};
int16_t b16[kVectorSize];
uint32_t bSeed = 100000;
EXPECT_EQ(7086, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(31565, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(-9786, WebRtcSpl_RandN(&bSeed));
EXPECT_EQ(kVectorSize, WebRtcSpl_RandUArray(b16, kVectorSize, &bSeed));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(BU[kk], b16[kk]);
}
}
TEST_F(SplTest, DotProductWithScaleTest) {
EXPECT_EQ(605362796, WebRtcSpl_DotProductWithScale(vector16,
vector16, kVector16Size, 2));
}
TEST_F(SplTest, CrossCorrelationTest) {
// Note the function arguments relation specificed by API.
const int kCrossCorrelationDimension = 3;
const int kShift = 2;
const int kStep = 1;
const int kSeqDimension = 6;
const int16_t kVector16[kVector16Size] = {1, 4323, 1963,
WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MIN + 5, -3333, -876, 8483, 142};
int32_t vector32[kCrossCorrelationDimension] = {0};
WebRtcSpl_CrossCorrelation(vector32, vector16, kVector16, kSeqDimension,
kCrossCorrelationDimension, kShift, kStep);
// WebRtcSpl_CrossCorrelationC() and WebRtcSpl_CrossCorrelationNeon()
// are not bit-exact.
const int32_t kExpected[kCrossCorrelationDimension] =
{-266947903, -15579555, -171282001};
const int32_t* expected = kExpected;
#if !defined(MIPS32_LE)
const int32_t kExpectedNeon[kCrossCorrelationDimension] =
{-266947901, -15579553, -171281999};
if (WebRtcSpl_CrossCorrelation != WebRtcSpl_CrossCorrelationC) {
expected = kExpectedNeon;
}
#endif
for (int i = 0; i < kCrossCorrelationDimension; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST_F(SplTest, AutoCorrelationTest) {
int scale = 0;
int32_t vector32[kVector16Size];
const int32_t expected[kVector16Size] = {302681398, 14223410, -121705063,
-85221647, -17104971, 61806945, 6644603, -669329, 43};
EXPECT_EQ(-1, WebRtcSpl_AutoCorrelation(vector16,
kVector16Size, kVector16Size + 1, vector32, &scale));
EXPECT_EQ(kVector16Size, WebRtcSpl_AutoCorrelation(vector16,
kVector16Size, kVector16Size - 1, vector32, &scale));
EXPECT_EQ(3, scale);
for (int i = 0; i < kVector16Size; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST_F(SplTest, SignalProcessingTest) {
const int kVectorSize = 4;
int A[] = {1, 2, 33, 100};
const int16_t kHanning[4] = { 2399, 8192, 13985, 16384 };
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
int bScale = 0;
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
// TODO(bjornv): Activate the Reflection Coefficient tests when refactoring.
// WebRtcSpl_ReflCoefToLpc(b16, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
// WebRtcSpl_LpcToReflCoef(bTmp16, kVectorSize, b16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(a16[kk], b16[kk]);
//// }
// WebRtcSpl_AutoCorrToReflCoef(b32, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
WebRtcSpl_GetHanningWindow(bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(kHanning[kk], bTmp16[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
EXPECT_EQ(11094 , WebRtcSpl_Energy(b16, kVectorSize, &bScale));
EXPECT_EQ(0, bScale);
}
TEST_F(SplTest, FFTTest) {
int16_t B[] = {1, 2, 33, 100,
2, 3, 34, 101,
3, 4, 35, 102,
4, 5, 36, 103};
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
EXPECT_EQ(0, WebRtcSpl_ComplexIFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
WebRtcSpl_ComplexBitReverse(B, 3);
for (int kk = 0; kk < 16; ++kk) {
//EXPECT_EQ(A[kk], B[kk]);
}
}
TEST_F(SplTest, Resample48WithSaturationTest) {
// The test resamples 3*kBlockSize number of samples to 2*kBlockSize number
// of samples.
const int kBlockSize = 16;
// Saturated input vector of 48 samples.
const int32_t kVectorSaturated[3 * kBlockSize + 7] = {
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767
};
// All values in |out_vector| should be |kRefValue32kHz|.
const int32_t kRefValue32kHz1 = -1077493760;
const int32_t kRefValue32kHz2 = 1077493645;
// After bit shift with saturation, |out_vector_w16| is saturated.
const int16_t kRefValue16kHz1 = -32768;
const int16_t kRefValue16kHz2 = 32767;
// Vector for storing output.
int32_t out_vector[2 * kBlockSize];
int16_t out_vector_w16[2 * kBlockSize];
WebRtcSpl_Resample48khzTo32khz(kVectorSaturated, out_vector, kBlockSize);
WebRtcSpl_VectorBitShiftW32ToW16(out_vector_w16, 2 * kBlockSize, out_vector,
15);
// Comparing output values against references. The values at position
// 12-15 are skipped to account for the filter lag.
for (int i = 0; i < 12; ++i) {
EXPECT_EQ(kRefValue32kHz1, out_vector[i]);
EXPECT_EQ(kRefValue16kHz1, out_vector_w16[i]);
}
for (int i = 16; i < 2 * kBlockSize; ++i) {
EXPECT_EQ(kRefValue32kHz2, out_vector[i]);
EXPECT_EQ(kRefValue16kHz2, out_vector_w16[i]);
}
}