session-android/jni/webrtc/modules/audio_coding/neteq/payload_splitter_unittest.cc

778 lines
28 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for PayloadSplitter class.
#include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
#include <assert.h>
#include <utility> // pair
#include "gtest/gtest.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
using ::testing::Return;
using ::testing::ReturnNull;
namespace webrtc {
static const int kRedPayloadType = 100;
static const int kPayloadLength = 10;
static const int kRedHeaderLength = 4; // 4 bytes RED header.
static const uint16_t kSequenceNumber = 0;
static const uint32_t kBaseTimestamp = 0x12345678;
// RED headers (according to RFC 2198):
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |F| block PT | timestamp offset | block length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Last RED header:
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |0| Block PT |
// +-+-+-+-+-+-+-+-+
// Creates a RED packet, with |num_payloads| payloads, with payload types given
// by the values in array |payload_types| (which must be of length
// |num_payloads|). Each redundant payload is |timestamp_offset| samples
// "behind" the the previous payload.
Packet* CreateRedPayload(int num_payloads,
uint8_t* payload_types,
int timestamp_offset) {
Packet* packet = new Packet;
packet->header.payloadType = kRedPayloadType;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = (kPayloadLength + 1) +
(num_payloads - 1) * (kPayloadLength + kRedHeaderLength);
uint8_t* payload = new uint8_t[packet->payload_length];
uint8_t* payload_ptr = payload;
for (int i = 0; i < num_payloads; ++i) {
// Write the RED headers.
if (i == num_payloads - 1) {
// Special case for last payload.
*payload_ptr = payload_types[i] & 0x7F; // F = 0;
++payload_ptr;
break;
}
*payload_ptr = payload_types[i] & 0x7F;
// Not the last block; set F = 1.
*payload_ptr |= 0x80;
++payload_ptr;
int this_offset = (num_payloads - i - 1) * timestamp_offset;
*payload_ptr = this_offset >> 6;
++payload_ptr;
assert(kPayloadLength <= 1023); // Max length described by 10 bits.
*payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8);
++payload_ptr;
*payload_ptr = kPayloadLength & 0xFF;
++payload_ptr;
}
for (int i = 0; i < num_payloads; ++i) {
// Write |i| to all bytes in each payload.
memset(payload_ptr, i, kPayloadLength);
payload_ptr += kPayloadLength;
}
packet->payload = payload;
return packet;
}
// A possible Opus packet that contains FEC is the following.
// The frame is 20 ms in duration.
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
// | Compressed frame 1 (N-2 bytes)... :
// : |
// | |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Packet* CreateOpusFecPacket(uint8_t payload_type, int payload_length,
uint8_t payload_value) {
Packet* packet = new Packet;
packet->header.payloadType = payload_type;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = payload_length;
uint8_t* payload = new uint8_t[packet->payload_length];
payload[0] = 0x08;
payload[1] = 0x40;
memset(&payload[2], payload_value, payload_length - 2);
packet->payload = payload;
return packet;
}
// Create a packet with all payload bytes set to |payload_value|.
Packet* CreatePacket(uint8_t payload_type, int payload_length,
uint8_t payload_value) {
Packet* packet = new Packet;
packet->header.payloadType = payload_type;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = payload_length;
uint8_t* payload = new uint8_t[packet->payload_length];
memset(payload, payload_value, payload_length);
packet->payload = payload;
return packet;
}
// Checks that |packet| has the attributes given in the remaining parameters.
void VerifyPacket(const Packet* packet,
int payload_length,
uint8_t payload_type,
uint16_t sequence_number,
uint32_t timestamp,
uint8_t payload_value,
bool primary = true) {
EXPECT_EQ(payload_length, packet->payload_length);
EXPECT_EQ(payload_type, packet->header.payloadType);
EXPECT_EQ(sequence_number, packet->header.sequenceNumber);
EXPECT_EQ(timestamp, packet->header.timestamp);
EXPECT_EQ(primary, packet->primary);
ASSERT_FALSE(packet->payload == NULL);
for (int i = 0; i < packet->payload_length; ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
}
}
// Start of test definitions.
TEST(PayloadSplitter, CreateAndDestroy) {
PayloadSplitter* splitter = new PayloadSplitter;
delete splitter;
}
// Packet A is split into A1 and A2.
TEST(RedPayloadSplitter, OnePacketTwoPayloads) {
uint8_t payload_types[] = {0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet. The first in list should always be the primary payload.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp, 1, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
}
// Packets A and B are not split at all. Only the RED header in each packet is
// removed.
