Support for Signal calls.

Merge in RedPhone

// FREEBIE
This commit is contained in:
Moxie Marlinspike
2015-09-09 13:54:29 -07:00
parent 3d4ae60d81
commit d83a3d71bc
2585 changed files with 803492 additions and 45 deletions

View File

@@ -0,0 +1,45 @@
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_CONSTRUCTORMAGIC_H_
#define WEBRTC_BASE_CONSTRUCTORMAGIC_H_
// Undefine macros first, just in case. Some third-party includes have their own
// version.
#undef DISALLOW_ASSIGN
#define DISALLOW_ASSIGN(TypeName) \
void operator=(const TypeName&)
// A macro to disallow the evil copy constructor and operator= functions
// This should be used in the private: declarations for a class.
#undef DISALLOW_COPY_AND_ASSIGN
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
DISALLOW_ASSIGN(TypeName)
// Alternative, less-accurate legacy name.
#undef DISALLOW_EVIL_CONSTRUCTORS
#define DISALLOW_EVIL_CONSTRUCTORS(TypeName) \
DISALLOW_COPY_AND_ASSIGN(TypeName)
// A macro to disallow all the implicit constructors, namely the
// default constructor, copy constructor and operator= functions.
//
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
#undef DISALLOW_IMPLICIT_CONSTRUCTORS
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName(); \
DISALLOW_EVIL_CONSTRUCTORS(TypeName)
#endif // WEBRTC_BASE_CONSTRUCTORMAGIC_H_

View File

@@ -0,0 +1,127 @@
# Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
include $(LOCAL_PATH)/../../../android-webrtc.mk
LOCAL_ARM_MODE := arm
LOCAL_MODULE_CLASS := STATIC_LIBRARIES
LOCAL_MODULE := libwebrtc_spl
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := \
auto_corr_to_refl_coef.c \
auto_correlation.c \
complex_fft.c \
copy_set_operations.c \
cross_correlation.c \
division_operations.c \
dot_product_with_scale.c \
downsample_fast.c \
energy.c \
filter_ar.c \
filter_ma_fast_q12.c \
get_hanning_window.c \
get_scaling_square.c \
ilbc_specific_functions.c \
levinson_durbin.c \
lpc_to_refl_coef.c \
min_max_operations.c \
randomization_functions.c \
real_fft.c \
refl_coef_to_lpc.c \
resample.c \
resample_48khz.c \
resample_by_2.c \
resample_by_2_internal.c \
resample_fractional.c \
spl_init.c \
spl_sqrt.c \
spl_version.c \
splitting_filter.c \
sqrt_of_one_minus_x_squared.c \
vector_scaling_operations.c
# Flags passed to both C and C++ files.
LOCAL_CFLAGS := \
$(MY_WEBRTC_COMMON_DEFS) \
-DWEBRTC_POSIX
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/../.. \
$(LOCAL_PATH)/../../..
ifeq ($(ARCH_ARM_HAVE_ARMV7A),true)
LOCAL_SRC_FILES += \
filter_ar_fast_q12_armv7.S
else
LOCAL_SRC_FILES += \
filter_ar_fast_q12.c
endif
ifeq ($(TARGET_ARCH),arm)
LOCAL_SRC_FILES += \
complex_bit_reverse_arm.S \
spl_sqrt_floor_arm.S
else
LOCAL_SRC_FILES += \
complex_bit_reverse.c \
spl_sqrt_floor.c
endif
LOCAL_SHARED_LIBRARIES := libstlport
ifeq ($(TARGET_OS)-$(TARGET_SIMULATOR),linux-true)
LOCAL_LDLIBS += -ldl -lpthread
endif
ifneq ($(TARGET_SIMULATOR),true)
LOCAL_SHARED_LIBRARIES += libdl
endif
ifndef NDK_ROOT
include external/stlport/libstlport.mk
endif
include $(BUILD_STATIC_LIBRARY)
#########################
# Build the neon library.
ifeq ($(WEBRTC_BUILD_NEON_LIBS),true)
include $(CLEAR_VARS)
LOCAL_ARM_MODE := arm
LOCAL_MODULE_CLASS := STATIC_LIBRARIES
LOCAL_MODULE := libwebrtc_spl_neon
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := \
cross_correlation_neon.S \
downsample_fast_neon.S \
min_max_operations_neon.S \
vector_scaling_operations_neon.S
# Flags passed to both C and C++ files.
LOCAL_CFLAGS := \
$(MY_WEBRTC_COMMON_DEFS) \
$(MY_ARM_CFLAGS_NEON)
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/../.. \
external/webrtc
ifndef NDK_ROOT
include external/stlport/libstlport.mk
endif
include $(BUILD_STATIC_LIBRARY)
endif # ifeq ($(WEBRTC_BUILD_NEON_LIBS),true)

View File

@@ -0,0 +1,103 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_AutoCorrToReflCoef().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_AutoCorrToReflCoef(const int32_t *R, int use_order, int16_t *K)
{
int i, n;
int16_t tmp;
const int32_t *rptr;
int32_t L_num, L_den;
int16_t *acfptr, *pptr, *wptr, *p1ptr, *w1ptr, ACF[WEBRTC_SPL_MAX_LPC_ORDER],
P[WEBRTC_SPL_MAX_LPC_ORDER], W[WEBRTC_SPL_MAX_LPC_ORDER];
// Initialize loop and pointers.
acfptr = ACF;
rptr = R;
pptr = P;
p1ptr = &P[1];
w1ptr = &W[1];
wptr = w1ptr;
// First loop; n=0. Determine shifting.
tmp = WebRtcSpl_NormW32(*R);
*acfptr = (int16_t)((*rptr++ << tmp) >> 16);
*pptr++ = *acfptr++;
// Initialize ACF, P and W.
for (i = 1; i <= use_order; i++)
{
*acfptr = (int16_t)((*rptr++ << tmp) >> 16);
*wptr++ = *acfptr;
*pptr++ = *acfptr++;
}
// Compute reflection coefficients.
for (n = 1; n <= use_order; n++, K++)
{
tmp = WEBRTC_SPL_ABS_W16(*p1ptr);
if (*P < tmp)
{
for (i = n; i <= use_order; i++)
*K++ = 0;
return;
}
// Division: WebRtcSpl_div(tmp, *P)
*K = 0;
if (tmp != 0)
{
L_num = tmp;
L_den = *P;
i = 15;
while (i--)
{
(*K) <<= 1;
L_num <<= 1;
if (L_num >= L_den)
{
L_num -= L_den;
(*K)++;
}
}
if (*p1ptr > 0)
*K = -*K;
}
// Last iteration; don't do Schur recursion.
if (n == use_order)
return;
// Schur recursion.
pptr = P;
wptr = w1ptr;
tmp = (int16_t)(((int32_t)*p1ptr * (int32_t)*K + 16384) >> 15);
*pptr = WebRtcSpl_AddSatW16(*pptr, tmp);
pptr++;
for (i = 1; i <= use_order - n; i++)
{
tmp = (int16_t)(((int32_t)*wptr * (int32_t)*K + 16384) >> 15);
*pptr = WebRtcSpl_AddSatW16(*(pptr + 1), tmp);
pptr++;
tmp = (int16_t)(((int32_t)*pptr * (int32_t)*K + 16384) >> 15);
*wptr = WebRtcSpl_AddSatW16(*wptr, tmp);
wptr++;
}
}
}

View File

@@ -0,0 +1,68 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int WebRtcSpl_AutoCorrelation(const int16_t* in_vector,
int in_vector_length,
int order,
int32_t* result,
int* scale) {
int32_t sum = 0;
int i = 0, j = 0;
int16_t smax = 0;
int scaling = 0;
if (order > in_vector_length) {
/* Undefined */
return -1;
} else if (order < 0) {
order = in_vector_length;
}
// Find the maximum absolute value of the samples.
smax = WebRtcSpl_MaxAbsValueW16(in_vector, in_vector_length);
// In order to avoid overflow when computing the sum we should scale the
// samples so that (in_vector_length * smax * smax) will not overflow.
if (smax == 0) {
scaling = 0;
} else {
// Number of bits in the sum loop.
int nbits = WebRtcSpl_GetSizeInBits(in_vector_length);
// Number of bits to normalize smax.
int t = WebRtcSpl_NormW32(WEBRTC_SPL_MUL(smax, smax));
if (t > nbits) {
scaling = 0;
} else {
scaling = nbits - t;
}
}
// Perform the actual correlation calculation.
for (i = 0; i < order + 1; i++) {
sum = 0;
/* Unroll the loop to improve performance. */
for (j = 0; j < in_vector_length - i - 3; j += 4) {
sum += (in_vector[j + 0] * in_vector[i + j + 0]) >> scaling;
sum += (in_vector[j + 1] * in_vector[i + j + 1]) >> scaling;
sum += (in_vector[j + 2] * in_vector[i + j + 2]) >> scaling;
sum += (in_vector[j + 3] * in_vector[i + j + 3]) >> scaling;
}
for (; j < in_vector_length - i; j++) {
sum += (in_vector[j] * in_vector[i + j]) >> scaling;
}
*result++ = sum;
}
*scale = scaling;
return order + 1;
}

View File

@@ -0,0 +1,108 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
/* Tables for data buffer indexes that are bit reversed and thus need to be
* swapped. Note that, index_7[{0, 2, 4, ...}] are for the left side of the swap
* operations, while index_7[{1, 3, 5, ...}] are for the right side of the
* operation. Same for index_8.
*/
/* Indexes for the case of stages == 7. */
static const int16_t index_7[112] = {
1, 64, 2, 32, 3, 96, 4, 16, 5, 80, 6, 48, 7, 112, 9, 72, 10, 40, 11, 104,
12, 24, 13, 88, 14, 56, 15, 120, 17, 68, 18, 36, 19, 100, 21, 84, 22, 52,
23, 116, 25, 76, 26, 44, 27, 108, 29, 92, 30, 60, 31, 124, 33, 66, 35, 98,
37, 82, 38, 50, 39, 114, 41, 74, 43, 106, 45, 90, 46, 58, 47, 122, 49, 70,
51, 102, 53, 86, 55, 118, 57, 78, 59, 110, 61, 94, 63, 126, 67, 97, 69,
81, 71, 113, 75, 105, 77, 89, 79, 121, 83, 101, 87, 117, 91, 109, 95, 125,
103, 115, 111, 123
};
/* Indexes for the case of stages == 8. */
static const int16_t index_8[240] = {
1, 128, 2, 64, 3, 192, 4, 32, 5, 160, 6, 96, 7, 224, 8, 16, 9, 144, 10, 80,
11, 208, 12, 48, 13, 176, 14, 112, 15, 240, 17, 136, 18, 72, 19, 200, 20,
40, 21, 168, 22, 104, 23, 232, 25, 152, 26, 88, 27, 216, 28, 56, 29, 184,
30, 120, 31, 248, 33, 132, 34, 68, 35, 196, 37, 164, 38, 100, 39, 228, 41,
148, 42, 84, 43, 212, 44, 52, 45, 180, 46, 116, 47, 244, 49, 140, 50, 76,
51, 204, 53, 172, 54, 108, 55, 236, 57, 156, 58, 92, 59, 220, 61, 188, 62,
124, 63, 252, 65, 130, 67, 194, 69, 162, 70, 98, 71, 226, 73, 146, 74, 82,
75, 210, 77, 178, 78, 114, 79, 242, 81, 138, 83, 202, 85, 170, 86, 106, 87,
234, 89, 154, 91, 218, 93, 186, 94, 122, 95, 250, 97, 134, 99, 198, 101,
166, 103, 230, 105, 150, 107, 214, 109, 182, 110, 118, 111, 246, 113, 142,
115, 206, 117, 174, 119, 238, 121, 158, 123, 222, 125, 190, 127, 254, 131,
193, 133, 161, 135, 225, 137, 145, 139, 209, 141, 177, 143, 241, 147, 201,
149, 169, 151, 233, 155, 217, 157, 185, 159, 249, 163, 197, 167, 229, 171,
213, 173, 181, 175, 245, 179, 205, 183, 237, 187, 221, 191, 253, 199, 227,
203, 211, 207, 243, 215, 235, 223, 251, 239, 247
};
void WebRtcSpl_ComplexBitReverse(int16_t* __restrict complex_data, int stages) {
/* For any specific value of stages, we know exactly the indexes that are
* bit reversed. Currently (Feb. 2012) in WebRTC the only possible values of
* stages are 7 and 8, so we use tables to save unnecessary iterations and
* calculations for these two cases.
*/
if (stages == 7 || stages == 8) {
int m = 0;
int length = 112;
const int16_t* index = index_7;
if (stages == 8) {
length = 240;
index = index_8;
}
/* Decimation in time. Swap the elements with bit-reversed indexes. */
for (m = 0; m < length; m += 2) {
/* We declare a int32_t* type pointer, to load both the 16-bit real
* and imaginary elements from complex_data in one instruction, reducing
* complexity.
*/
int32_t* complex_data_ptr = (int32_t*)complex_data;
int32_t temp = 0;
temp = complex_data_ptr[index[m]]; /* Real and imaginary */
complex_data_ptr[index[m]] = complex_data_ptr[index[m + 1]];
complex_data_ptr[index[m + 1]] = temp;
}
}
else {
int m = 0, mr = 0, l = 0;
int n = 1 << stages;
int nn = n - 1;
/* Decimation in time - re-order data */
for (m = 1; m <= nn; ++m) {
int32_t* complex_data_ptr = (int32_t*)complex_data;
int32_t temp = 0;
/* Find out indexes that are bit-reversed. */
l = n;
do {
l >>= 1;
} while (l > nn - mr);
mr = (mr & (l - 1)) + l;
if (mr <= m) {
continue;
}
/* Swap the elements with bit-reversed indexes.
* This is similar to the loop in the stages == 7 or 8 cases.
*/
temp = complex_data_ptr[m]; /* Real and imaginary */
complex_data_ptr[m] = complex_data_ptr[mr];
complex_data_ptr[mr] = temp;
}
}
}

View File

@@ -0,0 +1,119 @@
@
@ Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
@
@ Use of this source code is governed by a BSD-style license
@ that can be found in the LICENSE file in the root of the source
@ tree. An additional intellectual property rights grant can be found
@ in the file PATENTS. All contributing project authors may
@ be found in the AUTHORS file in the root of the source tree.
@
@ This file contains the function WebRtcSpl_ComplexBitReverse(), optimized
@ for ARMv5 platforms.
@ Reference C code is in file complex_bit_reverse.c. Bit-exact.
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_FUNCTION WebRtcSpl_ComplexBitReverse
.align 2
DEFINE_FUNCTION WebRtcSpl_ComplexBitReverse
push {r4-r7}
cmp r1, #7
adr r3, index_7 @ Table pointer.
mov r4, #112 @ Number of interations.
beq PRE_LOOP_STAGES_7_OR_8
cmp r1, #8
adr r3, index_8 @ Table pointer.
mov r4, #240 @ Number of interations.
beq PRE_LOOP_STAGES_7_OR_8
mov r3, #1 @ Initialize m.
mov r1, r3, asl r1 @ n = 1 << stages;
subs r6, r1, #1 @ nn = n - 1;
ble END
mov r5, r0 @ &complex_data
mov r4, #0 @ ml
LOOP_GENERIC:
rsb r12, r4, r6 @ l > nn - mr
mov r2, r1 @ n
LOOP_SHIFT:
asr r2, #1 @ l >>= 1;
cmp r2, r12
bgt LOOP_SHIFT
sub r12, r2, #1
and r4, r12, r4
add r4, r2 @ mr = (mr & (l - 1)) + l;
cmp r4, r3 @ mr <= m ?
ble UPDATE_REGISTERS
mov r12, r4, asl #2
ldr r7, [r5, #4] @ complex_data[2 * m, 2 * m + 1].
@ Offset 4 due to m incrementing from 1.
ldr r2, [r0, r12] @ complex_data[2 * mr, 2 * mr + 1].
str r7, [r0, r12]
str r2, [r5, #4]
UPDATE_REGISTERS:
add r3, r3, #1
add r5, #4
cmp r3, r1
bne LOOP_GENERIC
b END
PRE_LOOP_STAGES_7_OR_8:
add r4, r3, r4, asl #1
LOOP_STAGES_7_OR_8:
ldrsh r2, [r3], #2 @ index[m]
ldrsh r5, [r3], #2 @ index[m + 1]
ldr r1, [r0, r2] @ complex_data[index[m], index[m] + 1]
ldr r12, [r0, r5] @ complex_data[index[m + 1], index[m + 1] + 1]
cmp r3, r4
str r1, [r0, r5]
str r12, [r0, r2]
bne LOOP_STAGES_7_OR_8
END:
pop {r4-r7}
bx lr
@ The index tables. Note the values are doubles of the actual indexes for 16-bit
@ elements, different from the generic C code. It actually provides byte offsets
@ for the indexes.
.align 2
index_7: @ Indexes for stages == 7.
.short 4, 256, 8, 128, 12, 384, 16, 64, 20, 320, 24, 192, 28, 448, 36, 288
.short 40, 160, 44, 416, 48, 96, 52, 352, 56, 224, 60, 480, 68, 272, 72, 144
.short 76, 400, 84, 336, 88, 208, 92, 464, 100, 304, 104, 176, 108, 432, 116
.short 368, 120, 240, 124, 496, 132, 264, 140, 392, 148, 328, 152, 200, 156
.short 456, 164, 296, 172, 424, 180, 360, 184, 232, 188, 488, 196, 280, 204
.short 408, 212, 344, 220, 472, 228, 312, 236, 440, 244, 376, 252, 504, 268
.short 388, 276, 324, 284, 452, 300, 420, 308, 356, 316, 484, 332, 404, 348
.short 468, 364, 436, 380, 500, 412, 460, 444, 492
index_8: @ Indexes for stages == 8.
.short 4, 512, 8, 256, 12, 768, 16, 128, 20, 640, 24, 384, 28, 896, 32, 64
.short 36, 576, 40, 320, 44, 832, 48, 192, 52, 704, 56, 448, 60, 960, 68, 544
.short 72, 288, 76, 800, 80, 160, 84, 672, 88, 416, 92, 928, 100, 608, 104
.short 352, 108, 864, 112, 224, 116, 736, 120, 480, 124, 992, 132, 528, 136
.short 272, 140, 784, 148, 656, 152, 400, 156, 912, 164, 592, 168, 336, 172
.short 848, 176, 208, 180, 720, 184, 464, 188, 976, 196, 560, 200, 304, 204
.short 816, 212, 688, 216, 432, 220, 944, 228, 624, 232, 368, 236, 880, 244
.short 752, 248, 496, 252, 1008, 260, 520, 268, 776, 276, 648, 280, 392, 284
.short 904, 292, 584, 296, 328, 300, 840, 308, 712, 312, 456, 316, 968, 324
.short 552, 332, 808, 340, 680, 344, 424, 348, 936, 356, 616, 364, 872, 372
.short 744, 376, 488, 380, 1000, 388, 536, 396, 792, 404, 664, 412, 920, 420
.short 600, 428, 856, 436, 728, 440, 472, 444, 984, 452, 568, 460, 824, 468
.short 696, 476, 952, 484, 632, 492, 888, 500, 760, 508, 1016, 524, 772, 532
.short 644, 540, 900, 548, 580, 556, 836, 564, 708, 572, 964, 588, 804, 596
.short 676, 604, 932, 620, 868, 628, 740, 636, 996, 652, 788, 668, 916, 684
.short 852, 692, 724, 700, 980, 716, 820, 732, 948, 748, 884, 764, 1012, 796
.short 908, 812, 844, 828, 972, 860, 940, 892, 1004, 956, 988

