mirror of
https://github.com/oxen-io/session-android.git
synced 2025-10-09 15:50:23 +00:00
Support for Signal calls.
Merge in RedPhone // FREEBIE
This commit is contained in:
410
jni/openssl/crypto/rc4/asm/rc4-586.pl
Normal file
410
jni/openssl/crypto/rc4/asm/rc4-586.pl
Normal file
@@ -0,0 +1,410 @@
|
||||
#!/usr/bin/env perl
|
||||
|
||||
# ====================================================================
|
||||
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
|
||||
# At some point it became apparent that the original SSLeay RC4
|
||||
# assembler implementation performs suboptimally on latest IA-32
|
||||
# microarchitectures. After re-tuning performance has changed as
|
||||
# following:
|
||||
#
|
||||
# Pentium -10%
|
||||
# Pentium III +12%
|
||||
# AMD +50%(*)
|
||||
# P4 +250%(**)
|
||||
#
|
||||
# (*) This number is actually a trade-off:-) It's possible to
|
||||
# achieve +72%, but at the cost of -48% off PIII performance.
|
||||
# In other words code performing further 13% faster on AMD
|
||||
# would perform almost 2 times slower on Intel PIII...
|
||||
# For reference! This code delivers ~80% of rc4-amd64.pl
|
||||
# performance on the same Opteron machine.
|
||||
# (**) This number requires compressed key schedule set up by
|
||||
# RC4_set_key [see commentary below for further details].
|
||||
#
|
||||
# <appro@fy.chalmers.se>
|
||||
|
||||
# May 2011
|
||||
#
|
||||
# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
|
||||
# performance in cycles per processed byte (less is better) and
|
||||
# improvement relative to previous version of this module is:
|
||||
#
|
||||
# Pentium 10.2 # original numbers
|
||||
# Pentium III 7.8(*)
|
||||
# Intel P4 7.5
|
||||
#
|
||||
# Opteron 6.1/+20% # new MMX numbers
|
||||
# Core2 5.3/+67%(**)
|
||||
# Westmere 5.1/+94%(**)
|
||||
# Sandy Bridge 5.0/+8%
|
||||
# Atom 12.6/+6%
|
||||
#
|
||||
# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
|
||||
# but this specific code performs poorly on Core2. And vice
|
||||
# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
|
||||
# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
|
||||
# [anymore], I chose to discard PIII-specific code path and opt
|
||||
# for original IALU-only code, which is why MMX/SSE code path
|
||||
# is guarded by SSE2 bit (see below), not MMX/SSE.
|
||||
# (**) Performance vs. block size on Core2 and Westmere had a maximum
|
||||
# at ... 64 bytes block size. And it was quite a maximum, 40-60%
|
||||
# in comparison to largest 8KB block size. Above improvement
|
||||
# coefficients are for the largest block size.
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
push(@INC,"${dir}","${dir}../../perlasm");
|
||||
require "x86asm.pl";
|
||||
|
||||
&asm_init($ARGV[0],"rc4-586.pl");
|
||||
|
||||
$xx="eax";
|
||||
$yy="ebx";
|
||||
$tx="ecx";
|
||||
$ty="edx";
|
||||
$inp="esi";
|
||||
$out="ebp";
|
||||
$dat="edi";
|
||||
|
||||
sub RC4_loop {
|
||||
my $i=shift;
|
||||
my $func = ($i==0)?*mov:*or;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&ror ($out,8) if ($i!=0);
|
||||
if ($i<3) {
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
} else {
|
||||
&mov ($tx,&wparam(3)); # reload [re-biased] out
|
||||
}
|
||||
&$func ($out,&DWP(0,$dat,$ty,4));
|
||||
}
|
||||
|
||||
if ($alt=0) {
|
||||
# >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
|
||||
# but ~40% slower on Core2 and Westmere... Attempt to add movz
|
||||
# brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
|
||||
# on Core2 with movz it's almost 20% slower than below alternative
|
||||
# code... Yes, it's a total mess...
|
||||
my @XX=($xx,$out);
|
||||
$RC4_loop_mmx = sub { # SSE actually...
|
||||
my $i=shift;
|
||||
my $j=$i<=0?0:$i>>1;
|
||||
my $mm=$i<=0?"mm0":"mm".($i&1);
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&lea (@XX[1],&DWP(1,@XX[0]));
|
||||
&pxor ("mm2","mm0") if ($i==0);
|
||||
&psllq ("mm1",8) if ($i==0);
|
||||
&and (@XX[1],0xff);
|
||||
&pxor ("mm0","mm0") if ($i<=0);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&pxor ("mm1","mm2") if ($i==0);
|
||||
&mov (&DWP(0,$dat,$XX[0],4),$ty);
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movd (@XX[0],"mm7") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,@XX[1],4));
|
||||
&pxor ("mm1","mm1") if ($i==1);
|
||||
&movq ("mm2",&QWP(0,$inp)) if ($i==1);
|
||||
&movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
|
||||
&pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
|
||||
|
||||
push (@XX,shift(@XX)) if ($i>=0);
|
||||
}
|
||||
} else {
|
||||
# Using pinsrw here improves performane on Intel CPUs by 2-3%, but
|
||||
# brings down AMD by 7%...
|
||||
$RC4_loop_mmx = sub {
|
||||
my $i=shift;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&inc ($xx);
|
||||
&add ($ty,$tx);
|
||||
&movz ($xx,&LB($xx)); # (*)
|
||||
&movz ($ty,&LB($ty)); # (*)
|
||||
&pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
|
||||
&movq ("mm0",&QWP(0,$inp)) if ($i<=0);
|
||||
&movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
|
||||
|
||||
# (*) This is the key to Core2 and Westmere performance.
|
||||
# Whithout movz out-of-order execution logic confuses
|
||||
# itself and fails to reorder loads and stores. Problem
|
||||
# appears to be fixed in Sandy Bridge...
|
||||
}
|
||||
}
|
||||
|
||||
&external_label("OPENSSL_ia32cap_P");
|
||||
|
||||
# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
|
||||
&function_begin("RC4");
|
||||
&mov ($dat,&wparam(0)); # load key schedule pointer
|
||||
&mov ($ty, &wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load inp
|
||||
&mov ($out,&wparam(3)); # load out
|
||||
|
||||
&xor ($xx,$xx); # avoid partial register stalls
|
||||
&xor ($yy,$yy);
|
||||
|
||||
&cmp ($ty,0); # safety net
|
||||
&je (&label("abort"));
|
||||
|
||||
&mov (&LB($xx),&BP(0,$dat)); # load key->x
|
||||
&mov (&LB($yy),&BP(4,$dat)); # load key->y
|
||||
&add ($dat,8);
|
||||
|
||||
&lea ($tx,&DWP(0,$inp,$ty));
|
||||
&sub ($out,$inp); # re-bias out
|
||||
&mov (&wparam(1),$tx); # save input+len
|
||||
|
||||
&inc (&LB($xx));
|
||||
|
||||
# detect compressed key schedule...
|
||||
&cmp (&DWP(256,$dat),-1);
|
||||
&je (&label("RC4_CHAR"));
|
||||
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
|
||||
&and ($ty,-4); # how many 4-byte chunks?
|
||||
&jz (&label("loop1"));
|
||||
|
||||
&test ($ty,-8);
|
||||
&mov (&wparam(3),$out); # $out as accumulator in these loops
|
||||
&jz (&label("go4loop4"));
|
||||
|
||||
&picmeup($out,"OPENSSL_ia32cap_P");
|
||||
&bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
|
||||
&jnc (&label("go4loop4"));
|
||||
|
||||
&mov ($out,&wparam(3)) if (!$alt);
|
||||
&movd ("mm7",&wparam(3)) if ($alt);
|
||||
&and ($ty,-8);
|
||||
&lea ($ty,&DWP(-8,$inp,$ty));
|
||||
&mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
|
||||
|
||||
&$RC4_loop_mmx(-1);
|
||||
&jmp(&label("loop_mmx_enter"));
|
||||
|
||||
&set_label("loop_mmx",16);
|
||||
&$RC4_loop_mmx(0);
|
||||
&set_label("loop_mmx_enter");
|
||||
for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
|
||||
&mov ($ty,$yy);
|
||||
&xor ($yy,$yy); # this is second key to Core2
|
||||
&mov (&LB($yy),&LB($ty)); # and Westmere performance...
|
||||
&cmp ($inp,&DWP(-4,$dat));
|
||||
&lea ($inp,&DWP(8,$inp));
|
||||
&jb (&label("loop_mmx"));
|
||||
|
||||
if ($alt) {
|
||||
&movd ($out,"mm7");
|
||||
&pxor ("mm2","mm0");
|
||||
&psllq ("mm1",8);
|
||||
&pxor ("mm1","mm2");
|
||||
&movq (&QWP(-8,$out,$inp),"mm1");
|
||||
} else {
|
||||
&psllq ("mm1",56);
|
||||
&pxor ("mm2","mm1");
|
||||
&movq (&QWP(-8,$out,$inp),"mm2");
|
||||
}
|
||||
&emms ();
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&jmp (&label("loop1"));
|
||||
|
||||
&set_label("go4loop4",16);
|
||||
&lea ($ty,&DWP(-4,$inp,$ty));
|
||||
&mov (&wparam(2),$ty); # save input+(len/4)*4-4
|
||||
|
||||
&set_label("loop4");
|
||||
for ($i=0;$i<4;$i++) { RC4_loop($i); }
|
||||
&ror ($out,8);
|
||||
&xor ($out,&DWP(0,$inp));
|
||||
&cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
|
||||
&mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
|
||||
&lea ($inp,&DWP(4,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&jb (&label("loop4"));
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&mov ($out,&wparam(3)); # restore $out
|
||||
|
||||
&set_label("loop1",16);
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&mov ($ty,&DWP(0,$dat,$ty,4));
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("loop1"));
|
||||
|
||||
&jmp (&label("done"));
|
||||
|
||||
# this is essentially Intel P4 specific codepath...
|
||||
&set_label("RC4_CHAR",16);
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
# strangely enough unrolled loop performs over 20% slower...
|
||||
&set_label("cloop1");
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$yy));
|
||||
&mov (&BP(0,$dat,$yy),&LB($tx));
|
||||
&mov (&BP(0,$dat,$xx),&LB($ty));
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$ty));
|
||||
&add (&LB($xx),1);
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
&cmp ($inp,&wparam(1));
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("cloop1"));
|
||||
|
||||
&set_label("done");
|
||||
&dec (&LB($xx));
|
||||
&mov (&DWP(-4,$dat),$yy); # save key->y
|
||||
&mov (&BP(-8,$dat),&LB($xx)); # save key->x
|
||||
&set_label("abort");
|
||||
&function_end("RC4");
|
||||
|
||||
########################################################################
|
||||
|
||||
$inp="esi";
|
||||
$out="edi";
|
||||
$idi="ebp";
|
||||
$ido="ecx";
|
||||
$idx="edx";
|
||||
|
||||
# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
|
||||
&function_begin("private_RC4_set_key");
|
||||
&mov ($out,&wparam(0)); # load key
|
||||
&mov ($idi,&wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load data
|
||||
&picmeup($idx,"OPENSSL_ia32cap_P");
|
||||
|
||||
&lea ($out,&DWP(2*4,$out)); # &key->data
|
||||
&lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
|
||||
&neg ($idi);
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-4,$out),$idi); # borrow key->y
|
||||
|
||||
&bt (&DWP(0,$idx),20); # check for bit#20
|
||||
&jc (&label("c1stloop"));
|
||||
|
||||
&set_label("w1stloop",16);
|
||||
&mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("w1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
|
||||
&set_label("w2ndloop",16);
|
||||
&mov ("eax",&DWP(0,$out,$ido,4));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov ("ebx",&DWP(0,$out,$idx,4));
|
||||
&jnz (&label("wnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("wnowrap");
|
||||
&mov (&DWP(0,$out,$idx,4),"eax");
|
||||
&mov (&DWP(0,$out,$ido,4),"ebx");
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("w2ndloop"));
|
||||
&jmp (&label("exit"));
|
||||
|
||||
# Unlike all other x86 [and x86_64] implementations, Intel P4 core
|
||||
# [including EM64T] was found to perform poorly with above "32-bit" key
|
||||
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
|
||||
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
|
||||
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
|
||||
# schedule for x86[_64], because non-P4 implementations suffer from
|
||||
# significant performance losses then, e.g. PIII exhibits >2x
|
||||
# deterioration, and so does Opteron. In order to assure optimal
|
||||
# all-round performance, we detect P4 at run-time and set up compressed
|
||||
# key schedule, which is recognized by RC4 procedure.
|
||||
|
||||
&set_label("c1stloop",16);
|
||||
&mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("c1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
&xor ("ebx","ebx");
|
||||
|
||||
&set_label("c2ndloop",16);
|
||||
&mov (&LB("eax"),&BP(0,$out,$ido));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov (&LB("ebx"),&BP(0,$out,$idx));
|
||||
&jnz (&label("cnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("cnowrap");
|
||||
&mov (&BP(0,$out,$idx),&LB("eax"));
|
||||
&mov (&BP(0,$out,$ido),&LB("ebx"));
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("c2ndloop"));
|
||||
|
||||
&mov (&DWP(256,$out),-1); # mark schedule as compressed
|
||||
|
||||
&set_label("exit");
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-8,$out),"eax"); # key->x=0;
|
||||
&mov (&DWP(-4,$out),"eax"); # key->y=0;
|
||||
&function_end("private_RC4_set_key");
|
||||
|
||||
# const char *RC4_options(void);
|
||||
&function_begin_B("RC4_options");
|
||||
&call (&label("pic_point"));
|
||||
&set_label("pic_point");
|
||||
&blindpop("eax");
|
||||
&lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
|
||||
&picmeup("edx","OPENSSL_ia32cap_P");
|
||||
&mov ("edx",&DWP(0,"edx"));
|
||||
&bt ("edx",20);
|
||||
&jc (&label("1xchar"));
|
||||
&bt ("edx",26);
|
||||
&jnc (&label("ret"));
|
||||
&add ("eax",25);
|
||||
&ret ();
|
||||
&set_label("1xchar");
|
||||
&add ("eax",12);
|
||||
&set_label("ret");
|
||||
&ret ();
|
||||
&set_label("opts",64);
|
||||
&asciz ("rc4(4x,int)");
|
||||
&asciz ("rc4(1x,char)");
|
||||
&asciz ("rc4(8x,mmx)");
|
||||
&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
|
||||
&align (64);
|
||||
&function_end_B("RC4_options");
|
||||
|
||||
&asm_finish();
|
||||
|
755
jni/openssl/crypto/rc4/asm/rc4-ia64.pl
Normal file
755
jni/openssl/crypto/rc4/asm/rc4-ia64.pl
Normal file
@@ -0,0 +1,755 @@
|
||||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by David Mosberger <David.Mosberger@acm.org> based on the