TEST(RedPayloadSplitter, TwoPacketsOnePayload) {
uint8_t payload_types[] = {0};
const int kTimestampOffset = 160;
// Create first packet, with a single RED payload.
Packet* packet = CreateRedPayload(1, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create second packet, with a single RED payload.
packet = CreateRedPayload(1, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 0, true);
delete [] packet->payload;
delete packet;
}
// Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with
// attributes as follows:
//
// A1* A2 A3 B1* B2 B3
// Payload type 0 1 2 0 1 2
// Timestamp b b-o b-2o b+o b b-o
// Sequence number 0 0 0 1 1 1
//
// b = kBaseTimestamp, o = kTimestampOffset, * = primary.
TEST(RedPayloadSplitter, TwoPacketsThreePayloads) {
uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one.
const int kTimestampOffset = 160;
// Create first packet, with 3 RED payloads.
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create first packet, with 3 RED payloads.
packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(6u, packet_list.size());
// Check first packet, A1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber,
kBaseTimestamp, 2, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet, A2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 1, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check third packet, A3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fourth packet, B1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 2, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fifth packet, B2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber + 1,
kBaseTimestamp, 1, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check sixth packet, B3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp - kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
}
// Creates a list with 4 packets with these payload types:
// 0 = CNGnb
// 1 = PCMu
// 2 = DTMF (AVT)
// 3 = iLBC
// We expect the method CheckRedPayloads to discard the iLBC packet, since it
// is a non-CNG, non-DTMF payload of another type than the first speech payload
// found in the list (which is PCMu).
TEST(RedPayloadSplitter, CheckRedPayloads) {
PacketList packet_list;
for (int i = 0; i <= 3; ++i) {
// Create packet with payload type |i|, payload length 10 bytes, all 0.
Packet* packet = CreatePacket(i, 10, 0);
packet_list.push_back(packet);
}
// Use a real DecoderDatabase object here instead of a mock, since it is
// easier to just register the payload types and let the actual implementation
// do its job.
DecoderDatabase decoder_database;
decoder_database.RegisterPayload(0, kDecoderCNGnb);
decoder_database.RegisterPayload(1, kDecoderPCMu);
decoder_database.RegisterPayload(2, kDecoderAVT);
decoder_database.RegisterPayload(3, kDecoderILBC);
PayloadSplitter splitter;
splitter.CheckRedPayloads(&packet_list, decoder_database);
ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet.
// Verify packets. The loop verifies that payload types 0, 1, and 2 are in the
// list.
for (int i = 0; i <= 2; ++i) {
Packet* packet = packet_list.front();
VerifyPacket(packet, 10, i, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
}
EXPECT_TRUE(packet_list.empty());
}
// Packet A is split into A1, A2 and A3. But the length parameter is off, so
// the last payloads should be discarded.
TEST(RedPayloadSplitter, WrongPayloadLength) {
uint8_t payload_types[] = {0, 0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually tamper with the payload length of the packet.
// This is one byte too short for the second payload (out of three).
// We expect only the first payload to be returned.
packet->payload_length -= kPayloadLength + 1;
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kRedLengthMismatch,
splitter.SplitRed(&packet_list));
ASSERT_EQ(1u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
}
// Test that iSAC, iSAC-swb, RED, DTMF, CNG, and "Arbitrary" payloads do not
// get split.
TEST(AudioPayloadSplitter, NonSplittable) {
// Set up packets with different RTP payload types. The actual values do not
// matter, since we are mocking the decoder database anyway.
PacketList packet_list;
for (int i = 0; i < 6; ++i) {
// Let the payload type be |i|, and the payload value 10 * |i|.
packet_list.push_back(CreatePacket(i, kPayloadLength, 10 * i));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
scoped_ptr<DecoderDatabase::DecoderInfo> info0(
new DecoderDatabase::DecoderInfo(kDecoderISAC, 16000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(info0.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info1(
new DecoderDatabase::DecoderInfo(kDecoderISACswb, 32000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(1))
.WillRepeatedly(Return(info1.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info2(
new DecoderDatabase::DecoderInfo(kDecoderRED, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(2))
.WillRepeatedly(Return(info2.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info3(
new DecoderDatabase::DecoderInfo(kDecoderAVT, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(3))
.WillRepeatedly(Return(info3.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info4(
new DecoderDatabase::DecoderInfo(kDecoderCNGnb, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(4))
.WillRepeatedly(Return(info4.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info5(
new DecoderDatabase::DecoderInfo(kDecoderArbitrary, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(5))
.WillRepeatedly(Return(info5.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(6u, packet_list.size());
// Check that all payloads are intact.
uint8_t payload_type = 0;
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
VerifyPacket((*it), kPayloadLength, payload_type, kSequenceNumber,
kBaseTimestamp, 10 * payload_type);
++payload_type;
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test unknown payload type.