View File

@@ -0,0 +1,176 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
static int16_t coefTable_7[] = {
4, 256, 8, 128, 12, 384, 16, 64,
20, 320, 24, 192, 28, 448, 36, 288,
40, 160, 44, 416, 48, 96, 52, 352,
56, 224, 60, 480, 68, 272, 72, 144,
76, 400, 84, 336, 88, 208, 92, 464,
100, 304, 104, 176, 108, 432, 116, 368,
120, 240, 124, 496, 132, 264, 140, 392,
148, 328, 152, 200, 156, 456, 164, 296,
172, 424, 180, 360, 184, 232, 188, 488,
196, 280, 204, 408, 212, 344, 220, 472,
228, 312, 236, 440, 244, 376, 252, 504,
268, 388, 276, 324, 284, 452, 300, 420,
308, 356, 316, 484, 332, 404, 348, 468,
364, 436, 380, 500, 412, 460, 444, 492
};
static int16_t coefTable_8[] = {
4, 512, 8, 256, 12, 768, 16, 128,
20, 640, 24, 384, 28, 896, 32, 64,
36, 576, 40, 320, 44, 832, 48, 192,
52, 704, 56, 448, 60, 960, 68, 544,
72, 288, 76, 800, 80, 160, 84, 672,
88, 416, 92, 928, 100, 608, 104, 352,
108, 864, 112, 224, 116, 736, 120, 480,
124, 992, 132, 528, 136, 272, 140, 784,
148, 656, 152, 400, 156, 912, 164, 592,
168, 336, 172, 848, 176, 208, 180, 720,
184, 464, 188, 976, 196, 560, 200, 304,
204, 816, 212, 688, 216, 432, 220, 944,
228, 624, 232, 368, 236, 880, 244, 752,
248, 496, 252, 1008, 260, 520, 268, 776,
276, 648, 280, 392, 284, 904, 292, 584,
296, 328, 300, 840, 308, 712, 312, 456,
316, 968, 324, 552, 332, 808, 340, 680,
344, 424, 348, 936, 356, 616, 364, 872,
372, 744, 376, 488, 380, 1000, 388, 536,
396, 792, 404, 664, 412, 920, 420, 600,
428, 856, 436, 728, 440, 472, 444, 984,
452, 568, 460, 824, 468, 696, 476, 952,
484, 632, 492, 888, 500, 760, 508, 1016,
524, 772, 532, 644, 540, 900, 548, 580,
556, 836, 564, 708, 572, 964, 588, 804,
596, 676, 604, 932, 620, 868, 628, 740,
636, 996, 652, 788, 668, 916, 684, 852,
692, 724, 700, 980, 716, 820, 732, 948,
748, 884, 764, 1012, 796, 908, 812, 844,
828, 972, 860, 940, 892, 1004, 956, 988
};
void WebRtcSpl_ComplexBitReverse(int16_t frfi[], int stages) {
int l;
int16_t tr, ti;
int32_t tmp1, tmp2, tmp3, tmp4;
int32_t* ptr_i;
int32_t* ptr_j;
if (stages == 8) {
int16_t* pcoeftable_8 = coefTable_8;
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"addiu %[l], $zero, 120 \n\t"
"1: \n\t"
"addiu %[l], %[l], -4 \n\t"
"lh %[tr], 0(%[pcoeftable_8]) \n\t"
"lh %[ti], 2(%[pcoeftable_8]) \n\t"
"lh %[tmp3], 4(%[pcoeftable_8]) \n\t"
"lh %[tmp4], 6(%[pcoeftable_8]) \n\t"
"addu %[ptr_i], %[frfi], %[tr] \n\t"
"addu %[ptr_j], %[frfi], %[ti] \n\t"
"addu %[tr], %[frfi], %[tmp3] \n\t"
"addu %[ti], %[frfi], %[tmp4] \n\t"
"ulw %[tmp1], 0(%[ptr_i]) \n\t"
"ulw %[tmp2], 0(%[ptr_j]) \n\t"
"ulw %[tmp3], 0(%[tr]) \n\t"
"ulw %[tmp4], 0(%[ti]) \n\t"
"usw %[tmp1], 0(%[ptr_j]) \n\t"
"usw %[tmp2], 0(%[ptr_i]) \n\t"
"usw %[tmp4], 0(%[tr]) \n\t"
"usw %[tmp3], 0(%[ti]) \n\t"
"lh %[tmp1], 8(%[pcoeftable_8]) \n\t"
"lh %[tmp2], 10(%[pcoeftable_8]) \n\t"
"lh %[tr], 12(%[pcoeftable_8]) \n\t"
"lh %[ti], 14(%[pcoeftable_8]) \n\t"
"addu %[ptr_i], %[frfi], %[tmp1] \n\t"
"addu %[ptr_j], %[frfi], %[tmp2] \n\t"
"addu %[tr], %[frfi], %[tr] \n\t"
"addu %[ti], %[frfi], %[ti] \n\t"
"ulw %[tmp1], 0(%[ptr_i]) \n\t"
"ulw %[tmp2], 0(%[ptr_j]) \n\t"
"ulw %[tmp3], 0(%[tr]) \n\t"
"ulw %[tmp4], 0(%[ti]) \n\t"
"usw %[tmp1], 0(%[ptr_j]) \n\t"
"usw %[tmp2], 0(%[ptr_i]) \n\t"
"usw %[tmp4], 0(%[tr]) \n\t"
"usw %[tmp3], 0(%[ti]) \n\t"
"bgtz %[l], 1b \n\t"
" addiu %[pcoeftable_8], %[pcoeftable_8], 16 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [ptr_i] "=&r" (ptr_i),
[ptr_j] "=&r" (ptr_j), [tr] "=&r" (tr), [l] "=&r" (l),
[tmp3] "=&r" (tmp3), [pcoeftable_8] "+r" (pcoeftable_8),
[ti] "=&r" (ti), [tmp4] "=&r" (tmp4)
: [frfi] "r" (frfi)
: "memory"
);
} else if (stages == 7) {
int16_t* pcoeftable_7 = coefTable_7;
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"addiu %[l], $zero, 56 \n\t"
"1: \n\t"
"addiu %[l], %[l], -4 \n\t"
"lh %[tr], 0(%[pcoeftable_7]) \n\t"
"lh %[ti], 2(%[pcoeftable_7]) \n\t"
"lh %[tmp3], 4(%[pcoeftable_7]) \n\t"
"lh %[tmp4], 6(%[pcoeftable_7]) \n\t"
"addu %[ptr_i], %[frfi], %[tr] \n\t"
"addu %[ptr_j], %[frfi], %[ti] \n\t"
"addu %[tr], %[frfi], %[tmp3] \n\t"
"addu %[ti], %[frfi], %[tmp4] \n\t"
"ulw %[tmp1], 0(%[ptr_i]) \n\t"
"ulw %[tmp2], 0(%[ptr_j]) \n\t"
"ulw %[tmp3], 0(%[tr]) \n\t"
"ulw %[tmp4], 0(%[ti]) \n\t"
"usw %[tmp1], 0(%[ptr_j]) \n\t"
"usw %[tmp2], 0(%[ptr_i]) \n\t"
"usw %[tmp4], 0(%[tr]) \n\t"
"usw %[tmp3], 0(%[ti]) \n\t"
"lh %[tmp1], 8(%[pcoeftable_7]) \n\t"
"lh %[tmp2], 10(%[pcoeftable_7]) \n\t"
"lh %[tr], 12(%[pcoeftable_7]) \n\t"
"lh %[ti], 14(%[pcoeftable_7]) \n\t"
"addu %[ptr_i], %[frfi], %[tmp1] \n\t"
"addu %[ptr_j], %[frfi], %[tmp2] \n\t"
"addu %[tr], %[frfi], %[tr] \n\t"
"addu %[ti], %[frfi], %[ti] \n\t"
"ulw %[tmp1], 0(%[ptr_i]) \n\t"
"ulw %[tmp2], 0(%[ptr_j]) \n\t"
"ulw %[tmp3], 0(%[tr]) \n\t"
"ulw %[tmp4], 0(%[ti]) \n\t"
"usw %[tmp1], 0(%[ptr_j]) \n\t"
"usw %[tmp2], 0(%[ptr_i]) \n\t"
"usw %[tmp4], 0(%[tr]) \n\t"
"usw %[tmp3], 0(%[ti]) \n\t"
"bgtz %[l], 1b \n\t"
" addiu %[pcoeftable_7], %[pcoeftable_7], 16 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [ptr_i] "=&r" (ptr_i),
[ptr_j] "=&r" (ptr_j), [ti] "=&r" (ti), [tr] "=&r" (tr),
[l] "=&r" (l), [pcoeftable_7] "+r" (pcoeftable_7),
[tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4)
: [frfi] "r" (frfi)
: "memory"
);
}
}

View File

@@ -0,0 +1,306 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_ComplexFFT().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/complex_fft_tables.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#define CFFTSFT 14
#define CFFTRND 1
#define CFFTRND2 16384
#define CIFFTSFT 14
#define CIFFTRND 1
int WebRtcSpl_ComplexFFT(int16_t frfi[], int stages, int mode)
{
int i, j, l, k, istep, n, m;
int16_t wr, wi;
int32_t tr32, ti32, qr32, qi32;
/* The 1024-value is a constant given from the size of kSinTable1024[],
* and should not be changed depending on the input parameter 'stages'
*/
n = 1 << stages;
if (n > 1024)
return -1;
l = 1;
k = 10 - 1; /* Constant for given kSinTable1024[]. Do not change
depending on the input parameter 'stages' */
if (mode == 0)
{
// mode==0: Low-complexity and Low-accuracy mode
while (l < n)
{
istep = l << 1;
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = kSinTable1024[j + 256];
wi = -kSinTable1024[j];
for (i = m; i < n; i += istep)
{
j = i + l;
tr32 = WEBRTC_SPL_RSHIFT_W32((WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j])
- WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j + 1])), 15);
ti32 = WEBRTC_SPL_RSHIFT_W32((WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j + 1])
+ WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j])), 15);
qr32 = (int32_t)frfi[2 * i];
qi32 = (int32_t)frfi[2 * i + 1];
frfi[2 * j] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qr32 - tr32, 1);
frfi[2 * j + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qi32 - ti32, 1);
frfi[2 * i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qr32 + tr32, 1);
frfi[2 * i + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qi32 + ti32, 1);
}
}
--k;
l = istep;
}
} else
{
// mode==1: High-complexity and High-accuracy mode
while (l < n)
{
istep = l << 1;
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = kSinTable1024[j + 256];
wi = -kSinTable1024[j];
#ifdef WEBRTC_ARCH_ARM_V7
int32_t wri = 0;
__asm __volatile("pkhbt %0, %1, %2, lsl #16" : "=r"(wri) :
"r"((int32_t)wr), "r"((int32_t)wi));
#endif
for (i = m; i < n; i += istep)
{
j = i + l;
#ifdef WEBRTC_ARCH_ARM_V7
register int32_t frfi_r;
__asm __volatile(
"pkhbt %[frfi_r], %[frfi_even], %[frfi_odd],"
" lsl #16\n\t"
"smlsd %[tr32], %[wri], %[frfi_r], %[cfftrnd]\n\t"
"smladx %[ti32], %[wri], %[frfi_r], %[cfftrnd]\n\t"
:[frfi_r]"=&r"(frfi_r),
[tr32]"=&r"(tr32),
[ti32]"=r"(ti32)
:[frfi_even]"r"((int32_t)frfi[2*j]),
[frfi_odd]"r"((int32_t)frfi[2*j +1]),
[wri]"r"(wri),
[cfftrnd]"r"(CFFTRND));
#else
tr32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j])
- WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j + 1]) + CFFTRND;
ti32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j + 1])
+ WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j]) + CFFTRND;
#endif
tr32 = WEBRTC_SPL_RSHIFT_W32(tr32, 15 - CFFTSFT);
ti32 = WEBRTC_SPL_RSHIFT_W32(ti32, 15 - CFFTSFT);
qr32 = ((int32_t)frfi[2 * i]) << CFFTSFT;
qi32 = ((int32_t)frfi[2 * i + 1]) << CFFTSFT;
frfi[2 * j] = (int16_t)WEBRTC_SPL_RSHIFT_W32(
(qr32 - tr32 + CFFTRND2), 1 + CFFTSFT);
frfi[2 * j + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(
(qi32 - ti32 + CFFTRND2), 1 + CFFTSFT);
frfi[2 * i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(
(qr32 + tr32 + CFFTRND2), 1 + CFFTSFT);
frfi[2 * i + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(
(qi32 + ti32 + CFFTRND2), 1 + CFFTSFT);
}
}
--k;
l = istep;
}
}
return 0;
}
int WebRtcSpl_ComplexIFFT(int16_t frfi[], int stages, int mode)
{
int i, j, l, k, istep, n, m, scale, shift;
int16_t wr, wi;
int32_t tr32, ti32, qr32, qi32;
int32_t tmp32, round2;
/* The 1024-value is a constant given from the size of kSinTable1024[],
* and should not be changed depending on the input parameter 'stages'
*/
n = 1 << stages;
if (n > 1024)
return -1;
scale = 0;
l = 1;
k = 10 - 1; /* Constant for given kSinTable1024[]. Do not change
depending on the input parameter 'stages' */
while (l < n)
{
// variable scaling, depending upon data
shift = 0;
round2 = 8192;
tmp32 = (int32_t)WebRtcSpl_MaxAbsValueW16(frfi, 2 * n);
if (tmp32 > 13573)
{
shift++;
scale++;
round2 <<= 1;
}
if (tmp32 > 27146)
{
shift++;
scale++;
round2 <<= 1;
}
istep = l << 1;
if (mode == 0)
{
// mode==0: Low-complexity and Low-accuracy mode
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = kSinTable1024[j + 256];
wi = kSinTable1024[j];
for (i = m; i < n; i += istep)
{
j = i + l;
tr32 = WEBRTC_SPL_RSHIFT_W32((WEBRTC_SPL_MUL_16_16_RSFT(wr, frfi[2 * j], 0)
- WEBRTC_SPL_MUL_16_16_RSFT(wi, frfi[2 * j + 1], 0)), 15);
ti32 = WEBRTC_SPL_RSHIFT_W32(
(WEBRTC_SPL_MUL_16_16_RSFT(wr, frfi[2 * j + 1], 0)
+ WEBRTC_SPL_MUL_16_16_RSFT(wi,frfi[2*j],0)), 15);
qr32 = (int32_t)frfi[2 * i];
qi32 = (int32_t)frfi[2 * i + 1];
frfi[2 * j] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qr32 - tr32, shift);
frfi[2 * j + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qi32 - ti32, shift);
frfi[2 * i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qr32 + tr32, shift);
frfi[2 * i + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(qi32 + ti32, shift);
}
}
} else
{
// mode==1: High-complexity and High-accuracy mode
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = kSinTable1024[j + 256];
wi = kSinTable1024[j];
#ifdef WEBRTC_ARCH_ARM_V7
int32_t wri = 0;
__asm __volatile("pkhbt %0, %1, %2, lsl #16" : "=r"(wri) :
"r"((int32_t)wr), "r"((int32_t)wi));
#endif
for (i = m; i < n; i += istep)
{
j = i + l;
#ifdef WEBRTC_ARCH_ARM_V7
register int32_t frfi_r;
__asm __volatile(
"pkhbt %[frfi_r], %[frfi_even], %[frfi_odd], lsl #16\n\t"
"smlsd %[tr32], %[wri], %[frfi_r], %[cifftrnd]\n\t"
"smladx %[ti32], %[wri], %[frfi_r], %[cifftrnd]\n\t"
:[frfi_r]"=&r"(frfi_r),
[tr32]"=&r"(tr32),
[ti32]"=r"(ti32)
:[frfi_even]"r"((int32_t)frfi[2*j]),
[frfi_odd]"r"((int32_t)frfi[2*j +1]),
[wri]"r"(wri),
[cifftrnd]"r"(CIFFTRND)
);
#else
tr32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j])
- WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j + 1]) + CIFFTRND;
ti32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j + 1])
+ WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j]) + CIFFTRND;
#endif
tr32 = WEBRTC_SPL_RSHIFT_W32(tr32, 15 - CIFFTSFT);
ti32 = WEBRTC_SPL_RSHIFT_W32(ti32, 15 - CIFFTSFT);
qr32 = ((int32_t)frfi[2 * i]) << CIFFTSFT;
qi32 = ((int32_t)frfi[2 * i + 1]) << CIFFTSFT;
frfi[2 * j] = (int16_t)WEBRTC_SPL_RSHIFT_W32((qr32 - tr32+round2),
shift+CIFFTSFT);
frfi[2 * j + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(
(qi32 - ti32 + round2), shift + CIFFTSFT);
frfi[2 * i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((qr32 + tr32 + round2),
shift + CIFFTSFT);
frfi[2 * i + 1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(
(qi32 + ti32 + round2), shift + CIFFTSFT);
}
}
}
--k;
l = istep;
}
return scale;
}