|
||||
# Itanium optimized Crypto code which was released by HP Labs at
|
||||
# http://www.hpl.hp.com/research/linux/crypto/.
|
||||
#
|
||||
# Copyright (c) 2005 Hewlett-Packard Development Company, L.P.
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining
|
||||
# a copy of this software and associated documentation files (the
|
||||
# "Software"), to deal in the Software without restriction, including
|
||||
# without limitation the rights to use, copy, modify, merge, publish,
|
||||
# distribute, sublicense, and/or sell copies of the Software, and to
|
||||
# permit persons to whom the Software is furnished to do so, subject to
|
||||
# the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be
|
||||
# included in all copies or substantial portions of the Software.
|
||||
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
|
||||
|
||||
|
||||
# This is a little helper program which generates a software-pipelined
|
||||
# for RC4 encryption. The basic algorithm looks like this:
|
||||
#
|
||||
# for (counter = 0; counter < len; ++counter)
|
||||
# {
|
||||
# in = inp[counter];
|
||||
# SI = S[I];
|
||||
# J = (SI + J) & 0xff;
|
||||
# SJ = S[J];
|
||||
# T = (SI + SJ) & 0xff;
|
||||
# S[I] = SJ, S[J] = SI;
|
||||
# ST = S[T];
|
||||
# outp[counter] = in ^ ST;
|
||||
# I = (I + 1) & 0xff;
|
||||
# }
|
||||
#
|
||||
# Pipelining this loop isn't easy, because the stores to the S[] array
|
||||
# need to be observed in the right order. The loop generated by the
|
||||
# code below has the following pipeline diagram:
|
||||
#
|
||||
# cycle
|
||||
# | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 |
|
||||
# iter
|
||||
# 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
|
||||
# 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
|
||||
# 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
|
||||
#
|
||||
# where:
|
||||
# LDI = load of S[I]
|
||||
# LDJ = load of S[J]
|
||||
# SWP = swap of S[I] and S[J]
|
||||
# LDT = load of S[T]
|
||||
#
|
||||
# Note that in the above diagram, the major trouble-spot is that LDI
|
||||
# of the 2nd iteration is performed BEFORE the SWP of the first
|
||||
# iteration. Fortunately, this is easy to detect (I of the 1st
|
||||
# iteration will be equal to J of the 2nd iteration) and when this
|
||||
# happens, we simply forward the proper value from the 1st iteration
|
||||
# to the 2nd one. The proper value in this case is simply the value
|
||||
# of S[I] from the first iteration (thanks to the fact that SWP
|
||||
# simply swaps the contents of S[I] and S[J]).
|
||||
#
|
||||
# Another potential trouble-spot is in cycle 7, where SWP of the 1st
|
||||
# iteration issues at the same time as the LDI of the 3rd iteration.
|
||||
# However, thanks to IA-64 execution semantics, this can be taken
|
||||
# care of simply by placing LDI later in the instruction-group than
|
||||
# SWP. IA-64 CPUs will automatically forward the value if they
|
||||
# detect that the SWP and LDI are accessing the same memory-location.
|
||||
|
||||
# The core-loop that can be pipelined then looks like this (annotated
|
||||
# with McKinley/Madison issue port & latency numbers, assuming L1
|
||||
# cache hits for the most part):
|
||||
|
||||
# operation: instruction: issue-ports: latency
|
||||
# ------------------ ----------------------------- ------------- -------
|
||||
|
||||
# Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0
|
||||
# shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc
|
||||
# I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc
|
||||
# ;;
|
||||
# SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP!
|
||||
# ;;
|
||||
# cmp.eq.unc pBypass = I, J * after J is valid!
|
||||
# J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2
|
||||
# (pBypass) br.cond.spnt Bypass
|
||||
# ;;
|
||||
# ---------------------------------------------------------------------------------------
|
||||
# J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3
|
||||
# ;;
|
||||
# shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4
|
||||
# ;;
|
||||
# SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5
|
||||
# ;;
|
||||
# ---------------------------------------------------------------------------------------
|
||||
# T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6
|
||||
# ;;
|
||||
# T = T & 0xff zxt1 T = T I0, I1 1 cyc
|
||||
# S[I] = SJ st8 [Iptr] = SJ M2-M3 c7
|
||||
# S[J] = SI st8 [Jptr] = SI M2-M3
|
||||
# ;;
|
||||
# shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8
|
||||
# ;;
|
||||
# ---------------------------------------------------------------------------------------
|
||||
# T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9
|
||||
# ;;
|
||||
# data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10
|
||||
# ;;
|
||||
# *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11
|
||||
# ;;
|
||||
# ---------------------------------------------------------------------------------------
|
||||
|
||||
# There are several points worth making here:
|
||||
|
||||
# - Note that due to the bypass/forwarding-path, the first two
|
||||
# phases of the loop are strangly mingled together. In
|
||||
# particular, note that the first stage of the pipeline is
|
||||
# using the value of "J", as calculated by the second stage.
|
||||
# - Each bundle-pair will have exactly 6 instructions.
|
||||
# - Pipelined, the loop can execute in 3 cycles/iteration and
|
||||
# 4 stages. However, McKinley/Madison can issue "st1" to
|
||||
# the same bank at a rate of at most one per 4 cycles. Thus,
|
||||
# instead of storing each byte, we accumulate them in a word
|
||||
# and then write them back at once with a single "st8" (this
|
||||
# implies that the setup code needs to ensure that the output
|
||||
# buffer is properly aligned, if need be, by encoding the
|
||||
# first few bytes separately).
|
||||
# - There is no space for a "br.ctop" instruction. For this
|
||||
# reason we can't use module-loop support in IA-64 and have
|
||||
# to do a traditional, purely software-pipelined loop.
|
||||
# - We can't replace any of the remaining "add/zxt1" pairs with
|
||||
# "padd1" because the latency for that instruction is too high
|
||||
# and would push the loop to the point where more bypasses
|
||||
# would be needed, which we don't have space for.
|
||||
# - The above loop runs at around 3.26 cycles/byte, or roughly
|
||||
# 440 MByte/sec on a 1.5GHz Madison. This is well below the
|
||||
# system bus bandwidth and hence with judicious use of
|
||||
# "lfetch" this loop can run at (almost) peak speed even when
|
||||
# the input and output data reside in memory. The
|
||||
# max. latency that can be tolerated is (PREFETCH_DISTANCE *
|
||||
# L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at
|
||||
# least) 1-ahead prefetching of 128 byte cache-lines. Note
|
||||
# that we do NOT prefetch into L1, since that would only
|
||||
# interfere with the S[] table values stored there. This is
|
||||
# acceptable because there is a 10 cycle latency between
|
||||
# load and first use of the input data.
|
||||
# - We use a branch to out-of-line bypass-code of cycle-pressure:
|
||||
# we calculate the next J, check for the need to activate the
|
||||
# bypass path, and activate the bypass path ALL IN THE SAME
|
||||
# CYCLE. If we didn't have these constraints, we could do
|
||||
# the bypass with a simple conditional move instruction.
|
||||
# Fortunately, the bypass paths get activated relatively
|
||||
# infrequently, so the extra branches don't cost all that much
|
||||
# (about 0.04 cycles/byte, measured on a 16396 byte file with
|
||||
# random input data).
|
||||
#
|
||||
|
||||
$phases = 4; # number of stages/phases in the pipelined-loop
|
||||
$unroll_count = 6; # number of times we unrolled it
|
||||
$pComI = (1 << 0);
|
||||
$pComJ = (1 << 1);
|
||||
$pComT = (1 << 2);
|
||||
$pOut = (1 << 3);
|
||||
|
||||
$NData = 4;
|
||||
$NIP = 3;
|
||||
$NJP = 2;
|
||||
$NI = 2;
|
||||
$NSI = 3;
|
||||
$NSJ = 2;
|
||||
$NT = 2;
|
||||
$NOutWord = 2;
|
||||
|
||||
#
|
||||
# $threshold is the minimum length before we attempt to use the
|
||||
# big software-pipelined loop. It MUST be greater-or-equal
|
||||
# to:
|
||||
# PHASES * (UNROLL_COUNT + 1) + 7
|
||||
#
|
||||
# The "+ 7" comes from the fact we may have to encode up to
|
||||
# 7 bytes separately before the output pointer is aligned.
|
||||
#
|
||||
$threshold = (3 * ($phases * ($unroll_count + 1)) + 7);
|
||||
|
||||
sub I {
|
||||
local *code = shift;
|
||||
local $format = shift;
|
||||
$code .= sprintf ("\t\t".$format."\n", @_);
|
||||
}
|
||||
|
||||
sub P {
|
||||
local *code = shift;
|
||||
local $format = shift;
|
||||
$code .= sprintf ($format."\n", @_);
|
||||
}
|
||||
|
||||
sub STOP {
|
||||
local *code = shift;
|
||||
$code .=<<___;
|
||||
;;
|
||||
___
|
||||
}
|
||||
|
||||
sub emit_body {
|
||||
local *c = shift;
|
||||
local *bypass = shift;
|
||||
local ($iteration, $p) = @_;
|
||||
|
||||
local $i0 = $iteration;
|
||||
local $i1 = $iteration - 1;
|
||||
local $i2 = $iteration - 2;
|
||||
local $i3 = $iteration - 3;
|
||||
local $iw0 = ($iteration - 3) / 8;
|
||||
local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1;
|
||||
local $byte_num = ($iteration - 3) % 8;
|
||||
local $label = $iteration + 1;
|
||||
local $pAny = ($p & 0xf) == 0xf;
|
||||
local $pByp = (($p & $pComI) && ($iteration > 0));
|
||||
|
||||
$c.=<<___;
|
||||
//////////////////////////////////////////////////
|
||||
___
|
||||
|
||||
if (($p & 0xf) == 0) {
|
||||
$c.="#ifdef HOST_IS_BIG_ENDIAN\n";
|
||||
&I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;",
|
||||
$iw1 % $NOutWord, $iw1 % $NOutWord);
|
||||
$c.="#endif\n";
|
||||
&I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord);
|
||||
return;
|
||||
}
|
||||
|
||||
# Cycle 0
|
||||
&I(\$c, "{ .mmi") if ($pAny);
|
||||
&I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI);
|
||||
&I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI);
|
||||
&I(\$c, "zxt1 J = J") if ($p & $pComJ);
|
||||
&I(\$c, "}") if ($pAny);
|
||||
&I(\$c, "{ .mmi") if ($pAny);
|
||||
&I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut);
|
||||
&I(\$c, "add T[%u] = SI[%u], SJ[%u]",
|
||||
$i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT);
|
||||
&I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI);
|
||||
&I(\$c, "}") if ($pAny);
|
||||
&STOP(\$c);
|
||||
|
||||
# Cycle 1
|
||||
&I(\$c, "{ .mmi") if ($pAny);
|
||||
&I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT);
|
||||
&I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT);
|
||||
&I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT);
|
||||
&I(\$c, "}") if ($pAny);
|
||||
&I(\$c, "{ .mmi") if ($pAny);
|
||||
&I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI);
|
||||
&I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ);
|
||||
&I(\$c, "xor Data[%u] = Data[%u], T[%u]",
|
||||
$i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut);
|
||||
&I(\$c, "}") if ($pAny);
|
||||
&STOP(\$c);
|
||||
|
||||
# Cycle 2
|
||||
&I(\$c, "{ .mmi") if ($pAny);
|
||||
&I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ);
|
||||
&I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp);
|
||||
&I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8",
|
||||
$iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut);
|
||||
&I(\$c, "}") if ($pAny);
|
||||
&I(\$c, "{ .mmb") if ($pAny);
|
||||
&I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI);
|
||||
&I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT);
|
||||
&P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp);
|
||||
&I(\$c, "}") if ($pAny);
|
||||
&STOP(\$c);
|
||||
|
||||
&P(\$c, ".rc4Resume%u:", $label) if ($pByp);
|
||||
if ($byte_num == 0 && $iteration >= $phases) {
|
||||
&I(\$c, "st8 [OutPtr] = OutWord[%u], 8",
|
||||
$iw1 % $NOutWord) if ($p & $pOut);
|
||||
if ($iteration == (1 + $unroll_count) * $phases - 1) {
|
||||
if ($unroll_count == 6) {
|
||||
&I(\$c, "mov OutWord[%u] = OutWord[%u]",
|
||||
$iw1 % $NOutWord, $iw0 % $NOutWord);
|
||||
}
|
||||
&I(\$c, "lfetch.nt1 [InPrefetch], %u",
|
||||
$unroll_count * $phases);
|
||||
&I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u",
|
||||
$unroll_count * $phases);
|
||||
&I(\$c, "br.cloop.sptk.few .rc4Loop");
|
||||
}
|
||||
}
|
||||
|
||||
if ($pByp) {
|
||||
&P(\$bypass, ".rc4Bypass%u:", $label);
|
||||
&I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI);
|
||||
&I(\$bypass, "nop 0");
|
||||
&I(\$bypass, "nop 0");
|
||||
&I(\$bypass, ";;");
|
||||
&I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI);
|
||||
&I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI);
|
||||
&I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label);
|
||||
&I(\$bypass, ";;");
|
||||
}
|
||||
}
|
||||
|
||||
$code=<<___;
|
||||
.ident \"rc4-ia64.s, version 3.0\"
|
||||
.ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\"
|
||||
|
||||
#define LCSave r8
|
||||
#define PRSave r9
|
||||
|
||||
/* Inputs become invalid once rotation begins! */
|
||||
|
||||
#define StateTable in0
|
||||
#define DataLen in1
|
||||
#define InputBuffer in2
|
||||
#define OutputBuffer in3
|
||||
|
||||
#define KTable r14
|
||||
#define J r15
|
||||
#define InPtr r16
|
||||
#define OutPtr r17
|
||||
#define InPrefetch r18
|
||||
#define OutPrefetch r19
|
||||
#define One r20
|
||||
#define LoopCount r21
|
||||
#define Remainder r22
|
||||
#define IFinal r23
|
||||
#define EndPtr r24
|
||||
|
||||
#define tmp0 r25
|
||||
#define tmp1 r26
|
||||
|
||||
#define pBypass p6
|
||||
#define pDone p7
|
||||
#define pSmall p8
|
||||
#define pAligned p9
|
||||
#define pUnaligned p10
|
||||
|
||||
#define pComputeI pPhase[0]
|
||||
#define pComputeJ pPhase[1]
|
||||
#define pComputeT pPhase[2]
|
||||
#define pOutput pPhase[3]
|
||||
|
||||
#define RetVal r8
|
||||
#define L_OK p7
|
||||
#define L_NOK p8
|
||||
|
||||
#define _NINPUTS 4
|
||||
#define _NOUTPUT 0
|
||||
|
||||
#define _NROTATE 24
|
||||
#define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT)
|
||||
|
||||
#ifndef SZ
|
||||
# define SZ 4 // this must be set to sizeof(RC4_INT)
|
||||
#endif
|
||||
|
||||
#if SZ == 1
|
||||
# define LKEY ld1
|
||||
# define SKEY st1
|
||||
# define KEYADDR(dst, i) add dst = i, KTable
|
||||
#elif SZ == 2
|
||||
# define LKEY ld2
|
||||
# define SKEY st2
|
||||
# define KEYADDR(dst, i) shladd dst = i, 1, KTable
|
||||
#elif SZ == 4
|
||||
# define LKEY ld4
|
||||
# define SKEY st4
|
||||
# define KEYADDR(dst, i) shladd dst = i, 2, KTable
|
||||
#else
|
||||
# define LKEY ld8
|
||||
# define SKEY st8
|
||||
# define KEYADDR(dst, i) shladd dst = i, 3, KTable
|
||||
#endif
|
||||
|
||||
#if defined(_HPUX_SOURCE) && !defined(_LP64)
|
||||
# define ADDP addp4
|
||||
#else
|
||||
# define ADDP add
|
||||
#endif
|
||||
|
||||
/* Define a macro for the bit number of the n-th byte: */
|
||||
|
||||
#if defined(_HPUX_SOURCE) || defined(B_ENDIAN)
|
||||
# define HOST_IS_BIG_ENDIAN
|
||||
# define BYTE_POS(n) (56 - (8 * (n)))
|
||||
#else
|
||||
# define BYTE_POS(n) (8 * (n))
|
||||
#endif
|
||||
|
||||
/*
|
||||
We must perform the first phase of the pipeline explicitly since
|
||||
we will always load from the stable the first time. The br.cexit
|
||||
will never be taken since regardless of the number of bytes because
|
||||
the epilogue count is 4.