TEST(AudioPayloadSplitter, UnknownPayloadType) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
int kPayloadLengthBytes = 4711; // Random number.
packet_list.push_back(CreatePacket(kPayloadType, kPayloadLengthBytes, 0));
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return NULL when asked for decoder info.
// This signals that the decoder database does not recognize the payload type.
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(ReturnNull());
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kUnknownPayloadType,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
class SplitBySamplesTest : public ::testing::TestWithParam<NetEqDecoder> {
protected:
virtual void SetUp() {
decoder_type_ = GetParam();
switch (decoder_type_) {
case kDecoderPCMu:
case kDecoderPCMa:
bytes_per_ms_ = 8;
samples_per_ms_ = 8;
break;
case kDecoderPCMu_2ch:
case kDecoderPCMa_2ch:
bytes_per_ms_ = 2 * 8;
samples_per_ms_ = 8;
break;
case kDecoderG722:
bytes_per_ms_ = 8;
samples_per_ms_ = 16;
break;
case kDecoderPCM16B:
bytes_per_ms_ = 16;
samples_per_ms_ = 8;
break;
case kDecoderPCM16Bwb:
bytes_per_ms_ = 32;
samples_per_ms_ = 16;
break;
case kDecoderPCM16Bswb32kHz:
bytes_per_ms_ = 64;
samples_per_ms_ = 32;
break;
case kDecoderPCM16Bswb48kHz:
bytes_per_ms_ = 96;
samples_per_ms_ = 48;
break;
case kDecoderPCM16B_2ch:
bytes_per_ms_ = 2 * 16;
samples_per_ms_ = 8;
break;
case kDecoderPCM16Bwb_2ch:
bytes_per_ms_ = 2 * 32;
samples_per_ms_ = 16;
break;
case kDecoderPCM16Bswb32kHz_2ch:
bytes_per_ms_ = 2 * 64;
samples_per_ms_ = 32;
break;
case kDecoderPCM16Bswb48kHz_2ch:
bytes_per_ms_ = 2 * 96;
samples_per_ms_ = 48;
break;
case kDecoderPCM16B_5ch:
bytes_per_ms_ = 5 * 16;
samples_per_ms_ = 8;
break;
default:
assert(false);
break;
}
}
int bytes_per_ms_;
int samples_per_ms_;
NetEqDecoder decoder_type_;
};
// Test splitting sample-based payloads.
TEST_P(SplitBySamplesTest, PayloadSizes) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
for (int payload_size_ms = 10; payload_size_ms <= 60; payload_size_ms += 10) {
// The payload values are set to be the same as the payload_size, so that
// one can distinguish from which packet the split payloads come from.
int payload_size_bytes = payload_size_ms * bytes_per_ms_;
packet_list.push_back(CreatePacket(kPayloadType, payload_size_bytes,
payload_size_ms));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
// (Sample rate is set to 8000 Hz, but does not matter.)
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(decoder_type_, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
// The payloads are expected to be split as follows:
// 10 ms -> 10 ms
// 20 ms -> 20 ms
// 30 ms -> 30 ms
// 40 ms -> 20 + 20 ms
// 50 ms -> 25 + 25 ms
// 60 ms -> 30 + 30 ms
int expected_size_ms[] = {10, 20, 30, 20, 20, 25, 25, 30, 30};
int expected_payload_value[] = {10, 20, 30, 40, 40, 50, 50, 60, 60};
int expected_timestamp_offset_ms[] = {0, 0, 0, 0, 20, 0, 25, 0, 30};
size_t expected_num_packets =
sizeof(expected_size_ms) / sizeof(expected_size_ms[0]);
EXPECT_EQ(expected_num_packets, packet_list.size());
PacketList::iterator it = packet_list.begin();
int i = 0;
while (it != packet_list.end()) {
int length_bytes = expected_size_ms[i] * bytes_per_ms_;
uint32_t expected_timestamp = kBaseTimestamp +
expected_timestamp_offset_ms[i] * samples_per_ms_;
VerifyPacket((*it), length_bytes, kPayloadType, kSequenceNumber,
expected_timestamp, expected_payload_value[i]);
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
++i;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
INSTANTIATE_TEST_CASE_P(
PayloadSplitter, SplitBySamplesTest,
::testing::Values(kDecoderPCMu, kDecoderPCMa, kDecoderPCMu_2ch,
kDecoderPCMa_2ch, kDecoderG722, kDecoderPCM16B,
kDecoderPCM16Bwb, kDecoderPCM16Bswb32kHz,
kDecoderPCM16Bswb48kHz, kDecoderPCM16B_2ch,
kDecoderPCM16Bwb_2ch, kDecoderPCM16Bswb32kHz_2ch,
kDecoderPCM16Bswb48kHz_2ch, kDecoderPCM16B_5ch));
class SplitIlbcTest : public ::testing::TestWithParam<std::pair<int, int> > {
protected:
virtual void SetUp() {
const std::pair<int, int> parameters = GetParam();
num_frames_ = parameters.first;
frame_length_ms_ = parameters.second;
frame_length_bytes_ = (frame_length_ms_ == 20) ? 38 : 50;
}
size_t num_frames_;
int frame_length_ms_;
int frame_length_bytes_;
};
// Test splitting sample-based payloads.