View File

@@ -0,0 +1,322 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/complex_fft_tables.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#define CFFTSFT 14
#define CFFTRND 1
#define CFFTRND2 16384
#define CIFFTSFT 14
#define CIFFTRND 1
int WebRtcSpl_ComplexFFT(int16_t frfi[], int stages, int mode) {
int i = 0;
int l = 0;
int k = 0;
int istep = 0;
int n = 0;
int m = 0;
int32_t wr = 0, wi = 0;
int32_t tmp1 = 0;
int32_t tmp2 = 0;
int32_t tmp3 = 0;
int32_t tmp4 = 0;
int32_t tmp5 = 0;
int32_t tmp6 = 0;
int32_t tmp = 0;
int16_t* ptr_j = NULL;
int16_t* ptr_i = NULL;
n = 1 << stages;
if (n > 1024) {
return -1;
}
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"addiu %[k], $zero, 10 \n\t"
"addiu %[l], $zero, 1 \n\t"
"3: \n\t"
"sll %[istep], %[l], 1 \n\t"
"move %[m], $zero \n\t"
"sll %[tmp], %[l], 2 \n\t"
"move %[i], $zero \n\t"
"2: \n\t"
#if defined(MIPS_DSP_R1_LE)
"sllv %[tmp3], %[m], %[k] \n\t"
"addiu %[tmp2], %[tmp3], 512 \n\t"
"addiu %[m], %[m], 1 \n\t"
"lhx %[wi], %[tmp3](%[kSinTable1024]) \n\t"
"lhx %[wr], %[tmp2](%[kSinTable1024]) \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"sllv %[tmp3], %[m], %[k] \n\t"
"addu %[ptr_j], %[tmp3], %[kSinTable1024] \n\t"
"addiu %[ptr_i], %[ptr_j], 512 \n\t"
"addiu %[m], %[m], 1 \n\t"
"lh %[wi], 0(%[ptr_j]) \n\t"
"lh %[wr], 0(%[ptr_i]) \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"1: \n\t"
"sll %[tmp1], %[i], 2 \n\t"
"addu %[ptr_i], %[frfi], %[tmp1] \n\t"
"addu %[ptr_j], %[ptr_i], %[tmp] \n\t"
"lh %[tmp6], 0(%[ptr_i]) \n\t"
"lh %[tmp5], 2(%[ptr_i]) \n\t"
"lh %[tmp3], 0(%[ptr_j]) \n\t"
"lh %[tmp4], 2(%[ptr_j]) \n\t"
"addu %[i], %[i], %[istep] \n\t"
#if defined(MIPS_DSP_R2_LE)
"mult %[wr], %[tmp3] \n\t"
"madd %[wi], %[tmp4] \n\t"
"mult $ac1, %[wr], %[tmp4] \n\t"
"msub $ac1, %[wi], %[tmp3] \n\t"
"mflo %[tmp1] \n\t"
"mflo %[tmp2], $ac1 \n\t"
"sll %[tmp6], %[tmp6], 14 \n\t"
"sll %[tmp5], %[tmp5], 14 \n\t"
"shra_r.w %[tmp1], %[tmp1], 1 \n\t"
"shra_r.w %[tmp2], %[tmp2], 1 \n\t"
"subu %[tmp4], %[tmp6], %[tmp1] \n\t"
"addu %[tmp1], %[tmp6], %[tmp1] \n\t"
"addu %[tmp6], %[tmp5], %[tmp2] \n\t"
"subu %[tmp5], %[tmp5], %[tmp2] \n\t"
"shra_r.w %[tmp1], %[tmp1], 15 \n\t"
"shra_r.w %[tmp6], %[tmp6], 15 \n\t"
"shra_r.w %[tmp4], %[tmp4], 15 \n\t"
"shra_r.w %[tmp5], %[tmp5], 15 \n\t"
#else // #if defined(MIPS_DSP_R2_LE)
"mul %[tmp2], %[wr], %[tmp4] \n\t"
"mul %[tmp1], %[wr], %[tmp3] \n\t"
"mul %[tmp4], %[wi], %[tmp4] \n\t"
"mul %[tmp3], %[wi], %[tmp3] \n\t"
"sll %[tmp6], %[tmp6], 14 \n\t"
"sll %[tmp5], %[tmp5], 14 \n\t"
"addiu %[tmp6], %[tmp6], 16384 \n\t"
"addiu %[tmp5], %[tmp5], 16384 \n\t"
"addu %[tmp1], %[tmp1], %[tmp4] \n\t"
"subu %[tmp2], %[tmp2], %[tmp3] \n\t"
"addiu %[tmp1], %[tmp1], 1 \n\t"
"addiu %[tmp2], %[tmp2], 1 \n\t"
"sra %[tmp1], %[tmp1], 1 \n\t"
"sra %[tmp2], %[tmp2], 1 \n\t"
"subu %[tmp4], %[tmp6], %[tmp1] \n\t"
"addu %[tmp1], %[tmp6], %[tmp1] \n\t"
"addu %[tmp6], %[tmp5], %[tmp2] \n\t"
"subu %[tmp5], %[tmp5], %[tmp2] \n\t"
"sra %[tmp4], %[tmp4], 15 \n\t"
"sra %[tmp1], %[tmp1], 15 \n\t"
"sra %[tmp6], %[tmp6], 15 \n\t"
"sra %[tmp5], %[tmp5], 15 \n\t"
#endif // #if defined(MIPS_DSP_R2_LE)
"sh %[tmp1], 0(%[ptr_i]) \n\t"
"sh %[tmp6], 2(%[ptr_i]) \n\t"
"sh %[tmp4], 0(%[ptr_j]) \n\t"
"blt %[i], %[n], 1b \n\t"
" sh %[tmp5], 2(%[ptr_j]) \n\t"
"blt %[m], %[l], 2b \n\t"
" addu %[i], $zero, %[m] \n\t"
"move %[l], %[istep] \n\t"
"blt %[l], %[n], 3b \n\t"
" addiu %[k], %[k], -1 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
[tmp4] "=&r" (tmp4), [tmp5] "=&r" (tmp5), [tmp6] "=&r" (tmp6),
[ptr_i] "=&r" (ptr_i), [i] "=&r" (i), [wi] "=&r" (wi), [wr] "=&r" (wr),
[m] "=&r" (m), [istep] "=&r" (istep), [l] "=&r" (l), [k] "=&r" (k),
[ptr_j] "=&r" (ptr_j), [tmp] "=&r" (tmp)
: [n] "r" (n), [frfi] "r" (frfi), [kSinTable1024] "r" (kSinTable1024)
: "hi", "lo", "$ac1hi", "$ac1lo", "memory"
);
return 0;
}
int WebRtcSpl_ComplexIFFT(int16_t frfi[], int stages, int mode) {
int i = 0, l = 0, k = 0;
int istep = 0, n = 0, m = 0;
int scale = 0, shift = 0;
int32_t wr = 0, wi = 0;
int32_t tmp1 = 0, tmp2 = 0, tmp3 = 0, tmp4 = 0;
int32_t tmp5 = 0, tmp6 = 0, tmp = 0, tempMax = 0, round2 = 0;
int16_t* ptr_j = NULL;
int16_t* ptr_i = NULL;
n = 1 << stages;
if (n > 1024) {
return -1;
}
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"addiu %[k], $zero, 10 \n\t"
"addiu %[l], $zero, 1 \n\t"
"move %[scale], $zero \n\t"
"3: \n\t"
"addiu %[shift], $zero, 14 \n\t"
"addiu %[round2], $zero, 8192 \n\t"
"move %[ptr_i], %[frfi] \n\t"
"move %[tempMax], $zero \n\t"
"addu %[i], %[n], %[n] \n\t"
"5: \n\t"
"lh %[tmp1], 0(%[ptr_i]) \n\t"
"lh %[tmp2], 2(%[ptr_i]) \n\t"
"lh %[tmp3], 4(%[ptr_i]) \n\t"
"lh %[tmp4], 6(%[ptr_i]) \n\t"
#if defined(MIPS_DSP_R1_LE)
"absq_s.w %[tmp1], %[tmp1] \n\t"
"absq_s.w %[tmp2], %[tmp2] \n\t"
"absq_s.w %[tmp3], %[tmp3] \n\t"
"absq_s.w %[tmp4], %[tmp4] \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"slt %[tmp5], %[tmp1], $zero \n\t"
"subu %[tmp6], $zero, %[tmp1] \n\t"
"movn %[tmp1], %[tmp6], %[tmp5] \n\t"
"slt %[tmp5], %[tmp2], $zero \n\t"
"subu %[tmp6], $zero, %[tmp2] \n\t"
"movn %[tmp2], %[tmp6], %[tmp5] \n\t"
"slt %[tmp5], %[tmp3], $zero \n\t"
"subu %[tmp6], $zero, %[tmp3] \n\t"
"movn %[tmp3], %[tmp6], %[tmp5] \n\t"
"slt %[tmp5], %[tmp4], $zero \n\t"
"subu %[tmp6], $zero, %[tmp4] \n\t"
"movn %[tmp4], %[tmp6], %[tmp5] \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"slt %[tmp5], %[tempMax], %[tmp1] \n\t"
"movn %[tempMax], %[tmp1], %[tmp5] \n\t"
"addiu %[i], %[i], -4 \n\t"
"slt %[tmp5], %[tempMax], %[tmp2] \n\t"
"movn %[tempMax], %[tmp2], %[tmp5] \n\t"
"slt %[tmp5], %[tempMax], %[tmp3] \n\t"
"movn %[tempMax], %[tmp3], %[tmp5] \n\t"
"slt %[tmp5], %[tempMax], %[tmp4] \n\t"
"movn %[tempMax], %[tmp4], %[tmp5] \n\t"
"bgtz %[i], 5b \n\t"
" addiu %[ptr_i], %[ptr_i], 8 \n\t"
"addiu %[tmp1], $zero, 13573 \n\t"
"addiu %[tmp2], $zero, 27146 \n\t"
#if !defined(MIPS32_R2_LE)
"sll %[tempMax], %[tempMax], 16 \n\t"
"sra %[tempMax], %[tempMax], 16 \n\t"
#else // #if !defined(MIPS32_R2_LE)
"seh %[tempMax] \n\t"
#endif // #if !defined(MIPS32_R2_LE)
"slt %[tmp1], %[tmp1], %[tempMax] \n\t"
"slt %[tmp2], %[tmp2], %[tempMax] \n\t"
"addu %[tmp1], %[tmp1], %[tmp2] \n\t"
"addu %[shift], %[shift], %[tmp1] \n\t"
"addu %[scale], %[scale], %[tmp1] \n\t"
"sllv %[round2], %[round2], %[tmp1] \n\t"
"sll %[istep], %[l], 1 \n\t"
"move %[m], $zero \n\t"
"sll %[tmp], %[l], 2 \n\t"
"2: \n\t"
#if defined(MIPS_DSP_R1_LE)
"sllv %[tmp3], %[m], %[k] \n\t"
"addiu %[tmp2], %[tmp3], 512 \n\t"
"addiu %[m], %[m], 1 \n\t"
"lhx %[wi], %[tmp3](%[kSinTable1024]) \n\t"
"lhx %[wr], %[tmp2](%[kSinTable1024]) \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"sllv %[tmp3], %[m], %[k] \n\t"
"addu %[ptr_j], %[tmp3], %[kSinTable1024] \n\t"
"addiu %[ptr_i], %[ptr_j], 512 \n\t"
"addiu %[m], %[m], 1 \n\t"
"lh %[wi], 0(%[ptr_j]) \n\t"
"lh %[wr], 0(%[ptr_i]) \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"1: \n\t"
"sll %[tmp1], %[i], 2 \n\t"
"addu %[ptr_i], %[frfi], %[tmp1] \n\t"
"addu %[ptr_j], %[ptr_i], %[tmp] \n\t"
"lh %[tmp3], 0(%[ptr_j]) \n\t"
"lh %[tmp4], 2(%[ptr_j]) \n\t"
"lh %[tmp6], 0(%[ptr_i]) \n\t"
"lh %[tmp5], 2(%[ptr_i]) \n\t"
"addu %[i], %[i], %[istep] \n\t"
#if defined(MIPS_DSP_R2_LE)
"mult %[wr], %[tmp3] \n\t"
"msub %[wi], %[tmp4] \n\t"
"mult $ac1, %[wr], %[tmp4] \n\t"
"madd $ac1, %[wi], %[tmp3] \n\t"
"mflo %[tmp1] \n\t"
"mflo %[tmp2], $ac1 \n\t"
"sll %[tmp6], %[tmp6], 14 \n\t"
"sll %[tmp5], %[tmp5], 14 \n\t"
"shra_r.w %[tmp1], %[tmp1], 1 \n\t"
"shra_r.w %[tmp2], %[tmp2], 1 \n\t"
"addu %[tmp6], %[tmp6], %[round2] \n\t"
"addu %[tmp5], %[tmp5], %[round2] \n\t"
"subu %[tmp4], %[tmp6], %[tmp1] \n\t"
"addu %[tmp1], %[tmp6], %[tmp1] \n\t"
"addu %[tmp6], %[tmp5], %[tmp2] \n\t"
"subu %[tmp5], %[tmp5], %[tmp2] \n\t"
"srav %[tmp4], %[tmp4], %[shift] \n\t"
"srav %[tmp1], %[tmp1], %[shift] \n\t"
"srav %[tmp6], %[tmp6], %[shift] \n\t"
"srav %[tmp5], %[tmp5], %[shift] \n\t"
#else // #if defined(MIPS_DSP_R2_LE)
"mul %[tmp1], %[wr], %[tmp3] \n\t"
"mul %[tmp2], %[wr], %[tmp4] \n\t"
"mul %[tmp4], %[wi], %[tmp4] \n\t"
"mul %[tmp3], %[wi], %[tmp3] \n\t"
"sll %[tmp6], %[tmp6], 14 \n\t"
"sll %[tmp5], %[tmp5], 14 \n\t"
"sub %[tmp1], %[tmp1], %[tmp4] \n\t"
"addu %[tmp2], %[tmp2], %[tmp3] \n\t"
"addiu %[tmp1], %[tmp1], 1 \n\t"
"addiu %[tmp2], %[tmp2], 1 \n\t"
"sra %[tmp2], %[tmp2], 1 \n\t"
"sra %[tmp1], %[tmp1], 1 \n\t"
"addu %[tmp6], %[tmp6], %[round2] \n\t"
"addu %[tmp5], %[tmp5], %[round2] \n\t"
"subu %[tmp4], %[tmp6], %[tmp1] \n\t"
"addu %[tmp1], %[tmp6], %[tmp1] \n\t"
"addu %[tmp6], %[tmp5], %[tmp2] \n\t"
"subu %[tmp5], %[tmp5], %[tmp2] \n\t"
"sra %[tmp4], %[tmp4], %[shift] \n\t"
"sra %[tmp1], %[tmp1], %[shift] \n\t"
"sra %[tmp6], %[tmp6], %[shift] \n\t"
"sra %[tmp5], %[tmp5], %[shift] \n\t"
#endif // #if defined(MIPS_DSP_R2_LE)
"sh %[tmp1], 0(%[ptr_i]) \n\t"
"sh %[tmp6], 2(%[ptr_i]) \n\t"
"sh %[tmp4], 0(%[ptr_j]) \n\t"
"blt %[i], %[n], 1b \n\t"
" sh %[tmp5], 2(%[ptr_j]) \n\t"
"blt %[m], %[l], 2b \n\t"
" addu %[i], $zero, %[m] \n\t"
"move %[l], %[istep] \n\t"
"blt %[l], %[n], 3b \n\t"
" addiu %[k], %[k], -1 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
[tmp4] "=&r" (tmp4), [tmp5] "=&r" (tmp5), [tmp6] "=&r" (tmp6),
[ptr_i] "=&r" (ptr_i), [i] "=&r" (i), [m] "=&r" (m), [tmp] "=&r" (tmp),
[istep] "=&r" (istep), [wi] "=&r" (wi), [wr] "=&r" (wr), [l] "=&r" (l),
[k] "=&r" (k), [round2] "=&r" (round2), [ptr_j] "=&r" (ptr_j),
[shift] "=&r" (shift), [scale] "=&r" (scale), [tempMax] "=&r" (tempMax)
: [n] "r" (n), [frfi] "r" (frfi), [kSinTable1024] "r" (kSinTable1024)
: "hi", "lo", "$ac1hi", "$ac1lo", "memory"
);
return scale;
}