|
||||
*/
|
||||
/* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX
|
||||
assembler failed on original macro with syntax error. <appro> */
|
||||
#define MODSCHED_RC4_PROLOGUE \\
|
||||
{ \\
|
||||
ld1 Data[0] = [InPtr], 1; \\
|
||||
add IFinal = 1, I[1]; \\
|
||||
KEYADDR(IPr[0], I[1]); \\
|
||||
} ;; \\
|
||||
{ \\
|
||||
LKEY SI[0] = [IPr[0]]; \\
|
||||
mov pr.rot = 0x10000; \\
|
||||
mov ar.ec = 4; \\
|
||||
} ;; \\
|
||||
{ \\
|
||||
add J = J, SI[0]; \\
|
||||
zxt1 I[0] = IFinal; \\
|
||||
br.cexit.spnt.few .+16; /* never taken */ \\
|
||||
} ;;
|
||||
#define MODSCHED_RC4_LOOP(label) \\
|
||||
label: \\
|
||||
{ .mmi; \\
|
||||
(pComputeI) ld1 Data[0] = [InPtr], 1; \\
|
||||
(pComputeI) add IFinal = 1, I[1]; \\
|
||||
(pComputeJ) zxt1 J = J; \\
|
||||
}{ .mmi; \\
|
||||
(pOutput) LKEY T[1] = [T[1]]; \\
|
||||
(pComputeT) add T[0] = SI[2], SJ[1]; \\
|
||||
(pComputeI) KEYADDR(IPr[0], I[1]); \\
|
||||
} ;; \\
|
||||
{ .mmi; \\
|
||||
(pComputeT) SKEY [IPr[2]] = SJ[1]; \\
|
||||
(pComputeT) SKEY [JP[1]] = SI[2]; \\
|
||||
(pComputeT) zxt1 T[0] = T[0]; \\
|
||||
}{ .mmi; \\
|
||||
(pComputeI) LKEY SI[0] = [IPr[0]]; \\
|
||||
(pComputeJ) KEYADDR(JP[0], J); \\
|
||||
(pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\
|
||||
} ;; \\
|
||||
{ .mmi; \\
|
||||
(pComputeJ) LKEY SJ[0] = [JP[0]]; \\
|
||||
(pOutput) xor Data[3] = Data[3], T[1]; \\
|
||||
nop 0x0; \\
|
||||
}{ .mmi; \\
|
||||
(pComputeT) KEYADDR(T[0], T[0]); \\
|
||||
(pBypass) mov SI[0] = SI[1]; \\
|
||||
(pComputeI) zxt1 I[0] = IFinal; \\
|
||||
} ;; \\
|
||||
{ .mmb; \\
|
||||
(pOutput) st1 [OutPtr] = Data[3], 1; \\
|
||||
(pComputeI) add J = J, SI[0]; \\
|
||||
br.ctop.sptk.few label; \\
|
||||
} ;;
|
||||
|
||||
.text
|
||||
|
||||
.align 32
|
||||
|
||||
.type RC4, \@function
|
||||
.global RC4
|
||||
|
||||
.proc RC4
|
||||
.prologue
|
||||
|
||||
RC4:
|
||||
{
|
||||
.mmi
|
||||
alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE
|
||||
|
||||
.rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\
|
||||
OutWord[2]
|
||||
.rotp pPhase[4]
|
||||
|
||||
ADDP InPrefetch = 0, InputBuffer
|
||||
ADDP KTable = 0, StateTable
|
||||
}
|
||||
{
|
||||
.mmi
|
||||
ADDP InPtr = 0, InputBuffer
|
||||
ADDP OutPtr = 0, OutputBuffer
|
||||
mov RetVal = r0
|
||||
}
|
||||
;;
|
||||
{
|
||||
.mmi
|
||||
lfetch.nt1 [InPrefetch], 0x80
|
||||
ADDP OutPrefetch = 0, OutputBuffer
|
||||
}
|
||||
{ // Return 0 if the input length is nonsensical
|
||||
.mib
|
||||
ADDP StateTable = 0, StateTable
|
||||
cmp.ge.unc L_NOK, L_OK = r0, DataLen
|
||||
(L_NOK) br.ret.sptk.few rp
|
||||
}
|
||||
;;
|
||||
{
|
||||
.mib
|
||||
cmp.eq.or L_NOK, L_OK = r0, InPtr
|
||||
cmp.eq.or L_NOK, L_OK = r0, OutPtr
|
||||
nop 0x0
|
||||
}
|
||||
{
|
||||
.mib
|
||||
cmp.eq.or L_NOK, L_OK = r0, StateTable
|
||||
nop 0x0
|
||||
(L_NOK) br.ret.sptk.few rp
|
||||
}
|
||||
;;
|
||||
LKEY I[1] = [KTable], SZ
|
||||
/* Prefetch the state-table. It contains 256 elements of size SZ */
|
||||
|
||||
#if SZ == 1
|
||||
ADDP tmp0 = 1*128, StateTable
|
||||
#elif SZ == 2
|
||||
ADDP tmp0 = 3*128, StateTable
|
||||
ADDP tmp1 = 2*128, StateTable
|
||||
#elif SZ == 4
|
||||
ADDP tmp0 = 7*128, StateTable
|
||||
ADDP tmp1 = 6*128, StateTable
|
||||
#elif SZ == 8
|
||||
ADDP tmp0 = 15*128, StateTable
|
||||
ADDP tmp1 = 14*128, StateTable
|
||||
#endif
|
||||
;;
|
||||
#if SZ >= 8
|
||||
lfetch.fault.nt1 [tmp0], -256 // 15
|
||||
lfetch.fault.nt1 [tmp1], -256;;
|
||||
lfetch.fault.nt1 [tmp0], -256 // 13
|
||||
lfetch.fault.nt1 [tmp1], -256;;
|
||||
lfetch.fault.nt1 [tmp0], -256 // 11
|
||||
lfetch.fault.nt1 [tmp1], -256;;
|
||||
lfetch.fault.nt1 [tmp0], -256 // 9
|
||||
lfetch.fault.nt1 [tmp1], -256;;
|
||||
#endif
|
||||
#if SZ >= 4
|
||||
lfetch.fault.nt1 [tmp0], -256 // 7
|
||||
lfetch.fault.nt1 [tmp1], -256;;
|
||||
lfetch.fault.nt1 [tmp0], -256 // 5
|
||||
lfetch.fault.nt1 [tmp1], -256;;
|
||||
#endif
|
||||
#if SZ >= 2
|
||||
lfetch.fault.nt1 [tmp0], -256 // 3
|
||||
lfetch.fault.nt1 [tmp1], -256;;
|
||||
#endif
|
||||
{
|
||||
.mii
|
||||
lfetch.fault.nt1 [tmp0] // 1
|
||||
add I[1]=1,I[1];;
|
||||
zxt1 I[1]=I[1]
|
||||
}
|
||||
{
|
||||
.mmi
|
||||
lfetch.nt1 [InPrefetch], 0x80
|
||||
lfetch.excl.nt1 [OutPrefetch], 0x80
|
||||
.save pr, PRSave
|
||||
mov PRSave = pr
|
||||
} ;;
|
||||
{
|
||||
.mmi
|
||||
lfetch.excl.nt1 [OutPrefetch], 0x80
|
||||
LKEY J = [KTable], SZ
|
||||
ADDP EndPtr = DataLen, InPtr
|
||||
} ;;
|
||||
{
|
||||
.mmi
|
||||
ADDP EndPtr = -1, EndPtr // Make it point to
|
||||
// last data byte.
|
||||
mov One = 1
|
||||
.save ar.lc, LCSave
|
||||
mov LCSave = ar.lc
|
||||
.body
|
||||
} ;;
|
||||
{
|
||||
.mmb
|
||||
sub Remainder = 0, OutPtr
|
||||
cmp.gtu pSmall, p0 = $threshold, DataLen
|
||||
(pSmall) br.cond.dpnt .rc4Remainder // Data too small for
|
||||
// big loop.
|
||||
} ;;
|
||||
{
|
||||
.mmi
|
||||
and Remainder = 0x7, Remainder
|
||||
;;
|
||||
cmp.eq pAligned, pUnaligned = Remainder, r0
|
||||
nop 0x0
|
||||
} ;;
|
||||
{
|
||||
.mmb
|
||||
.pred.rel "mutex",pUnaligned,pAligned
|
||||
(pUnaligned) add Remainder = -1, Remainder
|
||||
(pAligned) sub Remainder = EndPtr, InPtr
|
||||
(pAligned) br.cond.dptk.many .rc4Aligned
|
||||
} ;;
|
||||
{
|
||||
.mmi
|
||||
nop 0x0
|
||||
nop 0x0
|
||||
mov.i ar.lc = Remainder
|
||||
}
|
||||
|
||||
/* Do the initial few bytes via the compact, modulo-scheduled loop
|
||||
until the output pointer is 8-byte-aligned. */
|
||||
|
||||
MODSCHED_RC4_PROLOGUE
|
||||
MODSCHED_RC4_LOOP(.RC4AlignLoop)
|
||||
|
||||
{
|
||||
.mib
|
||||
sub Remainder = EndPtr, InPtr
|
||||
zxt1 IFinal = IFinal
|
||||
clrrrb // Clear CFM.rrb.pr so
|
||||
;; // next "mov pr.rot = N"
|
||||
// does the right thing.
|
||||
}
|
||||
{
|
||||
.mmi
|
||||
mov I[1] = IFinal
|
||||
nop 0x0
|
||||
nop 0x0
|
||||
} ;;
|
||||
|
||||
|
||||
.rc4Aligned:
|
||||
|
||||
/*
|
||||
Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases)
|
||||
*/
|
||||
|
||||
{
|
||||
.mlx
|
||||
add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder
|
||||
movl Remainder = 0xaaaaaaaaaaaaaaab
|
||||
} ;;
|
||||
{
|
||||
.mmi
|
||||
setf.sig f6 = LoopCount // M2, M3 6 cyc
|
||||
setf.sig f7 = Remainder // M2, M3 6 cyc
|
||||
nop 0x0
|
||||
} ;;
|
||||
{
|
||||
.mfb
|
||||
nop 0x0
|
||||
xmpy.hu f6 = f6, f7
|
||||
nop 0x0
|
||||
} ;;
|
||||
{
|
||||
.mmi
|
||||
getf.sig LoopCount = f6;; // M2 5 cyc
|
||||
nop 0x0
|
||||
shr.u LoopCount = LoopCount, 4
|
||||
} ;;
|
||||
{
|
||||
.mmi
|
||||
nop 0x0
|
||||
nop 0x0
|
||||
mov.i ar.lc = LoopCount
|
||||
} ;;
|
||||
|
||||
/* Now comes the unrolled loop: */
|
||||
|
||||
.rc4Prologue:
|
||||
___
|
||||
|
||||
$iteration = 0;
|
||||
|
||||
# Generate the prologue:
|
||||
$predicates = 1;
|
||||
for ($i = 0; $i < $phases; ++$i) {
|
||||
&emit_body (\$code, \$bypass, $iteration++, $predicates);
|
||||
$predicates = ($predicates << 1) | 1;
|
||||
}
|
||||
|
||||
$code.=<<___;
|
||||
.rc4Loop:
|
||||
___
|
||||
|
||||
# Generate the body:
|
||||
for ($i = 0; $i < $unroll_count*$phases; ++$i) {
|
||||
&emit_body (\$code, \$bypass, $iteration++, $predicates);
|
||||
}
|
||||
|
||||
$code.=<<___;
|
||||
.rc4Epilogue:
|
||||
___
|
||||
|
||||
# Generate the epilogue:
|
||||
for ($i = 0; $i < $phases; ++$i) {
|
||||
$predicates <<= 1;
|
||||
&emit_body (\$code, \$bypass, $iteration++, $predicates);
|
||||
}
|
||||
|
||||
$code.=<<___;
|
||||
{
|
||||
.mmi
|
||||
lfetch.nt1 [EndPtr] // fetch line with last byte
|
||||
mov IFinal = I[1]
|
||||
nop 0x0
|
||||
}
|
||||
|
||||
.rc4Remainder:
|
||||
{
|
||||
.mmi
|
||||
sub Remainder = EndPtr, InPtr // Calculate
|
||||
// # of bytes
|
||||
// left - 1
|
||||
nop 0x0
|
||||
nop 0x0
|
||||
} ;;
|
||||
{
|
||||
.mib
|
||||
cmp.eq pDone, p0 = -1, Remainder // done already?
|
||||
mov.i ar.lc = Remainder
|
||||
(pDone) br.cond.dptk.few .rc4Complete
|
||||
}
|
||||
|
||||
/* Do the remaining bytes via the compact, modulo-scheduled loop */
|
||||
|
||||
MODSCHED_RC4_PROLOGUE
|
||||
MODSCHED_RC4_LOOP(.RC4RestLoop)
|
||||
|
||||
.rc4Complete:
|
||||
{
|
||||
.mmi
|
||||
add KTable = -SZ, KTable
|
||||
add IFinal = -1, IFinal
|
||||
mov ar.lc = LCSave
|
||||
} ;;
|
||||
{
|
||||
.mii
|
||||
SKEY [KTable] = J,-SZ
|
||||
zxt1 IFinal = IFinal
|
||||
mov pr = PRSave, 0x1FFFF
|
||||
} ;;
|
||||
{
|
||||
.mib
|
||||
SKEY [KTable] = IFinal
|
||||
add RetVal = 1, r0
|
||||
br.ret.sptk.few rp
|
||||
} ;;
|
||||
___
|
||||
|
||||
# Last but not least, emit the code for the bypass-code of the unrolled loop:
|
||||
|
||||
$code.=$bypass;
|
||||
|
||||
$code.=<<___;
|
||||
.endp RC4
|
||||
___
|
||||
|
||||
print $code;
|
1259
jni/openssl/crypto/rc4/asm/rc4-md5-x86_64.S
Normal file
1259
jni/openssl/crypto/rc4/asm/rc4-md5-x86_64.S
Normal file
File diff suppressed because it is too large
Load Diff
632
jni/openssl/crypto/rc4/asm/rc4-md5-x86_64.pl
Normal file
632
jni/openssl/crypto/rc4/asm/rc4-md5-x86_64.pl
Normal file
@@ -0,0 +1,632 @@
|
||||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
|
||||
# June 2011
|
||||
#
|
||||
# This is RC4+MD5 "stitch" implementation. The idea, as spelled in
|
||||
# http://download.intel.com/design/intarch/papers/323686.pdf, is that
|
||||
# since both algorithms exhibit instruction-level parallelism, ILP,
|
||||
# below theoretical maximum, interleaving them would allow to utilize
|
||||
# processor resources better and achieve better performance. RC4
|
||||
# instruction sequence is virtually identical to rc4-x86_64.pl, which
|
||||
# is heavily based on submission by Maxim Perminov, Maxim Locktyukhin
|
||||
# and Jim Guilford of Intel. MD5 is fresh implementation aiming to
|
||||
# minimize register usage, which was used as "main thread" with RC4
|
||||
# weaved into it, one RC4 round per one MD5 round. In addition to the
|
||||
# stiched subroutine the script can generate standalone replacement
|
||||
# md5_block_asm_data_order and RC4. Below are performance numbers in
|
||||
# cycles per processed byte, less is better, for these the standalone
|
||||
# subroutines, sum of them, and stitched one:
|
||||
#
|
||||
# RC4 MD5 RC4+MD5 stitch gain
|
||||
# Opteron 6.5(*) 5.4 11.9 7.0 +70%(*)
|
||||
# Core2 6.5 5.8 12.3 7.7 +60%
|
||||
# Westmere 4.3 5.2 9.5 7.0 +36%
|
||||
# Sandy Bridge 4.2 5.5 9.7 6.8 +43%
|
||||
# Atom 9.3 6.5 15.8 11.1 +42%
|
||||
#
|
||||
# (*) rc4-x86_64.pl delivers 5.3 on Opteron, so real improvement
|
||||
# is +53%...
|
||||
|
||||
my ($rc4,$md5)=(1,1); # what to generate?