TEST_P(SplitIlbcTest, NumFrames) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
const int frame_length_samples = frame_length_ms_ * 8;
int payload_length_bytes = frame_length_bytes_ * num_frames_;
Packet* packet = CreatePacket(kPayloadType, payload_length_bytes, 0);
// Fill payload with increasing integers {0, 1, 2, ...}.
for (int i = 0; i < packet->payload_length; ++i) {
packet->payload[i] = static_cast<uint8_t>(i);
}
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(num_frames_, packet_list.size());
PacketList::iterator it = packet_list.begin();
int frame_num = 0;
uint8_t payload_value = 0;
while (it != packet_list.end()) {
Packet* packet = (*it);
EXPECT_EQ(kBaseTimestamp + frame_length_samples * frame_num,
packet->header.timestamp);
EXPECT_EQ(frame_length_bytes_, packet->payload_length);
EXPECT_EQ(kPayloadType, packet->header.payloadType);
EXPECT_EQ(kSequenceNumber, packet->header.sequenceNumber);
EXPECT_EQ(true, packet->primary);
ASSERT_FALSE(packet->payload == NULL);
for (int i = 0; i < packet->payload_length; ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
++payload_value;
}
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
++frame_num;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test 1 through 5 frames of 20 and 30 ms size.
// Also test the maximum number of frames in one packet for 20 and 30 ms.
// The maximum is defined by the largest payload length that can be uniquely
// resolved to a frame size of either 38 bytes (20 ms) or 50 bytes (30 ms).
INSTANTIATE_TEST_CASE_P(
PayloadSplitter, SplitIlbcTest,
::testing::Values(std::pair<int, int>(1, 20), // 1 frame, 20 ms.
std::pair<int, int>(2, 20), // 2 frames, 20 ms.
std::pair<int, int>(3, 20), // And so on.
std::pair<int, int>(4, 20),
std::pair<int, int>(5, 20),
std::pair<int, int>(24, 20),
std::pair<int, int>(1, 30),
std::pair<int, int>(2, 30),
std::pair<int, int>(3, 30),
std::pair<int, int>(4, 30),
std::pair<int, int>(5, 30),
std::pair<int, int>(18, 30)));
// Test too large payload size.
TEST(IlbcPayloadSplitter, TooLargePayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
int kPayloadLengthBytes = 950;
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kTooLargePayload,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Payload not an integer number of frames.
TEST(IlbcPayloadSplitter, UnevenPayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
int kPayloadLengthBytes = 39; // Not an even number of frames.
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kFrameSplitError,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
TEST(FecPayloadSplitter, MixedPayload) {
PacketList packet_list;
DecoderDatabase decoder_database;
decoder_database.RegisterPayload(0, kDecoderOpus);
decoder_database.RegisterPayload(1, kDecoderPCMu);
Packet* packet = CreateOpusFecPacket(0, 10, 0xFF);
packet_list.push_back(packet);
packet = CreatePacket(0, 10, 0); // Non-FEC Opus payload.
packet_list.push_back(packet);
packet = CreatePacket(1, 10, 0); // Non-Opus payload.
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitFec(&packet_list, &decoder_database));
EXPECT_EQ(4u, packet_list.size());
// Check first packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - 20 * 48, packet->header.timestamp);
EXPECT_EQ(10, packet->payload_length);
EXPECT_FALSE(packet->primary);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp, packet->header.timestamp);
EXPECT_EQ(10, packet->payload_length);
EXPECT_TRUE(packet->primary);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check third packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 0, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fourth packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 1, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
}
} // namespace webrtc