View File

@@ -0,0 +1,148 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_COMMON_AUDIO_SIGNAL_PROCESSING_COMPLEX_FFT_TABLES_H_
#define WEBRTC_COMMON_AUDIO_SIGNAL_PROCESSING_COMPLEX_FFT_TABLES_H_
#include "webrtc/typedefs.h"
static const int16_t kSinTable1024[] = {
0, 201, 402, 603, 804, 1005, 1206, 1406,
1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011,
3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608,
4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195,
6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766,
7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319,
9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849,
11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353,
12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268,
15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672,
16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036,
18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357,
19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631,
20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855,
22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027,
23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143,
24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198,
26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132,
27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001,
28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802,
28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534,
29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195,
30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783,
30851, 30918, 30984, 31049, 31113, 31175, 31236, 31297,
31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097,
32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382,
32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588,
32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717,
32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766,
32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736,
32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628,
32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441,
32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833,
31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413,
31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918,
30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349,
30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706,
29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992,
28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208,
28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355,
27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456,
25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413,
24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311,
23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153,
22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942,
20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680,
19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371,
18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017,
16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191,
14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724,
12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227,
11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703,
9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156,
7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589,
6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006,
4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411,
3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
1607, 1406, 1206, 1005, 804, 603, 402, 201,
0, -201, -402, -603, -804, -1005, -1206, -1406,
-1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011,
-3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608,
-4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195,
-6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766,
-7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319,
-9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849,
-11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
-12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
-14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
-15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
-16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
-18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
-19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
-20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
-22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
-23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
-24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
-25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
-26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
-27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
-28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
-28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
-29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
-30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
-30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
-31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
-31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
-32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
-32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
-32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
-32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
-32767, -32766, -32764, -32761, -32757, -32751, -32744, -32736,
-32727, -32717, -32705, -32692, -32678, -32662, -32646, -32628,
-32609, -32588, -32567, -32544, -32520, -32495, -32468, -32441,
-32412, -32382, -32350, -32318, -32284, -32249, -32213, -32176,
-32137, -32097, -32056, -32014, -31970, -31926, -31880, -31833,
-31785, -31735, -31684, -31633, -31580, -31525, -31470, -31413,
-31356, -31297, -31236, -31175, -31113, -31049, -30984, -30918,
-30851, -30783, -30713, -30643, -30571, -30498, -30424, -30349,
-30272, -30195, -30116, -30036, -29955, -29873, -29790, -29706,
-29621, -29534, -29446, -29358, -29268, -29177, -29085, -28992,
-28897, -28802, -28706, -28608, -28510, -28410, -28309, -28208,
-28105, -28001, -27896, -27790, -27683, -27575, -27466, -27355,
-27244, -27132, -27019, -26905, -26789, -26673, -26556, -26437,
-26318, -26198, -26077, -25954, -25831, -25707, -25582, -25456,
-25329, -25201, -25072, -24942, -24811, -24679, -24546, -24413,
-24278, -24143, -24006, -23869, -23731, -23592, -23452, -23311,
-23169, -23027, -22883, -22739, -22594, -22448, -22301, -22153,
-22004, -21855, -21705, -21554, -21402, -21249, -21096, -20942,
-20787, -20631, -20474, -20317, -20159, -20000, -19840, -19680,
-19519, -19357, -19194, -19031, -18867, -18702, -18537, -18371,
-18204, -18036, -17868, -17699, -17530, -17360, -17189, -17017,
-16845, -16672, -16499, -16325, -16150, -15975, -15799, -15623,
-15446, -15268, -15090, -14911, -14732, -14552, -14372, -14191,
-14009, -13827, -13645, -13462, -13278, -13094, -12909, -12724,
-12539, -12353, -12166, -11980, -11792, -11604, -11416, -11227,
-11038, -10849, -10659, -10469, -10278, -10087, -9895, -9703,
-9511, -9319, -9126, -8932, -8739, -8545, -8351, -8156,
-7961, -7766, -7571, -7375, -7179, -6982, -6786, -6589,
-6392, -6195, -5997, -5799, -5601, -5403, -5205, -5006,
-4807, -4608, -4409, -4210, -4011, -3811, -3611, -3411,
-3211, -3011, -2811, -2610, -2410, -2209, -2009, -1808,
-1607, -1406, -1206, -1005, -804, -603, -402, -201
};
#endif // WEBRTC_COMMON_AUDIO_SIGNAL_PROCESSING_COMPLEX_FFT_TABLES_H_

View File

@@ -0,0 +1,108 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the implementation of functions
* WebRtcSpl_MemSetW16()
* WebRtcSpl_MemSetW32()
* WebRtcSpl_MemCpyReversedOrder()
* WebRtcSpl_CopyFromEndW16()
* WebRtcSpl_ZerosArrayW16()
* WebRtcSpl_ZerosArrayW32()
* WebRtcSpl_OnesArrayW16()
* WebRtcSpl_OnesArrayW32()
*
* The description header can be found in signal_processing_library.h
*
*/
#include <string.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_MemSetW16(int16_t *ptr, int16_t set_value, int length)
{
int j;
int16_t *arrptr = ptr;
for (j = length; j > 0; j--)
{
*arrptr++ = set_value;
}
}
void WebRtcSpl_MemSetW32(int32_t *ptr, int32_t set_value, int length)
{
int j;
int32_t *arrptr = ptr;
for (j = length; j > 0; j--)
{
*arrptr++ = set_value;
}
}
void WebRtcSpl_MemCpyReversedOrder(int16_t* dest, int16_t* source, int length)
{
int j;
int16_t* destPtr = dest;
int16_t* sourcePtr = source;
for (j = 0; j < length; j++)
{
*destPtr-- = *sourcePtr++;
}
}
int16_t WebRtcSpl_CopyFromEndW16(const int16_t *vector_in,
int16_t length,
int16_t samples,
int16_t *vector_out)
{
// Copy the last <samples> of the input vector to vector_out
WEBRTC_SPL_MEMCPY_W16(vector_out, &vector_in[length - samples], samples);
return samples;
}
int16_t WebRtcSpl_ZerosArrayW16(int16_t *vector, int16_t length)
{
WebRtcSpl_MemSetW16(vector, 0, length);
return length;
}
int16_t WebRtcSpl_ZerosArrayW32(int32_t *vector, int16_t length)
{
WebRtcSpl_MemSetW32(vector, 0, length);
return length;
}
int16_t WebRtcSpl_OnesArrayW16(int16_t *vector, int16_t length)
{
int16_t i;
int16_t *tmpvec = vector;
for (i = 0; i < length; i++)
{
*tmpvec++ = 1;
}
return length;
}
int16_t WebRtcSpl_OnesArrayW32(int32_t *vector, int16_t length)
{
int16_t i;
int32_t *tmpvec = vector;
for (i = 0; i < length; i++)
{
*tmpvec++ = 1;
}
return length;
}

View File

@@ -0,0 +1,31 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
/* C version of WebRtcSpl_CrossCorrelation() for generic platforms. */
void WebRtcSpl_CrossCorrelationC(int32_t* cross_correlation,
const int16_t* seq1,
const int16_t* seq2,
int16_t dim_seq,
int16_t dim_cross_correlation,
int16_t right_shifts,
int16_t step_seq2) {
int i = 0, j = 0;
for (i = 0; i < dim_cross_correlation; i++) {
*cross_correlation = 0;
/* Unrolling doesn't seem to improve performance. */
for (j = 0; j < dim_seq; j++) {
*cross_correlation += (seq1[j] * seq2[step_seq2 * i + j]) >> right_shifts;
}
cross_correlation++;
}
}

View File

@@ -0,0 +1,104 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_CrossCorrelation_mips(int32_t* cross_correlation,
const int16_t* seq1,
const int16_t* seq2,
int16_t dim_seq,
int16_t dim_cross_correlation,
int16_t right_shifts,
int16_t step_seq2) {
int32_t t0 = 0, t1 = 0, t2 = 0, t3 = 0, sum = 0;
int16_t *pseq2 = NULL;
int16_t *pseq1 = NULL;
int16_t *pseq1_0 = (int16_t*)&seq1[0];
int16_t *pseq2_0 = (int16_t*)&seq2[0];
int k = 0;
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"sll %[step_seq2], %[step_seq2], 1 \n\t"
"andi %[t0], %[dim_seq], 1 \n\t"
"bgtz %[t0], 3f \n\t"
" nop \n\t"
"1: \n\t"
"move %[pseq1], %[pseq1_0] \n\t"
"move %[pseq2], %[pseq2_0] \n\t"
"sra %[k], %[dim_seq], 1 \n\t"
"addiu %[dim_cc], %[dim_cc], -1 \n\t"
"xor %[sum], %[sum], %[sum] \n\t"
"2: \n\t"
"lh %[t0], 0(%[pseq1]) \n\t"
"lh %[t1], 0(%[pseq2]) \n\t"
"lh %[t2], 2(%[pseq1]) \n\t"
"lh %[t3], 2(%[pseq2]) \n\t"
"mul %[t0], %[t0], %[t1] \n\t"
"addiu %[k], %[k], -1 \n\t"
"mul %[t2], %[t2], %[t3] \n\t"
"addiu %[pseq1], %[pseq1], 4 \n\t"
"addiu %[pseq2], %[pseq2], 4 \n\t"
"srav %[t0], %[t0], %[right_shifts] \n\t"
"addu %[sum], %[sum], %[t0] \n\t"
"srav %[t2], %[t2], %[right_shifts] \n\t"
"bgtz %[k], 2b \n\t"
" addu %[sum], %[sum], %[t2] \n\t"
"addu %[pseq2_0], %[pseq2_0], %[step_seq2] \n\t"
"sw %[sum], 0(%[cc]) \n\t"
"bgtz %[dim_cc], 1b \n\t"
" addiu %[cc], %[cc], 4 \n\t"
"b 6f \n\t"
" nop \n\t"
"3: \n\t"
"move %[pseq1], %[pseq1_0] \n\t"
"move %[pseq2], %[pseq2_0] \n\t"
"sra %[k], %[dim_seq], 1 \n\t"
"addiu %[dim_cc], %[dim_cc], -1 \n\t"
"beqz %[k], 5f \n\t"
" xor %[sum], %[sum], %[sum] \n\t"
"4: \n\t"
"lh %[t0], 0(%[pseq1]) \n\t"
"lh %[t1], 0(%[pseq2]) \n\t"
"lh %[t2], 2(%[pseq1]) \n\t"
"lh %[t3], 2(%[pseq2]) \n\t"
"mul %[t0], %[t0], %[t1] \n\t"
"addiu %[k], %[k], -1 \n\t"
"mul %[t2], %[t2], %[t3] \n\t"
"addiu %[pseq1], %[pseq1], 4 \n\t"
"addiu %[pseq2], %[pseq2], 4 \n\t"
"srav %[t0], %[t0], %[right_shifts] \n\t"
"addu %[sum], %[sum], %[t0] \n\t"
"srav %[t2], %[t2], %[right_shifts] \n\t"
"bgtz %[k], 4b \n\t"
" addu %[sum], %[sum], %[t2] \n\t"
"5: \n\t"
"lh %[t0], 0(%[pseq1]) \n\t"
"lh %[t1], 0(%[pseq2]) \n\t"
"mul %[t0], %[t0], %[t1] \n\t"
"srav %[t0], %[t0], %[right_shifts] \n\t"
"addu %[sum], %[sum], %[t0] \n\t"
"addu %[pseq2_0], %[pseq2_0], %[step_seq2] \n\t"
"sw %[sum], 0(%[cc]) \n\t"
"bgtz %[dim_cc], 3b \n\t"
" addiu %[cc], %[cc], 4 \n\t"
"6: \n\t"
".set pop \n\t"
: [step_seq2] "+r" (step_seq2), [t0] "=&r" (t0), [t1] "=&r" (t1),
[t2] "=&r" (t2), [t3] "=&r" (t3), [pseq1] "=&r" (pseq1),
[pseq2] "=&r" (pseq2), [pseq1_0] "+r" (pseq1_0), [pseq2_0] "+r" (pseq2_0),
[k] "=&r" (k), [dim_cc] "+r" (dim_cross_correlation), [sum] "=&r" (sum),
[cc] "+r" (cross_correlation)
: [dim_seq] "r" (dim_seq), [right_shifts] "r" (right_shifts)
: "hi", "lo", "memory"
);
}