|
||||
my $D="#" if (!$md5); # if set to "#", MD5 is stitched into RC4(),
|
||||
# but its result is discarded. Idea here is
|
||||
# to be able to use 'openssl speed rc4' for
|
||||
# benchmarking the stitched subroutine...
|
||||
|
||||
my $flavour = shift;
|
||||
my $output = shift;
|
||||
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
||||
|
||||
my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate;
|
||||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||||
die "can't locate x86_64-xlate.pl";
|
||||
|
||||
open OUT,"| \"$^X\" $xlate $flavour $output";
|
||||
*STDOUT=*OUT;
|
||||
|
||||
my ($dat,$in0,$out,$ctx,$inp,$len, $func,$nargs);
|
||||
|
||||
if ($rc4 && !$md5) {
|
||||
($dat,$len,$in0,$out) = ("%rdi","%rsi","%rdx","%rcx");
|
||||
$func="RC4"; $nargs=4;
|
||||
} elsif ($md5 && !$rc4) {
|
||||
($ctx,$inp,$len) = ("%rdi","%rsi","%rdx");
|
||||
$func="md5_block_asm_data_order"; $nargs=3;
|
||||
} else {
|
||||
($dat,$in0,$out,$ctx,$inp,$len) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
|
||||
$func="rc4_md5_enc"; $nargs=6;
|
||||
# void rc4_md5_enc(
|
||||
# RC4_KEY *key, #
|
||||
# const void *in0, # RC4 input
|
||||
# void *out, # RC4 output
|
||||
# MD5_CTX *ctx, #
|
||||
# const void *inp, # MD5 input
|
||||
# size_t len); # number of 64-byte blocks
|
||||
}
|
||||
|
||||
my @K=( 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
|
||||
0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,
|
||||
0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be,
|
||||
0x6b901122,0xfd987193,0xa679438e,0x49b40821,
|
||||
|
||||
0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa,
|
||||
0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8,
|
||||
0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,
|
||||
0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a,
|
||||
|
||||
0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c,
|
||||
0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70,
|
||||
0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05,
|
||||
0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,
|
||||
|
||||
0xf4292244,0x432aff97,0xab9423a7,0xfc93a039,
|
||||
0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1,
|
||||
0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1,
|
||||
0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391 );
|
||||
|
||||
my @V=("%r8d","%r9d","%r10d","%r11d"); # MD5 registers
|
||||
my $tmp="%r12d";
|
||||
|
||||
my @XX=("%rbp","%rsi"); # RC4 registers
|
||||
my @TX=("%rax","%rbx");
|
||||
my $YY="%rcx";
|
||||
my $TY="%rdx";
|
||||
|
||||
my $MOD=32; # 16, 32 or 64
|
||||
|
||||
$code.=<<___;
|
||||
.text
|
||||
.align 16
|
||||
|
||||
.globl $func
|
||||
.type $func,\@function,$nargs
|
||||
$func:
|
||||
cmp \$0,$len
|
||||
je .Labort
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
sub \$40,%rsp
|
||||
.Lbody:
|
||||
___
|
||||
if ($rc4) {
|
||||
$code.=<<___;
|
||||
$D#md5# mov $ctx,%r11 # reassign arguments
|
||||
mov $len,%r12
|
||||
mov $in0,%r13
|
||||
mov $out,%r14
|
||||
$D#md5# mov $inp,%r15
|
||||
___
|
||||
$ctx="%r11" if ($md5); # reassign arguments
|
||||
$len="%r12";
|
||||
$in0="%r13";
|
||||
$out="%r14";
|
||||
$inp="%r15" if ($md5);
|
||||
$inp=$in0 if (!$md5);
|
||||
$code.=<<___;
|
||||
xor $XX[0],$XX[0]
|
||||
xor $YY,$YY
|
||||
|
||||
lea 8($dat),$dat
|
||||
mov -8($dat),$XX[0]#b
|
||||
mov -4($dat),$YY#b
|
||||
|
||||
inc $XX[0]#b
|
||||
sub $in0,$out
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
___
|
||||
$code.=<<___ if (!$md5);
|
||||
xor $TX[1],$TX[1]
|
||||
test \$-128,$len
|
||||
jz .Loop1
|
||||
sub $XX[0],$TX[1]
|
||||
and \$`$MOD-1`,$TX[1]
|
||||
jz .Loop${MOD}_is_hot
|
||||
sub $TX[1],$len
|
||||
.Loop${MOD}_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($in0),$TY#b
|
||||
movb $TY#b,($out,$in0)
|
||||
lea 1($in0),$in0
|
||||
dec $TX[1]
|
||||
jnz .Loop${MOD}_warmup
|
||||
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY
|
||||
mov $TX[1]#b,$YY#b
|
||||
|
||||
.Loop${MOD}_is_hot:
|
||||
mov $len,32(%rsp) # save original $len
|
||||
shr \$6,$len # number of 64-byte blocks
|
||||
___
|
||||
if ($D && !$md5) { # stitch in dummy MD5
|
||||
$md5=1;
|
||||
$ctx="%r11";
|
||||
$inp="%r15";
|
||||
$code.=<<___;
|
||||
mov %rsp,$ctx
|
||||
mov $in0,$inp
|
||||
___
|
||||
}
|
||||
}
|
||||
$code.=<<___;
|
||||
#rc4# add $TX[0]#b,$YY#b
|
||||
#rc4# lea ($dat,$XX[0],4),$XX[1]
|
||||
shl \$6,$len
|
||||
add $inp,$len # pointer to the end of input
|
||||
mov $len,16(%rsp)
|
||||
|
||||
#md5# mov $ctx,24(%rsp) # save pointer to MD5_CTX
|
||||
#md5# mov 0*4($ctx),$V[0] # load current hash value from MD5_CTX
|
||||
#md5# mov 1*4($ctx),$V[1]
|
||||
#md5# mov 2*4($ctx),$V[2]
|
||||
#md5# mov 3*4($ctx),$V[3]
|
||||
jmp .Loop
|
||||
|
||||
.align 16
|
||||
.Loop:
|
||||
#md5# mov $V[0],0*4(%rsp) # put aside current hash value
|
||||
#md5# mov $V[1],1*4(%rsp)
|
||||
#md5# mov $V[2],2*4(%rsp)
|
||||
#md5# mov $V[3],$tmp # forward reference
|
||||
#md5# mov $V[3],3*4(%rsp)
|
||||
___
|
||||
|
||||
sub R0 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot0=(7,12,17,22);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu ($in0),%xmm2\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# and $b,$tmp
|
||||
#md5# add 4*`$j`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#md5# xor $d,$tmp
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#md5# add $tmp,$a
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot0[$j%4],$a
|
||||
#md5# mov `$j==15?"$b":"$c"`,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm2
|
||||
pxor %xmm1,%xmm2
|
||||
___
|
||||
}
|
||||
sub R1 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot1=(5,9,14,20);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu 16($in0),%xmm3\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $b,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# and $d,$tmp
|
||||
#md5# add 4*`((1+5*$j)%16)`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#md5# add $tmp,$a
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot1[$j%4],$a
|
||||
#md5# mov `$j==15?"$c":"$b"`,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm3
|
||||
pxor %xmm1,%xmm3
|
||||
___
|
||||
}
|
||||
sub R2 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot2=(4,11,16,23);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu 32($in0),%xmm4\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# xor $b,$tmp
|
||||
#md5# add 4*`((5+3*$j)%16)`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#md5# add $tmp,$a
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot2[$j%4],$a
|
||||
#md5# mov `$j==15?"\\\$-1":"$c"`,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm4
|
||||
pxor %xmm1,%xmm4
|
||||
___
|
||||
}
|
||||
sub R3 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot3=(6,10,15,21);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu 48($in0),%xmm5\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $d,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# or $b,$tmp
|
||||
#md5# add 4*`((7*$j)%16)`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#md5# add $tmp,$a
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot3[$j%4],$a
|
||||
#md5# mov \$-1,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
mov $XX[0],$XX[1]
|
||||
xor $XX[0],$XX[0] # keyword to partial register
|
||||
mov $XX[1]#b,$XX[0]#b
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm5
|
||||
pxor %xmm1,%xmm5
|
||||
___
|
||||
}
|
||||
|
||||
my $i=0;
|
||||
for(;$i<16;$i++) { R0($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
for(;$i<32;$i++) { R1($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
for(;$i<48;$i++) { R2($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
for(;$i<64;$i++) { R3($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
|
||||
$code.=<<___;
|
||||
#md5# add 0*4(%rsp),$V[0] # accumulate hash value
|
||||
#md5# add 1*4(%rsp),$V[1]
|
||||
#md5# add 2*4(%rsp),$V[2]
|
||||
#md5# add 3*4(%rsp),$V[3]
|
||||
|
||||
#rc4# movdqu %xmm2,($out,$in0) # write RC4 output
|
||||
#rc4# movdqu %xmm3,16($out,$in0)
|
||||
#rc4# movdqu %xmm4,32($out,$in0)
|
||||
#rc4# movdqu %xmm5,48($out,$in0)
|
||||
#md5# lea 64($inp),$inp
|
||||
#rc4# lea 64($in0),$in0
|
||||
cmp 16(%rsp),$inp # are we done?
|
||||
jb .Loop
|
||||
|
||||
#md5# mov 24(%rsp),$len # restore pointer to MD5_CTX
|
||||
#rc4# sub $TX[0]#b,$YY#b # correct $YY
|
||||
#md5# mov $V[0],0*4($len) # write MD5_CTX
|
||||
#md5# mov $V[1],1*4($len)
|
||||
#md5# mov $V[2],2*4($len)
|
||||
#md5# mov $V[3],3*4($len)
|
||||
___
|
||||
$code.=<<___ if ($rc4 && (!$md5 || $D));
|
||||
mov 32(%rsp),$len # restore original $len
|
||||
and \$63,$len # remaining bytes
|
||||
jnz .Loop1
|
||||
jmp .Ldone
|
||||
|
||||
.align 16
|
||||
.Loop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($in0),$TY#b
|
||||
movb $TY#b,($out,$in0)
|
||||
lea 1($in0),$in0
|
||||
dec $len
|
||||
jnz .Loop1
|
||||
|
||||
.Ldone:
|
||||
___
|
||||
$code.=<<___;
|
||||
#rc4# sub \$1,$XX[0]#b
|
||||
#rc4# movl $XX[0]#d,-8($dat)
|
||||
#rc4# movl $YY#d,-4($dat)
|
||||
|
||||
mov 40(%rsp),%r15
|
||||
mov 48(%rsp),%r14
|
||||
mov 56(%rsp),%r13
|
||||
mov 64(%rsp),%r12
|
||||
mov 72(%rsp),%rbp
|
||||
mov 80(%rsp),%rbx
|
||||
lea 88(%rsp),%rsp
|
||||
.Lepilogue:
|
||||
.Labort:
|
||||
ret
|
||||
.size $func,.-$func
|
||||
___
|
||||
|
||||
if ($rc4 && $D) { # sole purpose of this section is to provide
|
||||
# option to use the generated module as drop-in
|
||||
# replacement for rc4-x86_64.pl for debugging
|
||||
# and testing purposes...
|
||||
my ($idx,$ido)=("%r8","%r9");
|
||||
my ($dat,$len,$inp)=("%rdi","%rsi","%rdx");
|
||||
|
||||
$code.=<<___;
|
||||
.globl RC4_set_key
|
||||
.type RC4_set_key,\@function,3
|
||||
.align 16
|
||||
RC4_set_key:
|
||||
lea 8($dat),$dat
|
||||
lea ($inp,$len),$inp
|
||||
neg $len
|
||||
mov $len,%rcx
|
||||
xor %eax,%eax
|
||||
xor $ido,$ido
|
||||
xor %r10,%r10
|
||||
xor %r11,%r11
|
||||
jmp .Lw1stloop
|
||||
|
||||
.align 16
|
||||
.Lw1stloop:
|
||||
mov %eax,($dat,%rax,4)
|
||||
add \$1,%al
|
||||
jnc .Lw1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lw2ndloop:
|
||||
mov ($dat,$ido,4),%r10d
|
||||
add ($inp,$len,1),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx,4),%r11d
|
||||
cmovz %rcx,$len
|
||||
mov %r10d,($dat,$idx,4)
|
||||
mov %r11d,($dat,$ido,4)
|
||||
add \$1,$ido#b
|
||||
jnc .Lw2ndloop
|
||||
|
||||
xor %eax,%eax
|
||||
mov %eax,-8($dat)
|
||||
mov %eax,-4($dat)
|
||||
ret
|
||||
.size RC4_set_key,.-RC4_set_key
|
||||
|
||||
.globl RC4_options
|
||||
.type RC4_options,\@abi-omnipotent
|
||||
.align 16
|
||||
RC4_options:
|
||||
lea .Lopts(%rip),%rax
|
||||
ret
|
||||
.align 64
|
||||
.Lopts:
|
||||
.asciz "rc4(64x,int)"
|
||||
.align 64
|
||||
.size RC4_options,.-RC4_options
|
||||
___
|
||||
}
|
||||
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
|
||||
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
|
||||
if ($win64) {
|
||||
my $rec="%rcx";
|
||||
my $frame="%rdx";
|
||||
my $context="%r8";
|
||||
my $disp="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.extern __imp_RtlVirtualUnwind
|
||||
.type se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 120($context),%rax # pull context->Rax
|
||||
mov 248($context),%rbx # pull context->Rip
|
||||
|
||||
lea .Lbody(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip<.Lbody
|
||||
jb .Lin_prologue
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
|
||||
lea .Lepilogue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip>=.Lepilogue
|
||||
jae .Lin_prologue
|
||||
|
||||
mov 40(%rax),%r15
|
||||
mov 48(%rax),%r14
|
||||
mov 56(%rax),%r13
|
||||
mov 64(%rax),%r12
|
||||
mov 72(%rax),%rbp
|
||||
mov 80(%rax),%rbx
|
||||
lea 88(%rax),%rax
|
||||
|
||||
mov %rbx,144($context) # restore context->Rbx
|
||||
mov %rbp,160($context) # restore context->Rbp
|
||||
mov %r12,216($context) # restore context->R12
|
||||
mov %r13,224($context) # restore context->R12
|
||||
mov %r14,232($context) # restore context->R14
|
||||
mov %r15,240($context) # restore context->R15
|
||||
|
||||
.Lin_prologue:
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rax,152($context) # restore context->Rsp
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
mov 40($disp),%rdi # disp->ContextRecord
|
||||
mov $context,%rsi # context
|
||||
mov \$154,%ecx # sizeof(CONTEXT)
|
||||
.long 0xa548f3fc # cld; rep movsq
|
||||
|
||||
mov $disp,%rsi
|
||||
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
||||
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
||||
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
||||
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
||||
mov 40(%rsi),%r10 # disp->ContextRecord
|
||||
lea 56(%rsi),%r11 # &disp->HandlerData
|
||||
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
||||
mov %r10,32(%rsp) # arg5
|
||||
mov %r11,40(%rsp) # arg6
|
||||
mov %r12,48(%rsp) # arg7
|
||||
mov %rcx,56(%rsp) # arg8, (NULL)
|
||||
call *__imp_RtlVirtualUnwind(%rip)
|
||||
|
||||
mov \$1,%eax # ExceptionContinueSearch
|
||||
add \$64,%rsp
|
||||
popfq
|
||||
pop %r15
|
||||
pop %r14
|
||||
pop %r13
|
||||
pop %r12
|
||||
pop %rbp
|
||||
pop %rbx
|
||||
pop %rdi
|
||||
pop %rsi
|
||||
ret
|
||||
.size se_handler,.-se_handler
|
||||
|
||||
.section .pdata
|
||||
.align 4
|
||||
.rva .LSEH_begin_$func
|
||||
.rva .LSEH_end_$func
|
||||
.rva .LSEH_info_$func
|
||||
|
||||
.section .xdata
|
||||
.align 8
|
||||
.LSEH_info_$func:
|
||||
.byte 9,0,0,0
|
||||
.rva se_handler
|
||||
___
|
||||
}
|
||||
|
||||
sub reg_part {
|
||||
my ($reg,$conv)=@_;
|
||||
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
|
||||
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
|
||||
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
|
||||
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
|
||||
return $reg;
|
||||
}
|
||||
|
||||
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
$code =~ s/pinsrw\s+\$0,/movd /gm;
|
||||
|
||||
$code =~ s/#md5#//gm if ($md5);
|
||||
$code =~ s/#rc4#//gm if ($rc4);
|
||||
|
||||
print $code;
|
||||
|
||||
close STDOUT;