View File

@@ -0,0 +1,159 @@
@
@ Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
@
@ Use of this source code is governed by a BSD-style license
@ that can be found in the LICENSE file in the root of the source
@ tree. An additional intellectual property rights grant can be found
@ in the file PATENTS. All contributing project authors may
@ be found in the AUTHORS file in the root of the source tree.
@
@ cross_correlation_neon.s
@ This file contains the function WebRtcSpl_CrossCorrelationNeon(),
@ optimized for ARM Neon platform.
@
@ Reference Ccode at end of this file.
@ Output is bit-exact with the reference C code, but not with the generic
@ C code in file cross_correlation.c, due to reduction of shift operations
@ from using Neon registers.
@ Register usage:
@
@ r0: *cross_correlation (function argument)
@ r1: *seq1 (function argument)
@ r2: *seq2 (function argument)
@ r3: dim_seq (function argument); then, total iteration of LOOP_DIM_SEQ
@ r4: counter for LOOP_DIM_CROSS_CORRELATION
@ r5: seq2_ptr
@ r6: seq1_ptr
@ r7: Total iteration of LOOP_DIM_SEQ_RESIDUAL
@ r8, r9, r10, r11, r12: scratch
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_FUNCTION WebRtcSpl_CrossCorrelationNeon
.align 2
DEFINE_FUNCTION WebRtcSpl_CrossCorrelationNeon
push {r4-r11}
@ Put the shift value (-right_shifts) into a Neon register.
ldrsh r10, [sp, #36]
rsb r10, r10, #0
mov r8, r10, asr #31
vmov d16, r10, r8
@ Initialize loop counters.
and r7, r3, #7 @ inner_loop_len2 = dim_seq % 8;
asr r3, r3, #3 @ inner_loop_len1 = dim_seq / 8;
ldrsh r4, [sp, #32] @ dim_cross_correlation
LOOP_DIM_CROSS_CORRELATION:
vmov.i32 q9, #0
vmov.i32 q14, #0
movs r8, r3 @ inner_loop_len1
mov r6, r1 @ seq1_ptr
mov r5, r2 @ seq2_ptr
ble POST_LOOP_DIM_SEQ
LOOP_DIM_SEQ:
vld1.16 {d20, d21}, [r6]! @ seq1_ptr
vld1.16 {d22, d23}, [r5]! @ seq2_ptr
subs r8, r8, #1
vmull.s16 q12, d20, d22
vmull.s16 q13, d21, d23
vpadal.s32 q9, q12
vpadal.s32 q14, q13
bgt LOOP_DIM_SEQ
POST_LOOP_DIM_SEQ:
movs r10, r7 @ Loop counter
mov r12, #0
mov r8, #0
ble POST_LOOP_DIM_SEQ_RESIDUAL
LOOP_DIM_SEQ_RESIDUAL:
ldrh r11, [r6], #2
ldrh r9, [r5], #2
smulbb r11, r11, r9
adds r8, r8, r11
adc r12, r12, r11, asr #31
subs r10, #1
bgt LOOP_DIM_SEQ_RESIDUAL
POST_LOOP_DIM_SEQ_RESIDUAL: @ Sum the results up and do the shift.
vadd.i64 d18, d19
vadd.i64 d28, d29
vadd.i64 d18, d28
vmov.32 d17[0], r8
vmov.32 d17[1], r12
vadd.i64 d17, d18
vshl.s64 d17, d16
vst1.32 d17[0], [r0]! @ Store the output
ldr r8, [sp, #40] @ step_seq2
add r2, r8, lsl #1 @ prepare for seq2_ptr(r5) in the next loop.
subs r4, #1
bgt LOOP_DIM_CROSS_CORRELATION
pop {r4-r11}
bx lr
@ TODO(kma): Place this piece of reference code into a C code file.
@ void WebRtcSpl_CrossCorrelationNeon(int32_t* cross_correlation,
@ int16_t* seq1,
@ int16_t* seq2,
@ int16_t dim_seq,
@ int16_t dim_cross_correlation,
@ int16_t right_shifts,
@ int16_t step_seq2) {
@ int i = 0;
@ int j = 0;
@ int inner_loop_len1 = dim_seq >> 3;
@ int inner_loop_len2 = dim_seq - (inner_loop_len1 << 3);
@
@ assert(dim_cross_correlation > 0);
@ assert(dim_seq > 0);
@
@ for (i = 0; i < dim_cross_correlation; i++) {
@ int16_t *seq1_ptr = seq1;
@ int16_t *seq2_ptr = seq2 + (step_seq2 * i);
@ int64_t sum = 0;
@
@ for (j = inner_loop_len1; j > 0; j -= 1) {
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ }
@
@ // Calculate the rest of the samples.
@ for (j = inner_loop_len2; j > 0; j -= 1) {
@ sum += WEBRTC_SPL_MUL_16_16(*seq1_ptr, *seq2_ptr);
@ seq1_ptr++;
@ seq2_ptr++;
@ }
@
@ *cross_correlation++ = (int32_t)(sum >> right_shifts);
@ }
@ }

View File

@@ -0,0 +1,143 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the divisions
* WebRtcSpl_DivU32U16()
* WebRtcSpl_DivW32W16()
* WebRtcSpl_DivW32W16ResW16()
* WebRtcSpl_DivResultInQ31()
* WebRtcSpl_DivW32HiLow()
*
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
uint32_t WebRtcSpl_DivU32U16(uint32_t num, uint16_t den)
{
// Guard against division with 0
if (den != 0)
{
return (uint32_t)(num / den);
} else
{
return (uint32_t)0xFFFFFFFF;
}
}
int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den)
{
// Guard against division with 0
if (den != 0)
{
return (int32_t)(num / den);
} else
{
return (int32_t)0x7FFFFFFF;
}
}
int16_t WebRtcSpl_DivW32W16ResW16(int32_t num, int16_t den)
{
// Guard against division with 0
if (den != 0)
{
return (int16_t)(num / den);
} else
{
return (int16_t)0x7FFF;
}
}
int32_t WebRtcSpl_DivResultInQ31(int32_t num, int32_t den)
{
int32_t L_num = num;
int32_t L_den = den;
int32_t div = 0;
int k = 31;
int change_sign = 0;
if (num == 0)
return 0;
if (num < 0)
{
change_sign++;
L_num = -num;
}
if (den < 0)
{
change_sign++;
L_den = -den;
}
while (k--)
{
div <<= 1;
L_num <<= 1;
if (L_num >= L_den)
{
L_num -= L_den;
div++;
}
}
if (change_sign == 1)
{
div = -div;
}
return div;
}
int32_t WebRtcSpl_DivW32HiLow(int32_t num, int16_t den_hi, int16_t den_low)
{
int16_t approx, tmp_hi, tmp_low, num_hi, num_low;
int32_t tmpW32;
approx = (int16_t)WebRtcSpl_DivW32W16((int32_t)0x1FFFFFFF, den_hi);
// result in Q14 (Note: 3FFFFFFF = 0.5 in Q30)
// tmpW32 = 1/den = approx * (2.0 - den * approx) (in Q30)
tmpW32 = (WEBRTC_SPL_MUL_16_16(den_hi, approx) << 1)
+ ((WEBRTC_SPL_MUL_16_16(den_low, approx) >> 15) << 1);
// tmpW32 = den * approx
tmpW32 = (int32_t)0x7fffffffL - tmpW32; // result in Q30 (tmpW32 = 2.0-(den*approx))
// Store tmpW32 in hi and low format
tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmpW32, 16);
tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((tmpW32
- WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
// tmpW32 = 1/den in Q29
tmpW32 = ((WEBRTC_SPL_MUL_16_16(tmp_hi, approx) + (WEBRTC_SPL_MUL_16_16(tmp_low, approx)
>> 15)) << 1);
// 1/den in hi and low format
tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmpW32, 16);
tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((tmpW32
- WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
// Store num in hi and low format
num_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(num, 16);
num_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((num
- WEBRTC_SPL_LSHIFT_W32((int32_t)num_hi, 16)), 1);
// num * (1/den) by 32 bit multiplication (result in Q28)
tmpW32 = (WEBRTC_SPL_MUL_16_16(num_hi, tmp_hi) + (WEBRTC_SPL_MUL_16_16(num_hi, tmp_low)
>> 15) + (WEBRTC_SPL_MUL_16_16(num_low, tmp_hi) >> 15));
// Put result in Q31 (convert from Q28)
tmpW32 = WEBRTC_SPL_LSHIFT_W32(tmpW32, 3);
return tmpW32;
}

View File

@@ -0,0 +1,32 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int32_t WebRtcSpl_DotProductWithScale(const int16_t* vector1,
const int16_t* vector2,
int length,
int scaling) {
int32_t sum = 0;
int i = 0;
/* Unroll the loop to improve performance. */
for (i = 0; i < length - 3; i += 4) {
sum += (vector1[i + 0] * vector2[i + 0]) >> scaling;
sum += (vector1[i + 1] * vector2[i + 1]) >> scaling;
sum += (vector1[i + 2] * vector2[i + 2]) >> scaling;
sum += (vector1[i + 3] * vector2[i + 3]) >> scaling;
}
for (; i < length; i++) {
sum += (vector1[i] * vector2[i]) >> scaling;
}
return sum;
}

View File

@@ -0,0 +1,48 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// TODO(Bjornv): Change the function parameter order to WebRTC code style.
// C version of WebRtcSpl_DownsampleFast() for generic platforms.
int WebRtcSpl_DownsampleFastC(const int16_t* data_in,
int data_in_length,
int16_t* data_out,
int data_out_length,
const int16_t* __restrict coefficients,
int coefficients_length,
int factor,
int delay) {
int i = 0;
int j = 0;
int32_t out_s32 = 0;
int endpos = delay + factor * (data_out_length - 1) + 1;
// Return error if any of the running conditions doesn't meet.
if (data_out_length <= 0 || coefficients_length <= 0
|| data_in_length < endpos) {
return -1;
}
for (i = delay; i < endpos; i += factor) {
out_s32 = 2048; // Round value, 0.5 in Q12.
for (j = 0; j < coefficients_length; j++) {
out_s32 += coefficients[j] * data_in[i - j]; // Q12.
}
out_s32 >>= 12; // Q0.
// Saturate and store the output.
*data_out++ = WebRtcSpl_SatW32ToW16(out_s32);
}
return 0;
}

View File

@@ -0,0 +1,169 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// Version of WebRtcSpl_DownsampleFast() for MIPS platforms.
int WebRtcSpl_DownsampleFast_mips(const int16_t* data_in,
int data_in_length,
int16_t* data_out,
int data_out_length,
const int16_t* __restrict coefficients,
int coefficients_length,
int factor,
int delay) {
int i;
int j;
int k;
int32_t out_s32 = 0;
int endpos = delay + factor * (data_out_length - 1) + 1;
int32_t tmp1, tmp2, tmp3, tmp4, factor_2;
int16_t* p_coefficients;
int16_t* p_data_in;
int16_t* p_data_in_0 = (int16_t*)&data_in[delay];
int16_t* p_coefficients_0 = (int16_t*)&coefficients[0];
#if !defined(MIPS_DSP_R1_LE)
int32_t max_16 = 0x7FFF;
int32_t min_16 = 0xFFFF8000;
#endif // #if !defined(MIPS_DSP_R1_LE)
// Return error if any of the running conditions doesn't meet.
if (data_out_length <= 0 || coefficients_length <= 0
|| data_in_length < endpos) {
return -1;
}
#if defined(MIPS_DSP_R2_LE)
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"subu %[i], %[endpos], %[delay] \n\t"
"sll %[factor_2], %[factor], 1 \n\t"
"1: \n\t"
"move %[p_data_in], %[p_data_in_0] \n\t"
"mult $zero, $zero \n\t"
"move %[p_coefs], %[p_coefs_0] \n\t"
"sra %[j], %[coef_length], 2 \n\t"
"beq %[j], $zero, 3f \n\t"
" andi %[k], %[coef_length], 3 \n\t"
"2: \n\t"
"lwl %[tmp1], 1(%[p_data_in]) \n\t"
"lwl %[tmp2], 3(%[p_coefs]) \n\t"
"lwl %[tmp3], -3(%[p_data_in]) \n\t"
"lwl %[tmp4], 7(%[p_coefs]) \n\t"
"lwr %[tmp1], -2(%[p_data_in]) \n\t"
"lwr %[tmp2], 0(%[p_coefs]) \n\t"
"lwr %[tmp3], -6(%[p_data_in]) \n\t"
"lwr %[tmp4], 4(%[p_coefs]) \n\t"
"packrl.ph %[tmp1], %[tmp1], %[tmp1] \n\t"
"packrl.ph %[tmp3], %[tmp3], %[tmp3] \n\t"
"dpa.w.ph $ac0, %[tmp1], %[tmp2] \n\t"
"dpa.w.ph $ac0, %[tmp3], %[tmp4] \n\t"
"addiu %[j], %[j], -1 \n\t"
"addiu %[p_data_in], %[p_data_in], -8 \n\t"
"bgtz %[j], 2b \n\t"
" addiu %[p_coefs], %[p_coefs], 8 \n\t"
"3: \n\t"
"beq %[k], $zero, 5f \n\t"
" nop \n\t"
"4: \n\t"
"lhu %[tmp1], 0(%[p_data_in]) \n\t"
"lhu %[tmp2], 0(%[p_coefs]) \n\t"
"addiu %[p_data_in], %[p_data_in], -2 \n\t"
"addiu %[k], %[k], -1 \n\t"
"dpa.w.ph $ac0, %[tmp1], %[tmp2] \n\t"
"bgtz %[k], 4b \n\t"
" addiu %[p_coefs], %[p_coefs], 2 \n\t"
"5: \n\t"
"extr_r.w %[out_s32], $ac0, 12 \n\t"
"addu %[p_data_in_0], %[p_data_in_0], %[factor_2] \n\t"
"subu %[i], %[i], %[factor] \n\t"
"shll_s.w %[out_s32], %[out_s32], 16 \n\t"
"sra %[out_s32], %[out_s32], 16 \n\t"
"sh %[out_s32], 0(%[data_out]) \n\t"
"bgtz %[i], 1b \n\t"
" addiu %[data_out], %[data_out], 2 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
[tmp4] "=&r" (tmp4), [p_data_in] "=&r" (p_data_in),
[p_data_in_0] "+r" (p_data_in_0), [p_coefs] "=&r" (p_coefficients),
[j] "=&r" (j), [out_s32] "=&r" (out_s32), [factor_2] "=&r" (factor_2),
[i] "=&r" (i), [k] "=&r" (k)
: [coef_length] "r" (coefficients_length), [data_out] "r" (data_out),
[p_coefs_0] "r" (p_coefficients_0), [endpos] "r" (endpos),
[delay] "r" (delay), [factor] "r" (factor)
: "memory", "hi", "lo"
);
#else // #if defined(MIPS_DSP_R2_LE)
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"sll %[factor_2], %[factor], 1 \n\t"
"subu %[i], %[endpos], %[delay] \n\t"
"1: \n\t"
"move %[p_data_in], %[p_data_in_0] \n\t"
"addiu %[out_s32], $zero, 2048 \n\t"
"move %[p_coefs], %[p_coefs_0] \n\t"
"sra %[j], %[coef_length], 1 \n\t"
"beq %[j], $zero, 3f \n\t"
" andi %[k], %[coef_length], 1 \n\t"
"2: \n\t"
"lh %[tmp1], 0(%[p_data_in]) \n\t"
"lh %[tmp2], 0(%[p_coefs]) \n\t"
"lh %[tmp3], -2(%[p_data_in]) \n\t"
"lh %[tmp4], 2(%[p_coefs]) \n\t"
"mul %[tmp1], %[tmp1], %[tmp2] \n\t"
"addiu %[p_coefs], %[p_coefs], 4 \n\t"
"mul %[tmp3], %[tmp3], %[tmp4] \n\t"
"addiu %[j], %[j], -1 \n\t"
"addiu %[p_data_in], %[p_data_in], -4 \n\t"
"addu %[tmp1], %[tmp1], %[tmp3] \n\t"
"bgtz %[j], 2b \n\t"
" addu %[out_s32], %[out_s32], %[tmp1] \n\t"
"3: \n\t"
"beq %[k], $zero, 4f \n\t"
" nop \n\t"
"lh %[tmp1], 0(%[p_data_in]) \n\t"
"lh %[tmp2], 0(%[p_coefs]) \n\t"
"mul %[tmp1], %[tmp1], %[tmp2] \n\t"
"addu %[out_s32], %[out_s32], %[tmp1] \n\t"
"4: \n\t"
"sra %[out_s32], %[out_s32], 12 \n\t"
"addu %[p_data_in_0], %[p_data_in_0], %[factor_2] \n\t"
#if defined(MIPS_DSP_R1_LE)
"shll_s.w %[out_s32], %[out_s32], 16 \n\t"
"sra %[out_s32], %[out_s32], 16 \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"slt %[tmp1], %[max_16], %[out_s32] \n\t"
"movn %[out_s32], %[max_16], %[tmp1] \n\t"
"slt %[tmp1], %[out_s32], %[min_16] \n\t"
"movn %[out_s32], %[min_16], %[tmp1] \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"subu %[i], %[i], %[factor] \n\t"
"sh %[out_s32], 0(%[data_out]) \n\t"
"bgtz %[i], 1b \n\t"
" addiu %[data_out], %[data_out], 2 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
[tmp4] "=&r" (tmp4), [p_data_in] "=&r" (p_data_in), [k] "=&r" (k),
[p_data_in_0] "+r" (p_data_in_0), [p_coefs] "=&r" (p_coefficients),
[j] "=&r" (j), [out_s32] "=&r" (out_s32), [factor_2] "=&r" (factor_2),
[i] "=&r" (i)
: [coef_length] "r" (coefficients_length), [data_out] "r" (data_out),
[p_coefs_0] "r" (p_coefficients_0), [endpos] "r" (endpos),
#if !defined(MIPS_DSP_R1_LE)
[max_16] "r" (max_16), [min_16] "r" (min_16),
#endif // #if !defined(MIPS_DSP_R1_LE)
[delay] "r" (delay), [factor] "r" (factor)
: "memory", "hi", "lo"
);
#endif // #if defined(MIPS_DSP_R2_LE)
return 0;
}