|
314
jni/openssl/crypto/rc4/asm/rc4-parisc.pl
Normal file
314
jni/openssl/crypto/rc4/asm/rc4-parisc.pl
Normal file
@@ -0,0 +1,314 @@
|
||||
#!/usr/bin/env perl
|
||||
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
|
||||
# RC4 for PA-RISC.
|
||||
|
||||
# June 2009.
|
||||
#
|
||||
# Performance is 33% better than gcc 3.2 generated code on PA-7100LC.
|
||||
# For reference, [4x] unrolled loop is >40% faster than folded one.
|
||||
# It's possible to unroll loop 8 times on PA-RISC 2.0, but improvement
|
||||
# is believed to be not sufficient to justify the effort...
|
||||
#
|
||||
# Special thanks to polarhome.com for providing HP-UX account.
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
|
||||
$flavour = shift;
|
||||
$output = shift;
|
||||
open STDOUT,">$output";
|
||||
|
||||
if ($flavour =~ /64/) {
|
||||
$LEVEL ="2.0W";
|
||||
$SIZE_T =8;
|
||||
$FRAME_MARKER =80;
|
||||
$SAVED_RP =16;
|
||||
$PUSH ="std";
|
||||
$PUSHMA ="std,ma";
|
||||
$POP ="ldd";
|
||||
$POPMB ="ldd,mb";
|
||||
} else {
|
||||
$LEVEL ="1.0";
|
||||
$SIZE_T =4;
|
||||
$FRAME_MARKER =48;
|
||||
$SAVED_RP =20;
|
||||
$PUSH ="stw";
|
||||
$PUSHMA ="stwm";
|
||||
$POP ="ldw";
|
||||
$POPMB ="ldwm";
|
||||
}
|
||||
|
||||
$FRAME=4*$SIZE_T+$FRAME_MARKER; # 4 saved regs + frame marker
|
||||
# [+ argument transfer]
|
||||
$SZ=1; # defaults to RC4_CHAR
|
||||
if (open CONF,"<${dir}../../opensslconf.h") {
|
||||
while(<CONF>) {
|
||||
if (m/#\s*define\s+RC4_INT\s+(.*)/) {
|
||||
$SZ = ($1=~/char$/) ? 1 : 4;
|
||||
last;
|
||||
}
|
||||
}
|
||||
close CONF;
|
||||
}
|
||||
|
||||
if ($SZ==1) { # RC4_CHAR
|
||||
$LD="ldb";
|
||||
$LDX="ldbx";
|
||||
$MKX="addl";
|
||||
$ST="stb";
|
||||
} else { # RC4_INT (~5% faster than RC4_CHAR on PA-7100LC)
|
||||
$LD="ldw";
|
||||
$LDX="ldwx,s";
|
||||
$MKX="sh2addl";
|
||||
$ST="stw";
|
||||
}
|
||||
|
||||
$key="%r26";
|
||||
$len="%r25";
|
||||
$inp="%r24";
|
||||
$out="%r23";
|
||||
|
||||
@XX=("%r19","%r20");
|
||||
@TX=("%r21","%r22");
|
||||
$YY="%r28";
|
||||
$TY="%r29";
|
||||
|
||||
$acc="%r1";
|
||||
$ix="%r2";
|
||||
$iy="%r3";
|
||||
$dat0="%r4";
|
||||
$dat1="%r5";
|
||||
$rem="%r6";
|
||||
$mask="%r31";
|
||||
|
||||
sub unrolledloopbody {
|
||||
for ($i=0;$i<4;$i++) {
|
||||
$code.=<<___;
|
||||
ldo 1($XX[0]),$XX[1]
|
||||
`sprintf("$LDX %$TY(%$key),%$dat1") if ($i>0)`
|
||||
and $mask,$XX[1],$XX[1]
|
||||
$LDX $YY($key),$TY
|
||||
$MKX $YY,$key,$ix
|
||||
$LDX $XX[1]($key),$TX[1]
|
||||
$MKX $XX[0],$key,$iy
|
||||
$ST $TX[0],0($ix)
|
||||
comclr,<> $XX[1],$YY,%r0 ; conditional
|
||||
copy $TX[0],$TX[1] ; move
|
||||
`sprintf("%sdep %$dat1,%d,8,%$acc",$i==1?"z":"",8*($i-1)+7) if ($i>0)`
|
||||
$ST $TY,0($iy)
|
||||
addl $TX[0],$TY,$TY
|
||||
addl $TX[1],$YY,$YY
|
||||
and $mask,$TY,$TY
|
||||
and $mask,$YY,$YY
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
} }
|
||||
|
||||
sub foldedloop {
|
||||
my ($label,$count)=@_;
|
||||
$code.=<<___;
|
||||
$label
|
||||
$MKX $YY,$key,$iy
|
||||
$LDX $YY($key),$TY
|
||||
$MKX $XX[0],$key,$ix
|
||||
$ST $TX[0],0($iy)
|
||||
ldo 1($XX[0]),$XX[0]
|
||||
$ST $TY,0($ix)
|
||||
addl $TX[0],$TY,$TY
|
||||
ldbx $inp($out),$dat1
|
||||
and $mask,$TY,$TY
|
||||
and $mask,$XX[0],$XX[0]
|
||||
$LDX $TY($key),$acc
|
||||
$LDX $XX[0]($key),$TX[0]
|
||||
ldo 1($out),$out
|
||||
xor $dat1,$acc,$acc
|
||||
addl $TX[0],$YY,$YY
|
||||
stb $acc,-1($out)
|
||||
addib,<> -1,$count,$label ; $count is always small
|
||||
and $mask,$YY,$YY
|
||||
___
|
||||
}
|
||||
|
||||
$code=<<___;
|
||||
.LEVEL $LEVEL
|
||||
.SPACE \$TEXT\$
|
||||
.SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY
|
||||
|
||||
.EXPORT RC4,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
|
||||
RC4
|
||||
.PROC
|
||||
.CALLINFO FRAME=`$FRAME-4*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=6
|
||||
.ENTRY
|
||||
$PUSH %r2,-$SAVED_RP(%sp) ; standard prologue
|
||||
$PUSHMA %r3,$FRAME(%sp)
|
||||
$PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp)
|
||||
$PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp)
|
||||
$PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp)
|
||||
|
||||
cmpib,*= 0,$len,L\$abort
|
||||
sub $inp,$out,$inp ; distance between $inp and $out
|
||||
|
||||
$LD `0*$SZ`($key),$XX[0]
|
||||
$LD `1*$SZ`($key),$YY
|
||||
ldo `2*$SZ`($key),$key
|
||||
|
||||
ldi 0xff,$mask
|
||||
ldi 3,$dat0
|
||||
|
||||
ldo 1($XX[0]),$XX[0] ; warm up loop
|
||||
and $mask,$XX[0],$XX[0]
|
||||
$LDX $XX[0]($key),$TX[0]
|
||||
addl $TX[0],$YY,$YY
|
||||
cmpib,*>>= 6,$len,L\$oop1 ; is $len large enough to bother?
|
||||
and $mask,$YY,$YY
|
||||
|
||||
and,<> $out,$dat0,$rem ; is $out aligned?
|
||||
b L\$alignedout
|
||||
subi 4,$rem,$rem
|
||||
sub $len,$rem,$len
|
||||
___
|
||||
&foldedloop("L\$alignout",$rem); # process till $out is aligned
|
||||
|
||||
$code.=<<___;
|
||||
L\$alignedout ; $len is at least 4 here
|
||||
and,<> $inp,$dat0,$acc ; is $inp aligned?
|
||||
b L\$oop4
|
||||
sub $inp,$acc,$rem ; align $inp
|
||||
|
||||
sh3addl $acc,%r0,$acc
|
||||
subi 32,$acc,$acc
|
||||
mtctl $acc,%cr11 ; load %sar with vshd align factor
|
||||
ldwx $rem($out),$dat0
|
||||
ldo 4($rem),$rem
|
||||
L\$oop4misalignedinp
|
||||
___
|
||||
&unrolledloopbody();
|
||||
$code.=<<___;
|
||||
$LDX $TY($key),$ix
|
||||
ldwx $rem($out),$dat1
|
||||
ldo -4($len),$len
|
||||
or $ix,$acc,$acc ; last piece, no need to dep
|
||||
vshd $dat0,$dat1,$iy ; align data
|
||||
copy $dat1,$dat0
|
||||
xor $iy,$acc,$acc
|
||||
stw $acc,0($out)
|
||||
cmpib,*<< 3,$len,L\$oop4misalignedinp
|
||||
ldo 4($out),$out
|
||||
cmpib,*= 0,$len,L\$done
|
||||
nop
|
||||
b L\$oop1
|
||||
nop
|
||||
|
||||
.ALIGN 8
|
||||
L\$oop4
|
||||
___
|
||||
&unrolledloopbody();
|
||||
$code.=<<___;
|
||||
$LDX $TY($key),$ix
|
||||
ldwx $inp($out),$dat0
|
||||
ldo -4($len),$len
|
||||
or $ix,$acc,$acc ; last piece, no need to dep
|
||||
xor $dat0,$acc,$acc
|
||||
stw $acc,0($out)
|
||||
cmpib,*<< 3,$len,L\$oop4
|
||||
ldo 4($out),$out
|
||||
cmpib,*= 0,$len,L\$done
|
||||
nop
|
||||
___
|
||||
&foldedloop("L\$oop1",$len);
|
||||
$code.=<<___;
|
||||
L\$done
|
||||
$POP `-$FRAME-$SAVED_RP`(%sp),%r2
|
||||
ldo -1($XX[0]),$XX[0] ; chill out loop
|
||||
sub $YY,$TX[0],$YY
|
||||
and $mask,$XX[0],$XX[0]
|
||||
and $mask,$YY,$YY
|
||||
$ST $XX[0],`-2*$SZ`($key)
|
||||
$ST $YY,`-1*$SZ`($key)
|
||||
$POP `-$FRAME+1*$SIZE_T`(%sp),%r4
|
||||
$POP `-$FRAME+2*$SIZE_T`(%sp),%r5
|
||||
$POP `-$FRAME+3*$SIZE_T`(%sp),%r6
|
||||
L\$abort
|
||||
bv (%r2)
|
||||
.EXIT
|
||||
$POPMB -$FRAME(%sp),%r3
|
||||
.PROCEND
|
||||
___
|
||||
|
||||
$code.=<<___;
|
||||
|
||||
.EXPORT private_RC4_set_key,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR
|
||||
.ALIGN 8
|
||||
private_RC4_set_key
|
||||
.PROC
|
||||
.CALLINFO NO_CALLS
|
||||
.ENTRY
|
||||
$ST %r0,`0*$SZ`($key)
|
||||
$ST %r0,`1*$SZ`($key)
|
||||
ldo `2*$SZ`($key),$key
|
||||
copy %r0,@XX[0]
|
||||
L\$1st
|
||||
$ST @XX[0],0($key)
|
||||
ldo 1(@XX[0]),@XX[0]
|
||||
bb,>= @XX[0],`31-8`,L\$1st ; @XX[0]<256
|
||||
ldo $SZ($key),$key
|
||||
|
||||
ldo `-256*$SZ`($key),$key ; rewind $key
|
||||
addl $len,$inp,$inp ; $inp to point at the end
|
||||
sub %r0,$len,%r23 ; inverse index
|
||||
copy %r0,@XX[0]
|
||||
copy %r0,@XX[1]
|
||||
ldi 0xff,$mask
|
||||
|
||||
L\$2nd
|
||||
$LDX @XX[0]($key),@TX[0]
|
||||
ldbx %r23($inp),@TX[1]
|
||||
addi,nuv 1,%r23,%r23 ; increment and conditional
|
||||
sub %r0,$len,%r23 ; inverse index
|
||||
addl @TX[0],@XX[1],@XX[1]
|
||||
addl @TX[1],@XX[1],@XX[1]
|
||||
and $mask,@XX[1],@XX[1]
|
||||
$MKX @XX[0],$key,$TY
|
||||
$LDX @XX[1]($key),@TX[1]
|
||||
$MKX @XX[1],$key,$YY
|
||||
ldo 1(@XX[0]),@XX[0]
|
||||
$ST @TX[0],0($YY)
|
||||
bb,>= @XX[0],`31-8`,L\$2nd ; @XX[0]<256
|
||||
$ST @TX[1],0($TY)
|
||||
|
||||
bv,n (%r2)
|
||||
.EXIT
|
||||
nop
|
||||
.PROCEND
|
||||
|
||||
.EXPORT RC4_options,ENTRY
|
||||
.ALIGN 8
|
||||
RC4_options
|
||||
.PROC
|
||||
.CALLINFO NO_CALLS
|
||||
.ENTRY
|
||||
blr %r0,%r28
|
||||
ldi 3,%r1
|
||||
L\$pic
|
||||
andcm %r28,%r1,%r28
|
||||
bv (%r2)
|
||||
.EXIT
|
||||
ldo L\$opts-L\$pic(%r28),%r28
|
||||
.PROCEND
|
||||
.ALIGN 8
|
||||
L\$opts
|
||||
.STRINGZ "rc4(4x,`$SZ==1?"char":"int"`)"
|
||||
.STRINGZ "RC4 for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>"
|
||||
___
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
$code =~ s/cmpib,\*/comib,/gm if ($SIZE_T==4);
|
||||
$code =~ s/\bbv\b/bve/gm if ($SIZE_T==8);
|
||||
|
||||
print $code;
|
||||
close STDOUT;