View File

@@ -0,0 +1,215 @@
@
@ Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
@
@ Use of this source code is governed by a BSD-style license
@ that can be found in the LICENSE file in the root of the source
@ tree. An additional intellectual property rights grant can be found
@ in the file PATENTS. All contributing project authors may
@ be found in the AUTHORS file in the root of the source tree.
@
@ This file contains the function WebRtcSpl_DownsampleFastNeon(), optimized for
@ ARM Neon platform. The description header can be found in
@ signal_processing_library.h
@
@ The reference C code is in file downsample_fast.c. Bit-exact.
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_FUNCTION WebRtcSpl_DownsampleFastNeon
.align 2
DEFINE_FUNCTION WebRtcSpl_DownsampleFastNeon
push {r4-r11}
cmp r3, #0 @ data_out_length <= 0?
movle r0, #-1
ble END
ldrsh r12, [sp, #44]
ldr r5, [sp, #40] @ r5: factor
add r4, r12, #1 @ r4: delay + 1
sub r3, r3, #1 @ r3: data_out_length - 1
smulbb r3, r5, r3
ldr r8, [sp, #32] @ &coefficients[0]
mov r9, r12 @ Iteration counter for outer loops.
add r3, r4 @ delay + factor * (out_length-1) +1
cmp r3, r1 @ data_in_length < endpos?
movgt r0, #-1
bgt END
@ Initializations.
sub r3, r5, asl #3
add r11, r0, r12, asl #1 @ &data_in[delay]
ldr r0, [sp, #36] @ coefficients_length
add r3, r5 @ endpos - factor * 7
cmp r0, #0 @ coefficients_length <= 0 ?
movle r0, #-1
ble END
add r8, r0, asl #1 @ &coeffieient[coefficients_length]
cmp r9, r3
bge POST_LOOP_ENDPOS @ branch when Iteration < 8 times.
@
@ First part, unroll the loop 8 times, with 3 subcases (factor == 2, 4, others)
@
mov r4, #-2
@ Direct program flow to the right channel.
@ r10 is an offset to &data_in[] in the loop. After an iteration, we need to
@ move the pointer back to original after advancing 16 bytes by a vld1, and
@ then move 2 bytes forward to increment one more sample.
cmp r5, #2
moveq r10, #-14
beq LOOP_ENDPOS_FACTOR2 @ Branch when factor == 2
@ Similar here, for r10, we need to move the pointer back to original after
@ advancing 32 bytes, then move 2 bytes forward to increment one sample.
cmp r5, #4
moveq r10, #-30
beq LOOP_ENDPOS_FACTOR4 @ Branch when factor == 4
@ For r10, we need to move the pointer back to original after advancing
@ (factor * 7 * 2) bytes, then move 2 bytes forward to increment one sample.
mov r10, r5, asl #4
rsb r10, #2
add r10, r5, asl #1
lsl r5, #1 @ r5 = factor * sizeof(data_in)
@ The general case (factor != 2 && factor != 4)
LOOP_ENDPOS_GENERAL:
@ Initializations.
vmov.i32 q2, #2048
vmov.i32 q3, #2048
sub r7, r8, #2
sub r12, r0, #1 @ coefficients_length - 1
sub r1, r11, r12, asl #1 @ &data_in[i - j]
LOOP_COEFF_LENGTH_GENERAL:
vld1.16 {d2[], d3[]}, [r7], r4 @ coefficients[j]
vld1.16 d0[0], [r1], r5 @ data_in[i - j]
vld1.16 d0[1], [r1], r5 @ data_in[i + factor - j]
vld1.16 d0[2], [r1], r5 @ data_in[i + factor * 2 - j]
vld1.16 d0[3], [r1], r5 @ data_in[i + factor * 3 - j]
vld1.16 d1[0], [r1], r5 @ data_in[i + factor * 4 - j]
vld1.16 d1[1], [r1], r5 @ data_in[i + factor * 5 - j]
vld1.16 d1[2], [r1], r5 @ data_in[i + factor * 6 - j]
vld1.16 d1[3], [r1], r10 @ data_in[i + factor * 7 - j]
subs r12, #1
vmlal.s16 q2, d0, d2
vmlal.s16 q3, d1, d3
bge LOOP_COEFF_LENGTH_GENERAL
@ Shift, saturate, and store the result.
vqshrn.s32 d0, q2, #12
vqshrn.s32 d1, q3, #12
vst1.16 {d0, d1}, [r2]!
add r11, r5, asl #3 @ r11 -> &data_in[i + factor * 8]
add r9, r5, asl #2 @ Counter i = delay + factor * 8.
cmp r9, r3 @ i < endpos - factor * 7 ?
blt LOOP_ENDPOS_GENERAL
asr r5, #1 @ Restore r5 to the value of factor.
b POST_LOOP_ENDPOS
@ The case for factor == 2.
LOOP_ENDPOS_FACTOR2:
@ Initializations.
vmov.i32 q2, #2048
vmov.i32 q3, #2048
sub r7, r8, #2
sub r12, r0, #1 @ coefficients_length - 1
sub r1, r11, r12, asl #1 @ &data_in[i - j]
LOOP_COEFF_LENGTH_FACTOR2:
vld1.16 {d16[], d17[]}, [r7], r4 @ coefficients[j]
vld2.16 {d0, d1}, [r1]! @ data_in[]
vld2.16 {d2, d3}, [r1], r10 @ data_in[]
subs r12, #1
vmlal.s16 q2, d0, d16
vmlal.s16 q3, d2, d17
bge LOOP_COEFF_LENGTH_FACTOR2
@ Shift, saturate, and store the result.
vqshrn.s32 d0, q2, #12
vqshrn.s32 d1, q3, #12
vst1.16 {d0, d1}, [r2]!
add r11, r5, asl #4 @ r11 -> &data_in[i + factor * 8]
add r9, r5, asl #3 @ Counter i = delay + factor * 8.
cmp r9, r3 @ i < endpos - factor * 7 ?
blt LOOP_ENDPOS_FACTOR2
b POST_LOOP_ENDPOS
@ The case for factor == 4.
LOOP_ENDPOS_FACTOR4:
@ Initializations.
vmov.i32 q2, #2048
vmov.i32 q3, #2048
sub r7, r8, #2
sub r12, r0, #1 @ coefficients_length - 1
sub r1, r11, r12, asl #1 @ &data_in[i - j]
LOOP_COEFF_LENGTH_FACTOR4:
vld1.16 {d16[], d17[]}, [r7], r4 @ coefficients[j]
vld4.16 {d0, d1, d2, d3}, [r1]! @ data_in[]
vld4.16 {d18, d19, d20, d21}, [r1], r10 @ data_in[]
subs r12, #1
vmlal.s16 q2, d0, d16
vmlal.s16 q3, d18, d17
bge LOOP_COEFF_LENGTH_FACTOR4
add r11, r5, asl #4 @ r11 -> &data_in[i + factor * 8]
add r9, r5, asl #3 @ Counter i = delay + factor * 8.
@ Shift, saturate, and store the result.
vqshrn.s32 d0, q2, #12
vqshrn.s32 d1, q3, #12
cmp r9, r3 @ i < endpos - factor * 7 ?
vst1.16 {d0, d1}, [r2]!
blt LOOP_ENDPOS_FACTOR4
@
@ Second part, do the rest iterations (if any).
@
POST_LOOP_ENDPOS:
add r3, r5, asl #3
sub r3, r5 @ Restore r3 to endpos.
cmp r9, r3
movge r0, #0
bge END
LOOP2_ENDPOS:
@ Initializations.
mov r7, r8
sub r12, r0, #1 @ coefficients_length - 1
sub r6, r11, r12, asl #1 @ &data_in[i - j]
mov r1, #2048
LOOP2_COEFF_LENGTH:
ldrsh r4, [r7, #-2]! @ coefficients[j]
ldrsh r10, [r6], #2 @ data_in[i - j]
smlabb r1, r4, r10, r1
subs r12, #1
bge LOOP2_COEFF_LENGTH
@ Shift, saturate, and store the result.
ssat r1, #16, r1, asr #12
strh r1, [r2], #2
add r11, r5, asl #1 @ r11 -> &data_in[i + factor]
add r9, r5 @ Counter i = delay + factor.
cmp r9, r3 @ i < endpos?
blt LOOP2_ENDPOS
mov r0, #0
END:
pop {r4-r11}
bx lr

View File

@@ -0,0 +1,36 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_Energy().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int32_t WebRtcSpl_Energy(int16_t* vector, int vector_length, int* scale_factor)
{
int32_t en = 0;
int i;
int scaling = WebRtcSpl_GetScalingSquare(vector, vector_length, vector_length);
int looptimes = vector_length;
int16_t *vectorptr = vector;
for (i = 0; i < looptimes; i++)
{
en += WEBRTC_SPL_MUL_16_16_RSFT(*vectorptr, *vectorptr, scaling);
vectorptr++;
}
*scale_factor = scaling;
return en;
}

View File

@@ -0,0 +1,89 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_FilterAR().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int WebRtcSpl_FilterAR(const int16_t* a,
int a_length,
const int16_t* x,
int x_length,
int16_t* state,
int state_length,
int16_t* state_low,
int state_low_length,
int16_t* filtered,
int16_t* filtered_low,
int filtered_low_length)
{
int32_t o;
int32_t oLOW;
int i, j, stop;
const int16_t* x_ptr = &x[0];
int16_t* filteredFINAL_ptr = filtered;
int16_t* filteredFINAL_LOW_ptr = filtered_low;
for (i = 0; i < x_length; i++)
{
// Calculate filtered[i] and filtered_low[i]
const int16_t* a_ptr = &a[1];
int16_t* filtered_ptr = &filtered[i - 1];
int16_t* filtered_low_ptr = &filtered_low[i - 1];
int16_t* state_ptr = &state[state_length - 1];
int16_t* state_low_ptr = &state_low[state_length - 1];
o = (int32_t)(*x_ptr++) << 12;
oLOW = (int32_t)0;
stop = (i < a_length) ? i + 1 : a_length;
for (j = 1; j < stop; j++)
{
o -= WEBRTC_SPL_MUL_16_16(*a_ptr, *filtered_ptr--);
oLOW -= WEBRTC_SPL_MUL_16_16(*a_ptr++, *filtered_low_ptr--);
}
for (j = i + 1; j < a_length; j++)
{
o -= WEBRTC_SPL_MUL_16_16(*a_ptr, *state_ptr--);
oLOW -= WEBRTC_SPL_MUL_16_16(*a_ptr++, *state_low_ptr--);
}
o += (oLOW >> 12);
*filteredFINAL_ptr = (int16_t)((o + (int32_t)2048) >> 12);
*filteredFINAL_LOW_ptr++ = (int16_t)(o - ((int32_t)(*filteredFINAL_ptr++)
<< 12));
}
// Save the filter state
if (x_length >= state_length)
{
WebRtcSpl_CopyFromEndW16(filtered, x_length, a_length - 1, state);
WebRtcSpl_CopyFromEndW16(filtered_low, x_length, a_length - 1, state_low);
} else
{
for (i = 0; i < state_length - x_length; i++)
{
state[i] = state[i + x_length];
state_low[i] = state_low[i + x_length];
}
for (i = 0; i < x_length; i++)
{
state[state_length - x_length + i] = filtered[i];
state[state_length - x_length + i] = filtered_low[i];
}
}
return x_length;
}

View File

@@ -0,0 +1,42 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// TODO(bjornv): Change the return type to report errors.
void WebRtcSpl_FilterARFastQ12(const int16_t* data_in,
int16_t* data_out,
const int16_t* __restrict coefficients,
int coefficients_length,
int data_length) {
int i = 0;
int j = 0;
assert(data_length > 0);
assert(coefficients_length > 1);
for (i = 0; i < data_length; i++) {
int32_t output = 0;
int32_t sum = 0;
for (j = coefficients_length - 1; j > 0; j--) {
sum += coefficients[j] * data_out[i - j];
}
output = coefficients[0] * data_in[i];
output -= sum;
// Saturate and store the output.
output = WEBRTC_SPL_SAT(134215679, output, -134217728);
data_out[i] = (int16_t)((output + 2048) >> 12);
}
}

View File

@@ -0,0 +1,215 @@
@
@ Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
@
@ Use of this source code is governed by a BSD-style license
@ that can be found in the LICENSE file in the root of the source
@ tree. An additional intellectual property rights grant can be found
@ in the file PATENTS. All contributing project authors may
@ be found in the AUTHORS file in the root of the source tree.
@
@ This file contains the function WebRtcSpl_FilterARFastQ12(), optimized for
@ ARMv7 platform. The description header can be found in
@ signal_processing_library.h
@
@ Output is bit-exact with the generic C code as in filter_ar_fast_q12.c, and
@ the reference C code at end of this file.
@ Assumptions:
@ (1) data_length > 0
@ (2) coefficients_length > 1
@ Register usage:
@
@ r0: &data_in[i]
@ r1: &data_out[i], for result ouput
@ r2: &coefficients[0]
@ r3: coefficients_length
@ r4: Iteration counter for the outer loop.
@ r5: data_out[j] as multiplication inputs
@ r6: Calculated value for output data_out[]; interation counter for inner loop
@ r7: Partial sum of a filtering multiplication results
@ r8: Partial sum of a filtering multiplication results
@ r9: &data_out[], for filtering input; data_in[i]
@ r10: coefficients[j]
@ r11: Scratch
@ r12: &coefficients[j]
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_FUNCTION WebRtcSpl_FilterARFastQ12
.align 2
DEFINE_FUNCTION WebRtcSpl_FilterARFastQ12
push {r4-r11}
ldrsh r12, [sp, #32] @ data_length
subs r4, r12, #1
beq ODD_LENGTH @ jump if data_length == 1
LOOP_LENGTH:
add r12, r2, r3, lsl #1
sub r12, #4 @ &coefficients[coefficients_length - 2]
sub r9, r1, r3, lsl #1
add r9, #2 @ &data_out[i - coefficients_length + 1]
ldr r5, [r9], #4 @ data_out[i - coefficients_length + {1,2}]
mov r7, #0 @ sum1
mov r8, #0 @ sum2
subs r6, r3, #3 @ Iteration counter for inner loop.
beq ODD_A_LENGTH @ branch if coefficients_length == 3
blt POST_LOOP_A_LENGTH @ branch if coefficients_length == 2
LOOP_A_LENGTH:
ldr r10, [r12], #-4 @ coefficients[j - 1], coefficients[j]
subs r6, #2
smlatt r8, r10, r5, r8 @ sum2 += coefficients[j] * data_out[i - j + 1];
smlatb r7, r10, r5, r7 @ sum1 += coefficients[j] * data_out[i - j];
smlabt r7, r10, r5, r7 @ coefficients[j - 1] * data_out[i - j + 1];
ldr r5, [r9], #4 @ data_out[i - j + 2], data_out[i - j + 3]
smlabb r8, r10, r5, r8 @ coefficients[j - 1] * data_out[i - j + 2];
bgt LOOP_A_LENGTH
blt POST_LOOP_A_LENGTH
ODD_A_LENGTH:
ldrsh r10, [r12, #2] @ Filter coefficients coefficients[2]
sub r12, #2 @ &coefficients[0]
smlabb r7, r10, r5, r7 @ sum1 += coefficients[2] * data_out[i - 2];
smlabt r8, r10, r5, r8 @ sum2 += coefficients[2] * data_out[i - 1];
ldr r5, [r9, #-2] @ data_out[i - 1], data_out[i]
POST_LOOP_A_LENGTH:
ldr r10, [r12] @ coefficients[0], coefficients[1]
smlatb r7, r10, r5, r7 @ sum1 += coefficients[1] * data_out[i - 1];
ldr r9, [r0], #4 @ data_in[i], data_in[i + 1]
smulbb r6, r10, r9 @ output1 = coefficients[0] * data_in[i];
sub r6, r7 @ output1 -= sum1;
sbfx r11, r6, #12, #16
ssat r7, #16, r6, asr #12
cmp r7, r11
addeq r6, r6, #2048
ssat r6, #16, r6, asr #12
strh r6, [r1], #2 @ Store data_out[i]
smlatb r8, r10, r6, r8 @ sum2 += coefficients[1] * data_out[i];
smulbt r6, r10, r9 @ output2 = coefficients[0] * data_in[i + 1];
sub r6, r8 @ output1 -= sum1;
sbfx r11, r6, #12, #16
ssat r7, #16, r6, asr #12
cmp r7, r11
addeq r6, r6, #2048
ssat r6, #16, r6, asr #12
strh r6, [r1], #2 @ Store data_out[i + 1]
subs r4, #2
bgt LOOP_LENGTH
blt END @ For even data_length, it's done. Jump to END.
@ Process i = data_length -1, for the case of an odd length.
ODD_LENGTH:
add r12, r2, r3, lsl #1
sub r12, #4 @ &coefficients[coefficients_length - 2]
sub r9, r1, r3, lsl #1
add r9, #2 @ &data_out[i - coefficients_length + 1]
mov r7, #0 @ sum1
mov r8, #0 @ sum1
subs r6, r3, #2 @ inner loop counter
beq EVEN_A_LENGTH @ branch if coefficients_length == 2
LOOP2_A_LENGTH:
ldr r10, [r12], #-4 @ coefficients[j - 1], coefficients[j]
ldr r5, [r9], #4 @ data_out[i - j], data_out[i - j + 1]
subs r6, #2
smlatb r7, r10, r5, r7 @ sum1 += coefficients[j] * data_out[i - j];
smlabt r8, r10, r5, r8 @ coefficients[j - 1] * data_out[i - j + 1];
bgt LOOP2_A_LENGTH
addlt r12, #2
blt POST_LOOP2_A_LENGTH
EVEN_A_LENGTH:
ldrsh r10, [r12, #2] @ Filter coefficients coefficients[1]
ldrsh r5, [r9] @ data_out[i - 1]
smlabb r7, r10, r5, r7 @ sum1 += coefficients[1] * data_out[i - 1];
POST_LOOP2_A_LENGTH:
ldrsh r10, [r12] @ Filter coefficients coefficients[0]
ldrsh r9, [r0] @ data_in[i]
smulbb r6, r10, r9 @ output1 = coefficients[0] * data_in[i];
sub r6, r7 @ output1 -= sum1;
sub r6, r8 @ output1 -= sum1;
sbfx r8, r6, #12, #16
ssat r7, #16, r6, asr #12
cmp r7, r8
addeq r6, r6, #2048
ssat r6, #16, r6, asr #12
strh r6, [r1] @ Store the data_out[i]
END:
pop {r4-r11}
bx lr
@Reference C code:
@
@void WebRtcSpl_FilterARFastQ12(int16_t* data_in,
@ int16_t* data_out,
@ int16_t* __restrict coefficients,
@ int coefficients_length,
@ int data_length) {
@ int i = 0;
@ int j = 0;
@
@ for (i = 0; i < data_length - 1; i += 2) {
@ int32_t output1 = 0;
@ int32_t sum1 = 0;
@ int32_t output2 = 0;
@ int32_t sum2 = 0;
@
@ for (j = coefficients_length - 1; j > 2; j -= 2) {
@ sum1 += coefficients[j] * data_out[i - j];
@ sum1 += coefficients[j - 1] * data_out[i - j + 1];
@ sum2 += coefficients[j] * data_out[i - j + 1];
@ sum2 += coefficients[j - 1] * data_out[i - j + 2];
@ }
@
@ if (j == 2) {
@ sum1 += coefficients[2] * data_out[i - 2];
@ sum2 += coefficients[2] * data_out[i - 1];
@ }
@
@ sum1 += coefficients[1] * data_out[i - 1];
@ output1 = coefficients[0] * data_in[i];
@ output1 -= sum1;
@ // Saturate and store the output.
@ output1 = WEBRTC_SPL_SAT(134215679, output1, -134217728);
@ data_out[i] = (int16_t)((output1 + 2048) >> 12);
@
@ sum2 += coefficients[1] * data_out[i];
@ output2 = coefficients[0] * data_in[i + 1];
@ output2 -= sum2;
@ // Saturate and store the output.
@ output2 = WEBRTC_SPL_SAT(134215679, output2, -134217728);
@ data_out[i + 1] = (int16_t)((output2 + 2048) >> 12);
@ }
@
@ if (i == data_length - 1) {
@ int32_t output1 = 0;
@ int32_t sum1 = 0;
@
@ for (j = coefficients_length - 1; j > 1; j -= 2) {
@ sum1 += coefficients[j] * data_out[i - j];
@ sum1 += coefficients[j - 1] * data_out[i - j + 1];
@ }
@
@ if (j == 1) {
@ sum1 += coefficients[1] * data_out[i - 1];
@ }
@
@ output1 = coefficients[0] * data_in[i];
@ output1 -= sum1;
@ // Saturate and store the output.
@ output1 = WEBRTC_SPL_SAT(134215679, output1, -134217728);
@ data_out[i] = (int16_t)((output1 + 2048) >> 12);
@ }
@}

View File

@@ -0,0 +1,140 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_FilterARFastQ12(const int16_t* data_in,
int16_t* data_out,
const int16_t* __restrict coefficients,
int coefficients_length,
int data_length) {
int r0, r1, r2, r3;
int coef0, offset;
int i, j, k;
int coefptr, outptr, tmpout, inptr;
#if !defined(MIPS_DSP_R1_LE)
int max16 = 0x7FFF;
int min16 = 0xFFFF8000;
#endif // #if !defined(MIPS_DSP_R1_LE)
assert(data_length > 0);
assert(coefficients_length > 1);
__asm __volatile (
".set push \n\t"
".set noreorder \n\t"
"addiu %[i], %[data_length], 0 \n\t"
"lh %[coef0], 0(%[coefficients]) \n\t"
"addiu %[j], %[coefficients_length], -1 \n\t"
"andi %[k], %[j], 1 \n\t"
"sll %[offset], %[j], 1 \n\t"
"subu %[outptr], %[data_out], %[offset] \n\t"
"addiu %[inptr], %[data_in], 0 \n\t"
"bgtz %[k], 3f \n\t"
" addu %[coefptr], %[coefficients], %[offset] \n\t"
"1: \n\t"
"lh %[r0], 0(%[inptr]) \n\t"
"addiu %[i], %[i], -1 \n\t"
"addiu %[tmpout], %[outptr], 0 \n\t"
"mult %[r0], %[coef0] \n\t"
"2: \n\t"
"lh %[r0], 0(%[tmpout]) \n\t"
"lh %[r1], 0(%[coefptr]) \n\t"
"lh %[r2], 2(%[tmpout]) \n\t"
"lh %[r3], -2(%[coefptr]) \n\t"
"addiu %[tmpout], %[tmpout], 4 \n\t"
"msub %[r0], %[r1] \n\t"
"msub %[r2], %[r3] \n\t"
"addiu %[j], %[j], -2 \n\t"
"bgtz %[j], 2b \n\t"
" addiu %[coefptr], %[coefptr], -4 \n\t"
#if defined(MIPS_DSP_R1_LE)
"extr_r.w %[r0], $ac0, 12 \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"mflo %[r0] \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"addu %[coefptr], %[coefficients], %[offset] \n\t"
"addiu %[inptr], %[inptr], 2 \n\t"
"addiu %[j], %[coefficients_length], -1 \n\t"
#if defined(MIPS_DSP_R1_LE)
"shll_s.w %[r0], %[r0], 16 \n\t"
"sra %[r0], %[r0], 16 \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"addiu %[r0], %[r0], 2048 \n\t"
"sra %[r0], %[r0], 12 \n\t"
"slt %[r1], %[max16], %[r0] \n\t"
"movn %[r0], %[max16], %[r1] \n\t"
"slt %[r1], %[r0], %[min16] \n\t"
"movn %[r0], %[min16], %[r1] \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"sh %[r0], 0(%[tmpout]) \n\t"
"bgtz %[i], 1b \n\t"
" addiu %[outptr], %[outptr], 2 \n\t"
"b 5f \n\t"
" nop \n\t"
"3: \n\t"
"lh %[r0], 0(%[inptr]) \n\t"
"addiu %[i], %[i], -1 \n\t"
"addiu %[tmpout], %[outptr], 0 \n\t"
"mult %[r0], %[coef0] \n\t"
"4: \n\t"
"lh %[r0], 0(%[tmpout]) \n\t"
"lh %[r1], 0(%[coefptr]) \n\t"
"lh %[r2], 2(%[tmpout]) \n\t"
"lh %[r3], -2(%[coefptr]) \n\t"
"addiu %[tmpout], %[tmpout], 4 \n\t"
"msub %[r0], %[r1] \n\t"
"msub %[r2], %[r3] \n\t"
"addiu %[j], %[j], -2 \n\t"
"bgtz %[j], 4b \n\t"
" addiu %[coefptr], %[coefptr], -4 \n\t"
"lh %[r0], 0(%[tmpout]) \n\t"
"lh %[r1], 0(%[coefptr]) \n\t"
"msub %[r0], %[r1] \n\t"
#if defined(MIPS_DSP_R1_LE)
"extr_r.w %[r0], $ac0, 12 \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"mflo %[r0] \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"addu %[coefptr], %[coefficients], %[offset] \n\t"
"addiu %[inptr], %[inptr], 2 \n\t"
"addiu %[j], %[coefficients_length], -1 \n\t"
#if defined(MIPS_DSP_R1_LE)
"shll_s.w %[r0], %[r0], 16 \n\t"
"sra %[r0], %[r0], 16 \n\t"
#else // #if defined(MIPS_DSP_R1_LE)
"addiu %[r0], %[r0], 2048 \n\t"
"sra %[r0], %[r0], 12 \n\t"
"slt %[r1], %[max16], %[r0] \n\t"
"movn %[r0], %[max16], %[r1] \n\t"
"slt %[r1], %[r0], %[min16] \n\t"
"movn %[r0], %[min16], %[r1] \n\t"
#endif // #if defined(MIPS_DSP_R1_LE)
"sh %[r0], 2(%[tmpout]) \n\t"
"bgtz %[i], 3b \n\t"
" addiu %[outptr], %[outptr], 2 \n\t"
"5: \n\t"
".set pop \n\t"
: [i] "=&r" (i), [j] "=&r" (j), [k] "=&r" (k), [r0] "=&r" (r0),
[r1] "=&r" (r1), [r2] "=&r" (r2), [r3] "=&r" (r3),
[coef0] "=&r" (coef0), [offset] "=&r" (offset),
[outptr] "=&r" (outptr), [inptr] "=&r" (inptr),
[coefptr] "=&r" (coefptr), [tmpout] "=&r" (tmpout)
: [coefficients] "r" (coefficients), [data_length] "r" (data_length),
[coefficients_length] "r" (coefficients_length),
#if !defined(MIPS_DSP_R1_LE)
[max16] "r" (max16), [min16] "r" (min16),
#endif
[data_out] "r" (data_out), [data_in] "r" (data_in)
: "hi", "lo", "memory"
);
}

View File

@@ -0,0 +1,49 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_FilterMAFastQ12().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_FilterMAFastQ12(int16_t* in_ptr,
int16_t* out_ptr,
int16_t* B,
int16_t B_length,
int16_t length)
{
int32_t o;
int i, j;
for (i = 0; i < length; i++)
{
const int16_t* b_ptr = &B[0];
const int16_t* x_ptr = &in_ptr[i];
o = (int32_t)0;
for (j = 0; j < B_length; j++)
{
o += WEBRTC_SPL_MUL_16_16(*b_ptr++, *x_ptr--);
}
// If output is higher than 32768, saturate it. Same with negative side
// 2^27 = 134217728, which corresponds to 32768 in Q12
// Saturate the output
o = WEBRTC_SPL_SAT((int32_t)134215679, o, (int32_t)-134217728);
*out_ptr++ = (int16_t)((o + (int32_t)2048) >> 12);
}
return;
}

View File

@@ -0,0 +1,77 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_GetHanningWindow().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// Hanning table with 256 entries
static const int16_t kHanningTable[] = {
1, 2, 6, 10, 15, 22, 30, 39,
50, 62, 75, 89, 104, 121, 138, 157,
178, 199, 222, 246, 271, 297, 324, 353,
383, 413, 446, 479, 513, 549, 586, 624,
663, 703, 744, 787, 830, 875, 920, 967,
1015, 1064, 1114, 1165, 1218, 1271, 1325, 1381,
1437, 1494, 1553, 1612, 1673, 1734, 1796, 1859,
1924, 1989, 2055, 2122, 2190, 2259, 2329, 2399,
2471, 2543, 2617, 2691, 2765, 2841, 2918, 2995,
3073, 3152, 3232, 3312, 3393, 3475, 3558, 3641,
3725, 3809, 3895, 3980, 4067, 4154, 4242, 4330,
4419, 4509, 4599, 4689, 4781, 4872, 4964, 5057,
5150, 5244, 5338, 5432, 5527, 5622, 5718, 5814,
5910, 6007, 6104, 6202, 6299, 6397, 6495, 6594,
6693, 6791, 6891, 6990, 7090, 7189, 7289, 7389,
7489, 7589, 7690, 7790, 7890, 7991, 8091, 8192,
8293, 8393, 8494, 8594, 8694, 8795, 8895, 8995,
9095, 9195, 9294, 9394, 9493, 9593, 9691, 9790,
9889, 9987, 10085, 10182, 10280, 10377, 10474, 10570,
10666, 10762, 10857, 10952, 11046, 11140, 11234, 11327,
11420, 11512, 11603, 11695, 11785, 11875, 11965, 12054,
12142, 12230, 12317, 12404, 12489, 12575, 12659, 12743,
12826, 12909, 12991, 13072, 13152, 13232, 13311, 13389,
13466, 13543, 13619, 13693, 13767, 13841, 13913, 13985,
14055, 14125, 14194, 14262, 14329, 14395, 14460, 14525,
14588, 14650, 14711, 14772, 14831, 14890, 14947, 15003,
15059, 15113, 15166, 15219, 15270, 15320, 15369, 15417,
15464, 15509, 15554, 15597, 15640, 15681, 15721, 15760,
15798, 15835, 15871, 15905, 15938, 15971, 16001, 16031,
16060, 16087, 16113, 16138, 16162, 16185, 16206, 16227,
16246, 16263, 16280, 16295, 16309, 16322, 16334, 16345,
16354, 16362, 16369, 16374, 16378, 16382, 16383, 16384
};
void WebRtcSpl_GetHanningWindow(int16_t *v, int16_t size)
{
int jj;
int16_t *vptr1;
int32_t index;
int32_t factor = ((int32_t)0x40000000);
factor = WebRtcSpl_DivW32W16(factor, size);
if (size < 513)
index = (int32_t)-0x200000;
else
index = (int32_t)-0x100000;
vptr1 = v;
for (jj = 0; jj < size; jj++)
{
index += factor;
(*vptr1++) = kHanningTable[index >> 22];
}
}

View File

@@ -0,0 +1,44 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_GetScalingSquare().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int WebRtcSpl_GetScalingSquare(int16_t *in_vector, int in_vector_length, int times)
{
int nbits = WebRtcSpl_GetSizeInBits(times);
int i;
int16_t smax = -1;
int16_t sabs;
int16_t *sptr = in_vector;
int t;
int looptimes = in_vector_length;
for (i = looptimes; i > 0; i--)
{
sabs = (*sptr > 0 ? *sptr++ : -*sptr++);
smax = (sabs > smax ? sabs : smax);
}
t = WebRtcSpl_NormW32(WEBRTC_SPL_MUL(smax, smax));
if (smax == 0)
{
return 0; // Since norm(0) returns 0
} else
{
return (t > nbits) ? 0 : nbits - t;
}
}

View File

@@ -0,0 +1,101 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the iLBC specific functions
* WebRtcSpl_ReverseOrderMultArrayElements()
* WebRtcSpl_ElementwiseVectorMult()
* WebRtcSpl_AddVectorsAndShift()
* WebRtcSpl_AddAffineVectorToVector()
* WebRtcSpl_AffineTransformVector()
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_ReverseOrderMultArrayElements(int16_t *out, const int16_t *in,
const int16_t *win,
int16_t vector_length,
int16_t right_shifts)
{
int i;
int16_t *outptr = out;
const int16_t *inptr = in;
const int16_t *winptr = win;
for (i = 0; i < vector_length; i++)
{
(*outptr++) = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(*inptr++,
*winptr--, right_shifts);
}
}
void WebRtcSpl_ElementwiseVectorMult(int16_t *out, const int16_t *in,
const int16_t *win, int16_t vector_length,
int16_t right_shifts)
{
int i;
int16_t *outptr = out;
const int16_t *inptr = in;
const int16_t *winptr = win;
for (i = 0; i < vector_length; i++)
{
(*outptr++) = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(*inptr++,
*winptr++, right_shifts);
}
}
void WebRtcSpl_AddVectorsAndShift(int16_t *out, const int16_t *in1,
const int16_t *in2, int16_t vector_length,
int16_t right_shifts)
{
int i;
int16_t *outptr = out;
const int16_t *in1ptr = in1;
const int16_t *in2ptr = in2;
for (i = vector_length; i > 0; i--)
{
(*outptr++) = (int16_t)(((*in1ptr++) + (*in2ptr++)) >> right_shifts);
}
}
void WebRtcSpl_AddAffineVectorToVector(int16_t *out, int16_t *in,
int16_t gain, int32_t add_constant,
int16_t right_shifts, int vector_length)
{
int16_t *inPtr;
int16_t *outPtr;
int i;
inPtr = in;
outPtr = out;
for (i = 0; i < vector_length; i++)
{
(*outPtr++) += (int16_t)((WEBRTC_SPL_MUL_16_16((*inPtr++), gain)
+ (int32_t)add_constant) >> right_shifts);
}
}
void WebRtcSpl_AffineTransformVector(int16_t *out, int16_t *in,
int16_t gain, int32_t add_constant,
int16_t right_shifts, int vector_length)
{
int16_t *inPtr;
int16_t *outPtr;
int i;
inPtr = in;
outPtr = out;
for (i = 0; i < vector_length; i++)
{
(*outPtr++) = (int16_t)((WEBRTC_SPL_MUL_16_16((*inPtr++), gain)
+ (int32_t)add_constant) >> right_shifts);
}
}