|
234
jni/openssl/crypto/rc4/asm/rc4-s390x.pl
Normal file
234
jni/openssl/crypto/rc4/asm/rc4-s390x.pl
Normal file
@@ -0,0 +1,234 @@
|
||||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# February 2009
|
||||
#
|
||||
# Performance is 2x of gcc 3.4.6 on z10. Coding "secret" is to
|
||||
# "cluster" Address Generation Interlocks, so that one pipeline stall
|
||||
# resolves several dependencies.
|
||||
|
||||
# November 2010.
|
||||
#
|
||||
# Adapt for -m31 build. If kernel supports what's called "highgprs"
|
||||
# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
|
||||
# instructions and achieve "64-bit" performance even in 31-bit legacy
|
||||
# application context. The feature is not specific to any particular
|
||||
# processor, as long as it's "z-CPU". Latter implies that the code
|
||||
# remains z/Architecture specific. On z990 it was measured to perform
|
||||
# 50% better than code generated by gcc 4.3.
|
||||
|
||||
$flavour = shift;
|
||||
|
||||
if ($flavour =~ /3[12]/) {
|
||||
$SIZE_T=4;
|
||||
$g="";
|
||||
} else {
|
||||
$SIZE_T=8;
|
||||
$g="g";
|
||||
}
|
||||
|
||||
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
||||
open STDOUT,">$output";
|
||||
|
||||
$rp="%r14";
|
||||
$sp="%r15";
|
||||
$code=<<___;
|
||||
.text
|
||||
|
||||
___
|
||||
|
||||
# void RC4(RC4_KEY *key,size_t len,const void *inp,void *out)
|
||||
{
|
||||
$acc="%r0";
|
||||
$cnt="%r1";
|
||||
$key="%r2";
|
||||
$len="%r3";
|
||||
$inp="%r4";
|
||||
$out="%r5";
|
||||
|
||||
@XX=("%r6","%r7");
|
||||
@TX=("%r8","%r9");
|
||||
$YY="%r10";
|
||||
$TY="%r11";
|
||||
|
||||
$code.=<<___;
|
||||
.globl RC4
|
||||
.type RC4,\@function
|
||||
.align 64
|
||||
RC4:
|
||||
stm${g} %r6,%r11,6*$SIZE_T($sp)
|
||||
___
|
||||
$code.=<<___ if ($flavour =~ /3[12]/);
|
||||
llgfr $len,$len
|
||||
___
|
||||
$code.=<<___;
|
||||
llgc $XX[0],0($key)
|
||||
llgc $YY,1($key)
|
||||
la $XX[0],1($XX[0])
|
||||
nill $XX[0],0xff
|
||||
srlg $cnt,$len,3
|
||||
ltgr $cnt,$cnt
|
||||
llgc $TX[0],2($XX[0],$key)
|
||||
jz .Lshort
|
||||
j .Loop8
|
||||
|
||||
.align 64
|
||||
.Loop8:
|
||||
___
|
||||
for ($i=0;$i<8;$i++) {
|
||||
$code.=<<___;
|
||||
la $YY,0($YY,$TX[0]) # $i
|
||||
nill $YY,255
|
||||
la $XX[1],1($XX[0])
|
||||
nill $XX[1],255
|
||||
___
|
||||
$code.=<<___ if ($i==1);
|
||||
llgc $acc,2($TY,$key)
|
||||
___
|
||||
$code.=<<___ if ($i>1);
|
||||
sllg $acc,$acc,8
|
||||
ic $acc,2($TY,$key)
|
||||
___
|
||||
$code.=<<___;
|
||||
llgc $TY,2($YY,$key)
|
||||
stc $TX[0],2($YY,$key)
|
||||
llgc $TX[1],2($XX[1],$key)
|
||||
stc $TY,2($XX[0],$key)
|
||||
cr $XX[1],$YY
|
||||
jne .Lcmov$i
|
||||
la $TX[1],0($TX[0])
|
||||
.Lcmov$i:
|
||||
la $TY,0($TY,$TX[0])
|
||||
nill $TY,255
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
|
||||
$code.=<<___;
|
||||
lg $TX[1],0($inp)
|
||||
sllg $acc,$acc,8
|
||||
la $inp,8($inp)
|
||||
ic $acc,2($TY,$key)
|
||||
xgr $acc,$TX[1]
|
||||
stg $acc,0($out)
|
||||
la $out,8($out)
|
||||
brctg $cnt,.Loop8
|
||||
|
||||
.Lshort:
|
||||
lghi $acc,7
|
||||
ngr $len,$acc
|
||||
jz .Lexit
|
||||
j .Loop1
|
||||
|
||||
.align 16
|
||||
.Loop1:
|
||||
la $YY,0($YY,$TX[0])
|
||||
nill $YY,255
|
||||
llgc $TY,2($YY,$key)
|
||||
stc $TX[0],2($YY,$key)
|
||||
stc $TY,2($XX[0],$key)
|
||||
ar $TY,$TX[0]
|
||||
ahi $XX[0],1
|
||||
nill $TY,255
|
||||
nill $XX[0],255
|
||||
llgc $acc,0($inp)
|
||||
la $inp,1($inp)
|
||||
llgc $TY,2($TY,$key)
|
||||
llgc $TX[0],2($XX[0],$key)
|
||||
xr $acc,$TY
|
||||
stc $acc,0($out)
|
||||
la $out,1($out)
|
||||
brct $len,.Loop1
|
||||
|
||||
.Lexit:
|
||||
ahi $XX[0],-1
|
||||
stc $XX[0],0($key)
|
||||
stc $YY,1($key)
|
||||
lm${g} %r6,%r11,6*$SIZE_T($sp)
|
||||
br $rp
|
||||
.size RC4,.-RC4
|
||||
.string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>"
|
||||
|
||||
___
|
||||
}
|
||||
|
||||
# void RC4_set_key(RC4_KEY *key,unsigned int len,const void *inp)
|
||||
{
|
||||
$cnt="%r0";
|
||||
$idx="%r1";
|
||||
$key="%r2";
|
||||
$len="%r3";
|
||||
$inp="%r4";
|
||||
$acc="%r5";
|
||||
$dat="%r6";
|
||||
$ikey="%r7";
|
||||
$iinp="%r8";
|
||||
|
||||
$code.=<<___;
|
||||
.globl private_RC4_set_key
|
||||
.type private_RC4_set_key,\@function
|
||||
.align 64
|
||||
private_RC4_set_key:
|
||||
stm${g} %r6,%r8,6*$SIZE_T($sp)
|
||||
lhi $cnt,256
|
||||
la $idx,0(%r0)
|
||||
sth $idx,0($key)
|
||||
.align 4
|
||||
.L1stloop:
|
||||
stc $idx,2($idx,$key)
|
||||
la $idx,1($idx)
|
||||
brct $cnt,.L1stloop
|
||||
|
||||
lghi $ikey,-256
|
||||
lr $cnt,$len
|
||||
la $iinp,0(%r0)
|
||||
la $idx,0(%r0)
|
||||
.align 16
|
||||
.L2ndloop:
|
||||
llgc $acc,2+256($ikey,$key)
|
||||
llgc $dat,0($iinp,$inp)
|
||||
la $idx,0($idx,$acc)
|
||||
la $ikey,1($ikey)
|
||||
la $idx,0($idx,$dat)
|
||||
nill $idx,255
|
||||
la $iinp,1($iinp)
|
||||
tml $ikey,255
|
||||
llgc $dat,2($idx,$key)
|
||||
stc $dat,2+256-1($ikey,$key)
|
||||
stc $acc,2($idx,$key)
|
||||
jz .Ldone
|
||||
brct $cnt,.L2ndloop
|
||||
lr $cnt,$len
|
||||
la $iinp,0(%r0)
|
||||
j .L2ndloop
|
||||
.Ldone:
|
||||
lm${g} %r6,%r8,6*$SIZE_T($sp)
|
||||
br $rp
|
||||
.size private_RC4_set_key,.-private_RC4_set_key
|
||||
|
||||
___
|
||||
}
|
||||
|
||||
# const char *RC4_options()
|
||||
$code.=<<___;
|
||||
.globl RC4_options
|
||||
.type RC4_options,\@function
|
||||
.align 16
|
||||
RC4_options:
|
||||
larl %r2,.Loptions
|
||||
br %r14
|
||||
.size RC4_options,.-RC4_options
|
||||
.section .rodata
|
||||
.Loptions:
|
||||
.align 8
|
||||
.string "rc4(8x,char)"
|
||||
___
|
||||
|
||||
print $code;
|
||||
close STDOUT; # force flush
|
615
jni/openssl/crypto/rc4/asm/rc4-x86_64.S
Normal file
615
jni/openssl/crypto/rc4/asm/rc4-x86_64.S
Normal file
@@ -0,0 +1,615 @@
|
||||
.text
|
||||
|
||||
|
||||
.globl RC4
|
||||
.type RC4,@function
|
||||
.align 16
|
||||
RC4: orq %rsi,%rsi
|
||||
jne .Lentry
|
||||
.byte 0xf3,0xc3
|
||||
.Lentry:
|
||||
pushq %rbx
|
||||
pushq %r12
|
||||
pushq %r13
|
||||
.Lprologue:
|
||||
movq %rsi,%r11
|
||||
movq %rdx,%r12
|
||||
movq %rcx,%r13
|
||||
xorq %r10,%r10
|
||||
xorq %rcx,%rcx
|
||||
|
||||
leaq 8(%rdi),%rdi
|
||||
movb -8(%rdi),%r10b
|
||||
movb -4(%rdi),%cl
|
||||
cmpl $-1,256(%rdi)
|
||||
je .LRC4_CHAR
|
||||
movl OPENSSL_ia32cap_P(%rip),%r8d
|
||||
xorq %rbx,%rbx
|
||||
incb %r10b
|
||||
subq %r10,%rbx
|
||||
subq %r12,%r13
|
||||
movl (%rdi,%r10,4),%eax
|
||||
testq $-16,%r11
|
||||
jz .Lloop1
|
||||
btl $30,%r8d
|
||||
jc .Lintel
|
||||
andq $7,%rbx
|
||||
leaq 1(%r10),%rsi
|
||||
jz .Loop8
|
||||
subq %rbx,%r11
|
||||
.Loop8_warmup:
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
movl %edx,(%rdi,%r10,4)
|
||||
addb %dl,%al
|
||||
incb %r10b
|
||||
movl (%rdi,%rax,4),%edx
|
||||
movl (%rdi,%r10,4),%eax
|
||||
xorb (%r12),%dl
|
||||
movb %dl,(%r13,%r12,1)
|
||||
leaq 1(%r12),%r12
|
||||
decq %rbx
|
||||
jnz .Loop8_warmup
|
||||
|
||||
leaq 1(%r10),%rsi
|
||||
jmp .Loop8
|
||||
.align 16
|
||||
.Loop8:
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
movl 0(%rdi,%rsi,4),%ebx
|
||||
rorq $8,%r8
|
||||
movl %edx,0(%rdi,%r10,4)
|
||||
addb %al,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb %bl,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
movl 4(%rdi,%rsi,4),%eax
|
||||
rorq $8,%r8
|
||||
movl %edx,4(%rdi,%r10,4)
|
||||
addb %bl,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
movl 8(%rdi,%rsi,4),%ebx
|
||||
rorq $8,%r8
|
||||
movl %edx,8(%rdi,%r10,4)
|
||||
addb %al,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb %bl,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
movl 12(%rdi,%rsi,4),%eax
|
||||
rorq $8,%r8
|
||||
movl %edx,12(%rdi,%r10,4)
|
||||
addb %bl,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
movl 16(%rdi,%rsi,4),%ebx
|
||||
rorq $8,%r8
|
||||
movl %edx,16(%rdi,%r10,4)
|
||||
addb %al,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb %bl,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
movl 20(%rdi,%rsi,4),%eax
|
||||
rorq $8,%r8
|
||||
movl %edx,20(%rdi,%r10,4)
|
||||
addb %bl,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
movl 24(%rdi,%rsi,4),%ebx
|
||||
rorq $8,%r8
|
||||
movl %edx,24(%rdi,%r10,4)
|
||||
addb %al,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb $8,%sil
|
||||
addb %bl,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
movl -4(%rdi,%rsi,4),%eax
|
||||
rorq $8,%r8
|
||||
movl %edx,28(%rdi,%r10,4)
|
||||
addb %bl,%dl
|
||||
movb (%rdi,%rdx,4),%r8b
|
||||
addb $8,%r10b
|
||||
rorq $8,%r8
|
||||
subq $8,%r11
|
||||
|
||||
xorq (%r12),%r8
|
||||
movq %r8,(%r13,%r12,1)
|
||||
leaq 8(%r12),%r12
|
||||
|
||||
testq $-8,%r11
|
||||
jnz .Loop8
|
||||
cmpq $0,%r11
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lintel:
|
||||
testq $-32,%r11
|
||||
jz .Lloop1
|
||||
andq $15,%rbx
|
||||
jz .Loop16_is_hot
|
||||
subq %rbx,%r11
|
||||
.Loop16_warmup:
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
movl %edx,(%rdi,%r10,4)
|
||||
addb %dl,%al
|
||||
incb %r10b
|
||||
movl (%rdi,%rax,4),%edx
|
||||
movl (%rdi,%r10,4),%eax
|
||||
xorb (%r12),%dl
|
||||
movb %dl,(%r13,%r12,1)
|
||||
leaq 1(%r12),%r12
|
||||
decq %rbx
|
||||
jnz .Loop16_warmup
|
||||
|
||||
movq %rcx,%rbx
|
||||
xorq %rcx,%rcx
|
||||
movb %bl,%cl
|
||||
|
||||
.Loop16_is_hot:
|
||||
leaq (%rdi,%r10,4),%rsi
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
pxor %xmm0,%xmm0
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 4(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,0(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $0,(%rdi,%rax,4),%xmm0
|
||||
jmp .Loop16_enter
|
||||
.align 16
|
||||
.Loop16:
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
pxor %xmm0,%xmm2
|
||||
psllq $8,%xmm1
|
||||
pxor %xmm0,%xmm0
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 4(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,0(%rsi)
|
||||
pxor %xmm1,%xmm2
|
||||
addb %bl,%cl
|
||||
pinsrw $0,(%rdi,%rax,4),%xmm0
|
||||
movdqu %xmm2,(%r13,%r12,1)
|
||||
leaq 16(%r12),%r12
|
||||
.Loop16_enter:
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
pxor %xmm1,%xmm1
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movl 8(%rsi),%eax
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,4(%rsi)
|
||||
addb %al,%cl
|
||||
pinsrw $0,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 12(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,8(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $1,(%rdi,%rax,4),%xmm0
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movl 16(%rsi),%eax
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,12(%rsi)
|
||||
addb %al,%cl
|
||||
pinsrw $1,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 20(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,16(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $2,(%rdi,%rax,4),%xmm0
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movl 24(%rsi),%eax
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,20(%rsi)
|
||||
addb %al,%cl
|
||||
pinsrw $2,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 28(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,24(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $3,(%rdi,%rax,4),%xmm0
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movl 32(%rsi),%eax
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,28(%rsi)
|
||||
addb %al,%cl
|
||||
pinsrw $3,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 36(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,32(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $4,(%rdi,%rax,4),%xmm0
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movl 40(%rsi),%eax
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,36(%rsi)
|
||||
addb %al,%cl
|
||||
pinsrw $4,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 44(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,40(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $5,(%rdi,%rax,4),%xmm0
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movl 48(%rsi),%eax
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,44(%rsi)
|
||||
addb %al,%cl
|
||||
pinsrw $5,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 52(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,48(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $6,(%rdi,%rax,4),%xmm0
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movl 56(%rsi),%eax
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,52(%rsi)
|
||||
addb %al,%cl
|
||||
pinsrw $6,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
addb %dl,%al
|
||||
movl 60(%rsi),%ebx
|
||||
movzbl %al,%eax
|
||||
movl %edx,56(%rsi)
|
||||
addb %bl,%cl
|
||||
pinsrw $7,(%rdi,%rax,4),%xmm0
|
||||
addb $16,%r10b
|
||||
movdqu (%r12),%xmm2
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %ebx,(%rdi,%rcx,4)
|
||||
addb %dl,%bl
|
||||
movzbl %bl,%ebx
|
||||
movl %edx,60(%rsi)
|
||||
leaq (%rdi,%r10,4),%rsi
|
||||
pinsrw $7,(%rdi,%rbx,4),%xmm1
|
||||
movl (%rsi),%eax
|
||||
movq %rcx,%rbx
|
||||
xorq %rcx,%rcx
|
||||
subq $16,%r11
|
||||
movb %bl,%cl
|
||||
testq $-16,%r11
|
||||
jnz .Loop16
|
||||
|
||||
psllq $8,%xmm1
|
||||
pxor %xmm0,%xmm2
|
||||
pxor %xmm1,%xmm2
|
||||
movdqu %xmm2,(%r13,%r12,1)
|
||||
leaq 16(%r12),%r12
|
||||
|
||||
cmpq $0,%r11
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lloop1:
|
||||
addb %al,%cl
|
||||
movl (%rdi,%rcx,4),%edx
|
||||
movl %eax,(%rdi,%rcx,4)
|
||||
movl %edx,(%rdi,%r10,4)
|
||||
addb %dl,%al
|
||||
incb %r10b
|
||||
movl (%rdi,%rax,4),%edx
|
||||
movl (%rdi,%r10,4),%eax
|
||||
xorb (%r12),%dl
|
||||
movb %dl,(%r13,%r12,1)
|
||||
leaq 1(%r12),%r12
|
||||
decq %r11
|
||||
jnz .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.LRC4_CHAR:
|
||||
addb $1,%r10b
|
||||
movzbl (%rdi,%r10,1),%eax
|
||||
testq $-8,%r11
|
||||
jz .Lcloop1
|
||||
jmp .Lcloop8
|
||||
.align 16
|
||||
.Lcloop8:
|
||||
movl (%r12),%r8d
|
||||
movl 4(%r12),%r9d
|
||||
addb %al,%cl
|
||||
leaq 1(%r10),%rsi
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %sil,%esi
|
||||
movzbl (%rdi,%rsi,1),%ebx
|
||||
movb %al,(%rdi,%rcx,1)
|
||||
cmpq %rsi,%rcx
|
||||
movb %dl,(%rdi,%r10,1)
|
||||
jne .Lcmov0
|
||||
movq %rax,%rbx
|
||||
.Lcmov0:
|
||||
addb %al,%dl
|
||||
xorb (%rdi,%rdx,1),%r8b
|
||||
rorl $8,%r8d
|
||||
addb %bl,%cl
|
||||
leaq 1(%rsi),%r10
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %r10b,%r10d
|
||||
movzbl (%rdi,%r10,1),%eax
|
||||
movb %bl,(%rdi,%rcx,1)
|
||||
cmpq %r10,%rcx
|
||||
movb %dl,(%rdi,%rsi,1)
|
||||
jne .Lcmov1
|
||||
movq %rbx,%rax
|
||||
.Lcmov1:
|
||||
addb %bl,%dl
|
||||
xorb (%rdi,%rdx,1),%r8b
|
||||
rorl $8,%r8d
|
||||
addb %al,%cl
|
||||
leaq 1(%r10),%rsi
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %sil,%esi
|
||||
movzbl (%rdi,%rsi,1),%ebx
|
||||
movb %al,(%rdi,%rcx,1)
|
||||
cmpq %rsi,%rcx
|
||||
movb %dl,(%rdi,%r10,1)
|
||||
jne .Lcmov2
|
||||
movq %rax,%rbx
|
||||
.Lcmov2:
|
||||
addb %al,%dl
|
||||
xorb (%rdi,%rdx,1),%r8b
|
||||
rorl $8,%r8d
|
||||
addb %bl,%cl
|
||||
leaq 1(%rsi),%r10
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %r10b,%r10d
|
||||
movzbl (%rdi,%r10,1),%eax
|
||||
movb %bl,(%rdi,%rcx,1)
|
||||
cmpq %r10,%rcx
|
||||
movb %dl,(%rdi,%rsi,1)
|
||||
jne .Lcmov3
|
||||
movq %rbx,%rax
|
||||
.Lcmov3:
|
||||
addb %bl,%dl
|
||||
xorb (%rdi,%rdx,1),%r8b
|
||||
rorl $8,%r8d
|
||||
addb %al,%cl
|
||||
leaq 1(%r10),%rsi
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %sil,%esi
|
||||
movzbl (%rdi,%rsi,1),%ebx
|
||||
movb %al,(%rdi,%rcx,1)
|
||||
cmpq %rsi,%rcx
|
||||
movb %dl,(%rdi,%r10,1)
|
||||
jne .Lcmov4
|
||||
movq %rax,%rbx
|
||||
.Lcmov4:
|
||||
addb %al,%dl
|
||||
xorb (%rdi,%rdx,1),%r9b
|
||||
rorl $8,%r9d
|
||||
addb %bl,%cl
|
||||
leaq 1(%rsi),%r10
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %r10b,%r10d
|
||||
movzbl (%rdi,%r10,1),%eax
|
||||
movb %bl,(%rdi,%rcx,1)
|
||||
cmpq %r10,%rcx
|
||||
movb %dl,(%rdi,%rsi,1)
|
||||
jne .Lcmov5
|
||||
movq %rbx,%rax
|
||||
.Lcmov5:
|
||||
addb %bl,%dl
|
||||
xorb (%rdi,%rdx,1),%r9b
|
||||
rorl $8,%r9d
|
||||
addb %al,%cl
|
||||
leaq 1(%r10),%rsi
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %sil,%esi
|
||||
movzbl (%rdi,%rsi,1),%ebx
|
||||
movb %al,(%rdi,%rcx,1)
|
||||
cmpq %rsi,%rcx
|
||||
movb %dl,(%rdi,%r10,1)
|
||||
jne .Lcmov6
|
||||
movq %rax,%rbx
|
||||
.Lcmov6:
|
||||
addb %al,%dl
|
||||
xorb (%rdi,%rdx,1),%r9b
|
||||
rorl $8,%r9d
|
||||
addb %bl,%cl
|
||||
leaq 1(%rsi),%r10
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movzbl %r10b,%r10d
|
||||
movzbl (%rdi,%r10,1),%eax
|
||||
movb %bl,(%rdi,%rcx,1)
|
||||
cmpq %r10,%rcx
|
||||
movb %dl,(%rdi,%rsi,1)
|
||||
jne .Lcmov7
|
||||
movq %rbx,%rax
|
||||
.Lcmov7:
|
||||
addb %bl,%dl
|
||||
xorb (%rdi,%rdx,1),%r9b
|
||||
rorl $8,%r9d
|
||||
leaq -8(%r11),%r11
|
||||
movl %r8d,(%r13)
|
||||
leaq 8(%r12),%r12
|
||||
movl %r9d,4(%r13)
|
||||
leaq 8(%r13),%r13
|
||||
|
||||
testq $-8,%r11
|
||||
jnz .Lcloop8
|
||||
cmpq $0,%r11
|
||||
jne .Lcloop1
|
||||
jmp .Lexit
|
||||
.align 16
|
||||
.Lcloop1:
|
||||
addb %al,%cl
|
||||
movzbl %cl,%ecx
|
||||
movzbl (%rdi,%rcx,1),%edx
|
||||
movb %al,(%rdi,%rcx,1)
|
||||
movb %dl,(%rdi,%r10,1)
|
||||
addb %al,%dl
|
||||
addb $1,%r10b
|
||||
movzbl %dl,%edx
|
||||
movzbl %r10b,%r10d
|
||||
movzbl (%rdi,%rdx,1),%edx
|
||||
movzbl (%rdi,%r10,1),%eax
|
||||
xorb (%r12),%dl
|
||||
leaq 1(%r12),%r12
|
||||
movb %dl,(%r13)
|
||||
leaq 1(%r13),%r13
|
||||
subq $1,%r11
|
||||
jnz .Lcloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lexit:
|
||||
subb $1,%r10b
|
||||
movl %r10d,-8(%rdi)
|
||||
movl %ecx,-4(%rdi)
|
||||
|
||||
movq (%rsp),%r13
|
||||
movq 8(%rsp),%r12
|
||||
movq 16(%rsp),%rbx
|
||||
addq $24,%rsp
|
||||
.Lepilogue:
|
||||
.byte 0xf3,0xc3
|
||||
.size RC4,.-RC4
|
||||
.globl private_RC4_set_key
|
||||
.type private_RC4_set_key,@function
|
||||
.align 16
|
||||
private_RC4_set_key:
|
||||
leaq 8(%rdi),%rdi
|
||||
leaq (%rdx,%rsi,1),%rdx
|
||||
negq %rsi
|
||||
movq %rsi,%rcx
|
||||
xorl %eax,%eax
|
||||
xorq %r9,%r9
|
||||
xorq %r10,%r10
|
||||
xorq %r11,%r11
|
||||
|
||||
movl OPENSSL_ia32cap_P(%rip),%r8d
|
||||
btl $20,%r8d
|
||||
jc .Lc1stloop
|
||||
jmp .Lw1stloop
|
||||
|
||||
.align 16
|
||||
.Lw1stloop:
|
||||
movl %eax,(%rdi,%rax,4)
|
||||
addb $1,%al
|
||||
jnc .Lw1stloop
|
||||
|
||||
xorq %r9,%r9
|
||||
xorq %r8,%r8
|
||||
.align 16
|
||||
.Lw2ndloop:
|
||||
movl (%rdi,%r9,4),%r10d
|
||||
addb (%rdx,%rsi,1),%r8b
|
||||
addb %r10b,%r8b
|
||||
addq $1,%rsi
|
||||
movl (%rdi,%r8,4),%r11d
|
||||
cmovzq %rcx,%rsi
|
||||
movl %r10d,(%rdi,%r8,4)
|
||||
movl %r11d,(%rdi,%r9,4)
|
||||
addb $1,%r9b
|
||||
jnc .Lw2ndloop
|
||||
jmp .Lexit_key
|
||||
|
||||
.align 16
|
||||
.Lc1stloop:
|
||||
movb %al,(%rdi,%rax,1)
|
||||
addb $1,%al
|
||||
jnc .Lc1stloop
|
||||
|
||||
xorq %r9,%r9
|
||||
xorq %r8,%r8
|
||||
.align 16
|
||||
.Lc2ndloop:
|
||||
movb (%rdi,%r9,1),%r10b
|
||||
addb (%rdx,%rsi,1),%r8b
|
||||
addb %r10b,%r8b
|
||||
addq $1,%rsi
|
||||
movb (%rdi,%r8,1),%r11b
|
||||
jnz .Lcnowrap
|
||||
movq %rcx,%rsi
|
||||
.Lcnowrap:
|
||||
movb %r10b,(%rdi,%r8,1)
|
||||
movb %r11b,(%rdi,%r9,1)
|
||||
addb $1,%r9b
|
||||
jnc .Lc2ndloop
|
||||
movl $-1,256(%rdi)
|
||||
|
||||
.align 16
|
||||
.Lexit_key:
|
||||
xorl %eax,%eax
|
||||
movl %eax,-8(%rdi)
|
||||
movl %eax,-4(%rdi)
|
||||
.byte 0xf3,0xc3
|
||||
.size private_RC4_set_key,.-private_RC4_set_key
|
||||
|
||||
.globl RC4_options
|
||||
.type RC4_options,@function
|
||||
.align 16
|
||||
RC4_options:
|
||||
leaq .Lopts(%rip),%rax
|
||||
movl OPENSSL_ia32cap_P(%rip),%edx
|
||||
btl $20,%edx
|
||||
jc .L8xchar
|
||||
btl $30,%edx
|
||||
jnc .Ldone
|
||||
addq $25,%rax
|
||||
.byte 0xf3,0xc3
|
||||
.L8xchar:
|
||||
addq $12,%rax
|
||||
.Ldone:
|
||||
.byte 0xf3,0xc3
|
||||
.align 64
|
||||
.Lopts:
|
||||
.byte 114,99,52,40,56,120,44,105,110,116,41,0
|
||||
.byte 114,99,52,40,56,120,44,99,104,97,114,41,0
|
||||
.byte 114,99,52,40,49,54,120,44,105,110,116,41,0
|
||||
.byte 82,67,52,32,102,111,114,32,120,56,54,95,54,52,44,32,67,82,89,80,84,79,71,65,77,83,32,98,121,32,60,97,112,112,114,111,64,111,112,101,110,115,115,108,46,111,114,103,62,0
|
||||
.align 64
|
||||
.size RC4_options,.-RC4_options
|
677
jni/openssl/crypto/rc4/asm/rc4-x86_64.pl
Normal file
677
jni/openssl/crypto/rc4/asm/rc4-x86_64.pl
Normal file
@@ -0,0 +1,677 @@
|
||||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# July 2004
|
||||
#
|
||||
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
|
||||
# "hand-coded assembler"] doesn't stand for the whole improvement
|
||||
# coefficient. It turned out that eliminating RC4_CHAR from config
|
||||
# line results in ~40% improvement (yes, even for C implementation).
|
||||
# Presumably it has everything to do with AMD cache architecture and
|
||||
# RAW or whatever penalties. Once again! The module *requires* config
|
||||
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
|
||||
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
|
||||
# I simply 'inc %r8b'. Even though optimization manual discourages
|
||||
# to operate on partial registers, it turned out to be the best bet.
|
||||
# At least for AMD... How IA32E would perform remains to be seen...
|
||||
|
||||
# November 2004
|
||||
#
|
||||
# As was shown by Marc Bevand reordering of couple of load operations
|
||||
# results in even higher performance gain of 3.3x:-) At least on
|
||||
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
|
||||
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
|
||||
# Latter means that if you want to *estimate* what to expect from
|
||||
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
|
||||
|
||||
# November 2004
|
||||
#
|
||||
# Intel P4 EM64T core was found to run the AMD64 code really slow...
|
||||
# The only way to achieve comparable performance on P4 was to keep
|
||||
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
|
||||
# compose blended code, which would perform even within 30% marginal
|
||||
# on either AMD and Intel platforms, I implement both cases. See
|
||||
# rc4_skey.c for further details...
|
||||
|
||||
# April 2005
|
||||
#
|
||||
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
|
||||
# those with add/sub results in 50% performance improvement of folded
|
||||
# loop...
|
||||
|
||||
# May 2005
|
||||
#
|
||||
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
|
||||
# performance by >30% [unlike P4 32-bit case that is]. But this is
|
||||
# provided that loads are reordered even more aggressively! Both code
|
||||
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
|
||||
# as my IA-64 implementation. On Opteron this resulted in modest 5%
|
||||
# improvement [I had to test it], while final Intel P4 performance
|
||||
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
|
||||
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
|
||||
# RC4_INT code-path. While if executed on Opteron, it's only 25%
|
||||
# slower than the RC4_INT one [meaning that if CPU µ-arch detection
|
||||
# is not implemented, then this final RC4_CHAR code-path should be
|
||||
# preferred, as it provides better *all-round* performance].
|
||||
|
||||
# March 2007
|
||||
#
|
||||
# Intel Core2 was observed to perform poorly on both code paths:-( It
|
||||
# apparently suffers from some kind of partial register stall, which
|
||||
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
|
||||
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
|
||||
# cloop1 boosts its performance by 80%! This loop appears to be optimal
|
||||
# fit for Core2 and therefore the code was modified to skip cloop8 on
|
||||
# this CPU.
|
||||
|
||||
# May 2010
|
||||
#
|
||||
# Intel Westmere was observed to perform suboptimally. Adding yet
|
||||
# another movzb to cloop1 improved performance by almost 50%! Core2
|
||||
# performance is improved too, but nominally...
|
||||
|
||||
# May 2011
|
||||
#
|
||||
# The only code path that was not modified is P4-specific one. Non-P4
|
||||
# Intel code path optimization is heavily based on submission by Maxim
|
||||
# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
|
||||
# some of the ideas even in attempt to optmize the original RC4_INT
|
||||
# code path... Current performance in cycles per processed byte (less
|
||||
# is better) and improvement coefficients relative to previous
|
||||
# version of this module are:
|
||||
#
|
||||
# Opteron 5.3/+0%(*)
|
||||
# P4 6.5
|
||||
# Core2 6.2/+15%(**)
|
||||
# Westmere 4.2/+60%
|
||||
# Sandy Bridge 4.2/+120%
|
||||
# Atom 9.3/+80%
|
||||
#
|
||||
# (*) But corresponding loop has less instructions, which should have
|
||||
# positive effect on upcoming Bulldozer, which has one less ALU.
|
||||
# For reference, Intel code runs at 6.8 cpb rate on Opteron.
|
||||
# (**) Note that Core2 result is ~15% lower than corresponding result
|
||||
# for 32-bit code, meaning that it's possible to improve it,
|
||||
# but more than likely at the cost of the others (see rc4-586.pl
|
||||
# to get the idea)...
|
||||
|
||||
$flavour = shift;
|
||||
$output = shift;
|
||||
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
||||
|
||||
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||||
die "can't locate x86_64-xlate.pl";
|
||||
|
||||
open OUT,"| \"$^X\" $xlate $flavour $output";
|
||||
*STDOUT=*OUT;
|
||||
|
||||
$dat="%rdi"; # arg1
|
||||
$len="%rsi"; # arg2
|
||||
$inp="%rdx"; # arg3
|
||||
$out="%rcx"; # arg4
|
||||
|
||||
{
|
||||
$code=<<___;
|
||||
.text
|
||||
.extern OPENSSL_ia32cap_P
|
||||
|
||||
.globl RC4
|
||||
.type RC4,\@function,4
|
||||
.align 16
|
||||
RC4: or $len,$len
|
||||
jne .Lentry
|
||||
ret
|
||||
.Lentry:
|
||||
push %rbx
|
||||
push %r12
|
||||
push %r13
|
||||
.Lprologue:
|
||||
mov $len,%r11
|
||||
mov $inp,%r12
|
||||
mov $out,%r13
|
||||
___
|
||||
my $len="%r11"; # reassign input arguments
|
||||
my $inp="%r12";
|
||||
my $out="%r13";
|
||||
|
||||
my @XX=("%r10","%rsi");
|
||||
my @TX=("%rax","%rbx");
|
||||
my $YY="%rcx";
|
||||
my $TY="%rdx";
|
||||
|
||||
$code.=<<___;
|
||||
xor $XX[0],$XX[0]
|
||||
xor $YY,$YY
|
||||
|
||||
lea 8($dat),$dat
|
||||
mov -8($dat),$XX[0]#b
|
||||
mov -4($dat),$YY#b
|
||||
cmpl \$-1,256($dat)
|
||||
je .LRC4_CHAR
|
||||
mov OPENSSL_ia32cap_P(%rip),%r8d
|
||||
xor $TX[1],$TX[1]
|
||||
inc $XX[0]#b
|
||||
sub $XX[0],$TX[1]
|
||||
sub $inp,$out
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
test \$-16,$len
|
||||
jz .Lloop1
|
||||
bt \$30,%r8d # Intel CPU?
|
||||
jc .Lintel
|
||||
and \$7,$TX[1]
|
||||
lea 1($XX[0]),$XX[1]
|
||||
jz .Loop8
|
||||
sub $TX[1],$len
|
||||
.Loop8_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $TX[1]
|
||||
jnz .Loop8_warmup
|
||||
|
||||
lea 1($XX[0]),$XX[1]
|
||||
jmp .Loop8
|
||||
.align 16
|
||||
.Loop8:
|
||||
___
|
||||
for ($i=0;$i<8;$i++) {
|
||||
$code.=<<___ if ($i==7);
|
||||
add \$8,$XX[1]#b
|
||||
___
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
|
||||
ror \$8,%r8 # ror is redundant when $i=0
|
||||
movl $TY#d,4*$i($dat,$XX[0],4)
|
||||
add $TX[0]#b,$TY#b
|
||||
movb ($dat,$TY,4),%r8b
|
||||
___
|
||||
push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
add \$8,$XX[0]#b
|
||||
ror \$8,%r8
|
||||
sub \$8,$len
|
||||
|
||||
xor ($inp),%r8
|
||||
mov %r8,($out,$inp)
|
||||
lea 8($inp),$inp
|
||||
|
||||
test \$-8,$len
|
||||
jnz .Loop8
|
||||
cmp \$0,$len
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lintel:
|
||||
test \$-32,$len
|
||||
jz .Lloop1
|
||||
and \$15,$TX[1]
|
||||
jz .Loop16_is_hot
|
||||
sub $TX[1],$len
|
||||
.Loop16_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $TX[1]
|
||||
jnz .Loop16_warmup
|
||||
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY
|
||||
mov $TX[1]#b,$YY#b
|
||||
|
||||
.Loop16_is_hot:
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
sub RC4_loop {
|
||||
my $i=shift;
|
||||
my $j=$i<0?0:$i;
|
||||
my $xmm="%xmm".($j&1);
|
||||
|
||||
$code.=" add \$16,$XX[0]#b\n" if ($i==15);
|
||||
$code.=" movdqu ($inp),%xmm2\n" if ($i==15);
|
||||
$code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
|
||||
$code.=" movl ($dat,$YY,4),$TY#d\n";
|
||||
$code.=" pxor %xmm0,%xmm2\n" if ($i==0);
|
||||
$code.=" psllq \$8,%xmm1\n" if ($i==0);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($i<=1);
|
||||
$code.=" movl $TX[0]#d,($dat,$YY,4)\n";
|
||||
$code.=" add $TY#b,$TX[0]#b\n";
|
||||
$code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
|
||||
$code.=" movz $TX[0]#b,$TX[0]#d\n";
|
||||
$code.=" movl $TY#d,4*$j($XX[1])\n";
|
||||
$code.=" pxor %xmm1,%xmm2\n" if ($i==0);
|
||||
$code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
|
||||
$code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
|
||||
$code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
|
||||
$code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
|
||||
$code.=" lea 16($inp),$inp\n" if ($i==0);
|
||||
$code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
|
||||
}
|
||||
RC4_loop(-1);
|
||||
$code.=<<___;
|
||||
jmp .Loop16_enter
|
||||
.align 16
|
||||
.Loop16:
|
||||
___
|
||||
|
||||
for ($i=0;$i<16;$i++) {
|
||||
$code.=".Loop16_enter:\n" if ($i==1);
|
||||
RC4_loop($i);
|
||||
push(@TX,shift(@TX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
sub \$16,$len
|
||||
mov $TX[1]#b,$YY#b
|
||||
test \$-16,$len
|
||||
jnz .Loop16
|
||||
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm2
|
||||
pxor %xmm1,%xmm2
|
||||
movdqu %xmm2,($out,$inp)
|
||||
lea 16($inp),$inp
|
||||
|
||||
cmp \$0,$len
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lloop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $len
|
||||
jnz .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.LRC4_CHAR:
|
||||
add \$1,$XX[0]#b
|
||||
movzb ($dat,$XX[0]),$TX[0]#d
|
||||
test \$-8,$len
|
||||
jz .Lcloop1
|
||||
jmp .Lcloop8
|
||||
.align 16
|
||||
.Lcloop8:
|
||||
mov ($inp),%r8d
|
||||
mov 4($inp),%r9d
|
||||
___
|
||||
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
|
||||
for ($i=0;$i<4;$i++) {
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
lea 1($XX[0]),$XX[1]
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movzb $XX[1]#b,$XX[1]#d
|
||||
movzb ($dat,$XX[1]),$TX[1]#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
cmp $XX[1],$YY
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
jne .Lcmov$i # Intel cmov is sloooow...
|
||||
mov $TX[0],$TX[1]
|
||||
.Lcmov$i:
|
||||
add $TX[0]#b,$TY#b
|
||||
xor ($dat,$TY),%r8b
|
||||
ror \$8,%r8d
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
for ($i=4;$i<8;$i++) {
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
lea 1($XX[0]),$XX[1]
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movzb $XX[1]#b,$XX[1]#d
|
||||
movzb ($dat,$XX[1]),$TX[1]#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
cmp $XX[1],$YY
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
jne .Lcmov$i # Intel cmov is sloooow...
|
||||
mov $TX[0],$TX[1]
|
||||
.Lcmov$i:
|
||||
add $TX[0]#b,$TY#b
|
||||
xor ($dat,$TY),%r9b
|
||||
ror \$8,%r9d
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
lea -8($len),$len
|
||||
mov %r8d,($out)
|
||||
lea 8($inp),$inp
|
||||
mov %r9d,4($out)
|
||||
lea 8($out),$out
|
||||
|
||||
test \$-8,$len
|
||||
jnz .Lcloop8
|
||||
cmp \$0,$len
|
||||
jne .Lcloop1
|
||||
jmp .Lexit
|
||||
___
|
||||
$code.=<<___;
|
||||
.align 16
|
||||
.Lcloop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movzb $YY#b,$YY#d
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
add $TX[0]#b,$TY#b
|
||||
add \$1,$XX[0]#b
|
||||
movzb $TY#b,$TY#d
|
||||
movzb $XX[0]#b,$XX[0]#d
|
||||
movzb ($dat,$TY),$TY#d
|
||||
movzb ($dat,$XX[0]),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
lea 1($inp),$inp
|
||||
movb $TY#b,($out)
|
||||
lea 1($out),$out
|
||||
sub \$1,$len
|
||||
jnz .Lcloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lexit:
|
||||
sub \$1,$XX[0]#b
|
||||
movl $XX[0]#d,-8($dat)
|
||||
movl $YY#d,-4($dat)
|
||||
|
||||
mov (%rsp),%r13
|
||||
mov 8(%rsp),%r12
|
||||
mov 16(%rsp),%rbx
|
||||
add \$24,%rsp
|
||||
.Lepilogue:
|
||||
ret
|
||||
.size RC4,.-RC4
|
||||
___
|
||||
}
|
||||
|
||||
$idx="%r8";
|
||||
$ido="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.globl private_RC4_set_key
|
||||
.type private_RC4_set_key,\@function,3
|
||||
.align 16
|
||||
private_RC4_set_key:
|
||||
lea 8($dat),$dat
|
||||
lea ($inp,$len),$inp
|
||||
neg $len
|
||||
mov $len,%rcx
|
||||
xor %eax,%eax
|
||||
xor $ido,$ido
|
||||
xor %r10,%r10
|
||||
xor %r11,%r11
|
||||
|
||||
mov OPENSSL_ia32cap_P(%rip),$idx#d
|
||||
bt \$20,$idx#d # RC4_CHAR?
|
||||
jc .Lc1stloop
|
||||
jmp .Lw1stloop
|
||||
|
||||
.align 16
|
||||
.Lw1stloop:
|
||||
mov %eax,($dat,%rax,4)
|
||||
add \$1,%al
|
||||
jnc .Lw1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lw2ndloop:
|
||||
mov ($dat,$ido,4),%r10d
|
||||
add ($inp,$len,1),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx,4),%r11d
|
||||
cmovz %rcx,$len
|
||||
mov %r10d,($dat,$idx,4)
|
||||
mov %r11d,($dat,$ido,4)
|
||||
add \$1,$ido#b
|
||||
jnc .Lw2ndloop
|
||||
jmp .Lexit_key
|
||||
|
||||
.align 16
|
||||
.Lc1stloop:
|
||||
mov %al,($dat,%rax)
|
||||
add \$1,%al
|
||||
jnc .Lc1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lc2ndloop:
|
||||
mov ($dat,$ido),%r10b
|
||||
add ($inp,$len),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx),%r11b
|
||||
jnz .Lcnowrap
|
||||
mov %rcx,$len
|
||||
.Lcnowrap:
|
||||
mov %r10b,($dat,$idx)
|
||||
mov %r11b,($dat,$ido)
|
||||
add \$1,$ido#b
|
||||
jnc .Lc2ndloop
|
||||
movl \$-1,256($dat)
|
||||
|
||||
.align 16
|
||||
.Lexit_key:
|
||||
xor %eax,%eax
|
||||
mov %eax,-8($dat)
|
||||
mov %eax,-4($dat)
|
||||
ret
|
||||
.size private_RC4_set_key,.-private_RC4_set_key
|
||||
|
||||
.globl RC4_options
|
||||
.type RC4_options,\@abi-omnipotent
|
||||
.align 16
|
||||
RC4_options:
|
||||
lea .Lopts(%rip),%rax
|
||||
mov OPENSSL_ia32cap_P(%rip),%edx
|
||||
bt \$20,%edx
|
||||
jc .L8xchar
|
||||
bt \$30,%edx
|
||||
jnc .Ldone
|
||||
add \$25,%rax
|
||||
ret
|
||||
.L8xchar:
|
||||
add \$12,%rax
|
||||
.Ldone:
|
||||
ret
|
||||
.align 64
|
||||
.Lopts:
|
||||
.asciz "rc4(8x,int)"
|
||||
.asciz "rc4(8x,char)"
|
||||
.asciz "rc4(16x,int)"
|
||||
.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
|
||||
.align 64
|
||||
.size RC4_options,.-RC4_options
|
||||
___
|
||||
|
||||
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
|
||||
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
|
||||
if ($win64) {
|
||||
$rec="%rcx";
|
||||
$frame="%rdx";
|
||||
$context="%r8";
|
||||
$disp="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.extern __imp_RtlVirtualUnwind
|
||||
.type stream_se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
stream_se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 120($context),%rax # pull context->Rax
|
||||
mov 248($context),%rbx # pull context->Rip
|
||||
|
||||
lea .Lprologue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip<prologue label
|
||||
jb .Lin_prologue
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
|
||||
lea .Lepilogue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip>=epilogue label
|
||||
jae .Lin_prologue
|
||||
|
||||
lea 24(%rax),%rax
|
||||
|
||||
mov -8(%rax),%rbx
|
||||
mov -16(%rax),%r12
|
||||
mov -24(%rax),%r13
|
||||
mov %rbx,144($context) # restore context->Rbx
|
||||
mov %r12,216($context) # restore context->R12
|
||||
mov %r13,224($context) # restore context->R13
|
||||
|
||||
.Lin_prologue:
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rax,152($context) # restore context->Rsp
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
jmp .Lcommon_seh_exit
|
||||
.size stream_se_handler,.-stream_se_handler
|
||||
|
||||
.type key_se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
key_se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
.Lcommon_seh_exit:
|
||||
|
||||
mov 40($disp),%rdi # disp->ContextRecord
|
||||
mov $context,%rsi # context
|
||||
mov \$154,%ecx # sizeof(CONTEXT)
|
||||
.long 0xa548f3fc # cld; rep movsq
|
||||
|
||||
mov $disp,%rsi
|
||||
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
||||
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
||||
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
||||
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
||||
mov 40(%rsi),%r10 # disp->ContextRecord
|
||||
lea 56(%rsi),%r11 # &disp->HandlerData
|
||||
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
||||
mov %r10,32(%rsp) # arg5
|
||||
mov %r11,40(%rsp) # arg6
|
||||
mov %r12,48(%rsp) # arg7
|
||||
mov %rcx,56(%rsp) # arg8, (NULL)
|
||||
call *__imp_RtlVirtualUnwind(%rip)
|
||||
|
||||
mov \$1,%eax # ExceptionContinueSearch
|
||||
add \$64,%rsp
|
||||
popfq
|
||||
pop %r15
|
||||
pop %r14
|
||||
pop %r13
|
||||
pop %r12
|
||||
pop %rbp
|
||||
pop %rbx
|
||||
pop %rdi
|
||||
pop %rsi
|
||||
ret
|
||||
.size key_se_handler,.-key_se_handler
|
||||
|
||||
.section .pdata
|
||||
.align 4
|
||||
.rva .LSEH_begin_RC4
|
||||
.rva .LSEH_end_RC4
|
||||
.rva .LSEH_info_RC4
|
||||
|
||||
.rva .LSEH_begin_private_RC4_set_key
|
||||
.rva .LSEH_end_private_RC4_set_key
|
||||
.rva .LSEH_info_private_RC4_set_key
|
||||
|
||||
.section .xdata
|
||||
.align 8
|
||||
.LSEH_info_RC4:
|
||||
.byte 9,0,0,0
|
||||
.rva stream_se_handler
|
||||
.LSEH_info_private_RC4_set_key:
|
||||
.byte 9,0,0,0
|
||||
.rva key_se_handler
|
||||
___
|
||||
}
|
||||
|
||||
sub reg_part {
|
||||
my ($reg,$conv)=@_;
|
||||
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
|
||||
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
|
||||
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
|
||||
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
|
||||
return $reg;
|
||||
}
|
||||
|
||||
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
|
||||
print $code;
|
||||
|
||||
close STDOUT;
|
Reference in New Issue
Block a user