View File

@@ -0,0 +1,128 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_REAL_FFT_H_
#define WEBRTC_COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_REAL_FFT_H_
#include "webrtc/typedefs.h"
// For ComplexFFT(), the maximum fft order is 10;
// for OpenMax FFT in ARM, it is 12;
// WebRTC APM uses orders of only 7 and 8.
enum {kMaxFFTOrder = 10};
struct RealFFT;
#ifdef __cplusplus
extern "C" {
#endif
typedef struct RealFFT* (*CreateRealFFT)(int order);
typedef void (*FreeRealFFT)(struct RealFFT* self);
typedef int (*RealForwardFFT)(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out);
typedef int (*RealInverseFFT)(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out);
extern CreateRealFFT WebRtcSpl_CreateRealFFT;
extern FreeRealFFT WebRtcSpl_FreeRealFFT;
extern RealForwardFFT WebRtcSpl_RealForwardFFT;
extern RealInverseFFT WebRtcSpl_RealInverseFFT;
struct RealFFT* WebRtcSpl_CreateRealFFTC(int order);
void WebRtcSpl_FreeRealFFTC(struct RealFFT* self);
#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order);
void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self);
#endif
// Compute an FFT for a real-valued signal of length of 2^order,
// where 1 < order <= MAX_FFT_ORDER. Transform length is determined by the
// specification structure, which must be initialized prior to calling the FFT
// function with WebRtcSpl_CreateRealFFT().
// The relationship between the input and output sequences can
// be expressed in terms of the DFT, i.e.:
// x[n] = (2^(-scalefactor)/N) . SUM[k=0,...,N-1] X[k].e^(jnk.2.pi/N)
// n=0,1,2,...N-1
// N=2^order.
// The conjugate-symmetric output sequence is represented using a CCS vector,
// which is of length N+2, and is organized as follows:
// Index: 0 1 2 3 4 5 . . . N-2 N-1 N N+1
// Component: R0 0 R1 I1 R2 I2 . . . R[N/2-1] I[N/2-1] R[N/2] 0
// where R[n] and I[n], respectively, denote the real and imaginary components
// for FFT bin 'n'. Bins are numbered from 0 to N/2, where N is the FFT length.
// Bin index 0 corresponds to the DC component, and bin index N/2 corresponds to
// the foldover frequency.
//
// Input Arguments:
// self - pointer to preallocated and initialized FFT specification structure.
// real_data_in - the input signal. For an ARM Neon platform, it must be
// aligned on a 32-byte boundary.
//
// Output Arguments:
// complex_data_out - the output complex signal with (2^order + 2) 16-bit
// elements. For an ARM Neon platform, it must be different
// from real_data_in, and aligned on a 32-byte boundary.
//
// Return Value:
// 0 - FFT calculation is successful.
// -1 - Error with bad arguments (NULL pointers).
int WebRtcSpl_RealForwardFFTC(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out);
#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out);
#endif
// Compute the inverse FFT for a conjugate-symmetric input sequence of length of
// 2^order, where 1 < order <= MAX_FFT_ORDER. Transform length is determined by
// the specification structure, which must be initialized prior to calling the
// FFT function with WebRtcSpl_CreateRealFFT().
// For a transform of length M, the input sequence is represented using a packed
// CCS vector of length M+2, which is explained in the comments for
// WebRtcSpl_RealForwardFFTC above.
//
// Input Arguments:
// self - pointer to preallocated and initialized FFT specification structure.
// complex_data_in - the input complex signal with (2^order + 2) 16-bit
// elements. For an ARM Neon platform, it must be aligned on
// a 32-byte boundary.
//
// Output Arguments:
// real_data_out - the output real signal. For an ARM Neon platform, it must
// be different to complex_data_in, and aligned on a 32-byte
// boundary.
//
// Return Value:
// 0 or a positive number - a value that the elements in the |real_data_out|
// should be shifted left with in order to get
// correct physical values.
// -1 - Error with bad arguments (NULL pointers).
int WebRtcSpl_RealInverseFFTC(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out);
#if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON)
int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out);
#endif
#ifdef __cplusplus
}
#endif
#endif // WEBRTC_COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_REAL_FFT_H_

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,173 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This header file includes the inline functions in
// the fix point signal processing library.
#ifndef WEBRTC_SPL_SPL_INL_H_
#define WEBRTC_SPL_SPL_INL_H_
#ifdef WEBRTC_ARCH_ARM_V7
#include "webrtc/common_audio/signal_processing/include/spl_inl_armv7.h"
#else
#if defined(MIPS32_LE)
#include "webrtc/common_audio/signal_processing/include/spl_inl_mips.h"
#endif
#if !defined(MIPS_DSP_R1_LE)
static __inline int16_t WebRtcSpl_SatW32ToW16(int32_t value32) {
int16_t out16 = (int16_t) value32;
if (value32 > 32767)
out16 = 32767;
else if (value32 < -32768)
out16 = -32768;
return out16;
}
static __inline int32_t WebRtcSpl_AddSatW32(int32_t l_var1, int32_t l_var2) {
int32_t l_sum;
// Perform long addition
l_sum = l_var1 + l_var2;
if (l_var1 < 0) { // Check for underflow.
if ((l_var2 < 0) && (l_sum >= 0)) {
l_sum = (int32_t)0x80000000;
}
} else { // Check for overflow.
if ((l_var2 > 0) && (l_sum < 0)) {
l_sum = (int32_t)0x7FFFFFFF;
}
}
return l_sum;
}
static __inline int32_t WebRtcSpl_SubSatW32(int32_t l_var1, int32_t l_var2) {
int32_t l_diff;
// Perform subtraction.
l_diff = l_var1 - l_var2;
if (l_var1 < 0) { // Check for underflow.
if ((l_var2 > 0) && (l_diff > 0)) {
l_diff = (int32_t)0x80000000;
}
} else { // Check for overflow.
if ((l_var2 < 0) && (l_diff < 0)) {
l_diff = (int32_t)0x7FFFFFFF;
}
}
return l_diff;
}
static __inline int16_t WebRtcSpl_AddSatW16(int16_t a, int16_t b) {
return WebRtcSpl_SatW32ToW16((int32_t) a + (int32_t) b);
}
static __inline int16_t WebRtcSpl_SubSatW16(int16_t var1, int16_t var2) {
return WebRtcSpl_SatW32ToW16((int32_t) var1 - (int32_t) var2);
}
#endif // #if !defined(MIPS_DSP_R1_LE)
#if !defined(MIPS32_LE)
static __inline int16_t WebRtcSpl_GetSizeInBits(uint32_t n) {
int bits;
if (0xFFFF0000 & n) {
bits = 16;
} else {
bits = 0;
}
if (0x0000FF00 & (n >> bits)) bits += 8;
if (0x000000F0 & (n >> bits)) bits += 4;
if (0x0000000C & (n >> bits)) bits += 2;
if (0x00000002 & (n >> bits)) bits += 1;
if (0x00000001 & (n >> bits)) bits += 1;
return bits;
}
static __inline int WebRtcSpl_NormW32(int32_t a) {
int zeros;
if (a == 0) {
return 0;
}
else if (a < 0) {
a = ~a;
}
if (!(0xFFFF8000 & a)) {
zeros = 16;
} else {
zeros = 0;
}
if (!(0xFF800000 & (a << zeros))) zeros += 8;
if (!(0xF8000000 & (a << zeros))) zeros += 4;
if (!(0xE0000000 & (a << zeros))) zeros += 2;
if (!(0xC0000000 & (a << zeros))) zeros += 1;
return zeros;
}
static __inline int WebRtcSpl_NormU32(uint32_t a) {
int zeros;
if (a == 0) return 0;
if (!(0xFFFF0000 & a)) {
zeros = 16;
} else {
zeros = 0;
}
if (!(0xFF000000 & (a << zeros))) zeros += 8;
if (!(0xF0000000 & (a << zeros))) zeros += 4;
if (!(0xC0000000 & (a << zeros))) zeros += 2;
if (!(0x80000000 & (a << zeros))) zeros += 1;
return zeros;
}
static __inline int WebRtcSpl_NormW16(int16_t a) {
int zeros;
if (a == 0) {
return 0;
}
else if (a < 0) {
a = ~a;
}
if (!(0xFF80 & a)) {
zeros = 8;
} else {
zeros = 0;
}
if (!(0xF800 & (a << zeros))) zeros += 4;
if (!(0xE000 & (a << zeros))) zeros += 2;
if (!(0xC000 & (a << zeros))) zeros += 1;
return zeros;
}
static __inline int32_t WebRtc_MulAccumW16(int16_t a, int16_t b, int32_t c) {
return (a * b + c);
}
#endif // #if !defined(MIPS32_LE)
#endif // WEBRTC_ARCH_ARM_V7
#endif // WEBRTC_SPL_SPL_INL_H_

View File

@@ -0,0 +1,135 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* This header file includes the inline functions for ARM processors in
* the fix point signal processing library.
*/
#ifndef WEBRTC_SPL_SPL_INL_ARMV7_H_
#define WEBRTC_SPL_SPL_INL_ARMV7_H_
/* TODO(kma): Replace some assembly code with GCC intrinsics
* (e.g. __builtin_clz).
*/
/* This function produces result that is not bit exact with that by the generic
* C version in some cases, although the former is at least as accurate as the
* later.
*/
static __inline int32_t WEBRTC_SPL_MUL_16_32_RSFT16(int16_t a, int32_t b) {
int32_t tmp = 0;
__asm __volatile ("smulwb %0, %1, %2":"=r"(tmp):"r"(b), "r"(a));
return tmp;
}
static __inline int32_t WEBRTC_SPL_MUL_16_16(int16_t a, int16_t b) {
int32_t tmp = 0;
__asm __volatile ("smulbb %0, %1, %2":"=r"(tmp):"r"(a), "r"(b));
return tmp;
}
// TODO(kma): add unit test.
static __inline int32_t WebRtc_MulAccumW16(int16_t a, int16_t b, int32_t c) {
int32_t tmp = 0;
__asm __volatile ("smlabb %0, %1, %2, %3":"=r"(tmp):"r"(a), "r"(b), "r"(c));
return tmp;
}
static __inline int16_t WebRtcSpl_AddSatW16(int16_t a, int16_t b) {
int32_t s_sum = 0;
__asm __volatile ("qadd16 %0, %1, %2":"=r"(s_sum):"r"(a), "r"(b));
return (int16_t) s_sum;
}
static __inline int32_t WebRtcSpl_AddSatW32(int32_t l_var1, int32_t l_var2) {
int32_t l_sum = 0;
__asm __volatile ("qadd %0, %1, %2":"=r"(l_sum):"r"(l_var1), "r"(l_var2));
return l_sum;
}
static __inline int32_t WebRtcSpl_SubSatW32(int32_t l_var1, int32_t l_var2) {
int32_t l_sub = 0;
__asm __volatile ("qsub %0, %1, %2":"=r"(l_sub):"r"(l_var1), "r"(l_var2));
return l_sub;
}
static __inline int16_t WebRtcSpl_SubSatW16(int16_t var1, int16_t var2) {
int32_t s_sub = 0;
__asm __volatile ("qsub16 %0, %1, %2":"=r"(s_sub):"r"(var1), "r"(var2));
return (int16_t)s_sub;
}
static __inline int16_t WebRtcSpl_GetSizeInBits(uint32_t n) {
int32_t tmp = 0;
__asm __volatile ("clz %0, %1":"=r"(tmp):"r"(n));
return (int16_t)(32 - tmp);
}
static __inline int WebRtcSpl_NormW32(int32_t a) {
int32_t tmp = 0;
if (a == 0) {
return 0;
}
else if (a < 0) {
a ^= 0xFFFFFFFF;
}
__asm __volatile ("clz %0, %1":"=r"(tmp):"r"(a));
return tmp - 1;
}
static __inline int WebRtcSpl_NormU32(uint32_t a) {
int tmp = 0;
if (a == 0) return 0;
__asm __volatile ("clz %0, %1":"=r"(tmp):"r"(a));
return tmp;
}
static __inline int WebRtcSpl_NormW16(int16_t a) {
int32_t tmp = 0;
if (a == 0) {
return 0;
}
else if (a < 0) {
a ^= 0xFFFFFFFF;
}
__asm __volatile ("clz %0, %1":"=r"(tmp):"r"(a));
return tmp - 17;
}
// TODO(kma): add unit test.
static __inline int16_t WebRtcSpl_SatW32ToW16(int32_t value32) {
int32_t out = 0;
__asm __volatile ("ssat %0, #16, %1" : "=r"(out) : "r"(value32));
return (int16_t)out;
}
#endif // WEBRTC_SPL_SPL_INL_ARMV7_H_

View File

@@ -0,0 +1,225 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This header file includes the inline functions in
// the fix point signal processing library.
#ifndef WEBRTC_SPL_SPL_INL_MIPS_H_
#define WEBRTC_SPL_SPL_INL_MIPS_H_
static __inline int32_t WEBRTC_SPL_MUL_16_16(int32_t a,
int32_t b) {
int32_t value32 = 0;
int32_t a1 = 0, b1 = 0;
__asm __volatile(
#if defined(MIPS32_R2_LE)
"seh %[a1], %[a] \n\t"
"seh %[b1], %[b] \n\t"
#else
"sll %[a1], %[a], 16 \n\t"
"sll %[b1], %[b], 16 \n\t"
"sra %[a1], %[a1], 16 \n\t"
"sra %[b1], %[b1], 16 \n\t"
#endif
"mul %[value32], %[a1], %[b1] \n\t"
: [value32] "=r" (value32), [a1] "=&r" (a1), [b1] "=&r" (b1)
: [a] "r" (a), [b] "r" (b)
: "hi", "lo"
);
return value32;
}
static __inline int32_t WEBRTC_SPL_MUL_16_32_RSFT16(int16_t a,
int32_t b) {
int32_t value32 = 0, b1 = 0, b2 = 0;
int32_t a1 = 0;
__asm __volatile(
#if defined(MIPS32_R2_LE)
"seh %[a1], %[a] \n\t"
#else
"sll %[a1], %[a], 16 \n\t"
"sra %[a1], %[a1], 16 \n\t"
#endif
"andi %[b2], %[b], 0xFFFF \n\t"
"sra %[b1], %[b], 16 \n\t"
"sra %[b2], %[b2], 1 \n\t"
"mul %[value32], %[a1], %[b1] \n\t"
"mul %[b2], %[a1], %[b2] \n\t"
"addiu %[b2], %[b2], 0x4000 \n\t"
"sra %[b2], %[b2], 15 \n\t"
"addu %[value32], %[value32], %[b2] \n\t"
: [value32] "=&r" (value32), [b1] "=&r" (b1), [b2] "=&r" (b2),
[a1] "=&r" (a1)
: [a] "r" (a), [b] "r" (b)
: "hi", "lo"
);
return value32;
}
#if defined(MIPS_DSP_R1_LE)
static __inline int16_t WebRtcSpl_SatW32ToW16(int32_t value32) {
__asm __volatile(
"shll_s.w %[value32], %[value32], 16 \n\t"
"sra %[value32], %[value32], 16 \n\t"
: [value32] "+r" (value32)
:
);
int16_t out16 = (int16_t)value32;
return out16;
}
static __inline int16_t WebRtcSpl_AddSatW16(int16_t a, int16_t b) {
int32_t value32 = 0;
__asm __volatile(
"addq_s.ph %[value32], %[a], %[b] \n\t"
: [value32] "=r" (value32)
: [a] "r" (a), [b] "r" (b)
);
return (int16_t)value32;
}
static __inline int32_t WebRtcSpl_AddSatW32(int32_t l_var1, int32_t l_var2) {
int32_t l_sum;
__asm __volatile(
"addq_s.w %[l_sum], %[l_var1], %[l_var2] \n\t"
: [l_sum] "=r" (l_sum)
: [l_var1] "r" (l_var1), [l_var2] "r" (l_var2)
);
return l_sum;
}
static __inline int16_t WebRtcSpl_SubSatW16(int16_t var1, int16_t var2) {
int32_t value32;
__asm __volatile(
"subq_s.ph %[value32], %[var1], %[var2] \n\t"
: [value32] "=r" (value32)
: [var1] "r" (var1), [var2] "r" (var2)
);
return (int16_t)value32;
}
static __inline int32_t WebRtcSpl_SubSatW32(int32_t l_var1, int32_t l_var2) {
int32_t l_diff;
__asm __volatile(
"subq_s.w %[l_diff], %[l_var1], %[l_var2] \n\t"
: [l_diff] "=r" (l_diff)
: [l_var1] "r" (l_var1), [l_var2] "r" (l_var2)
);
return l_diff;
}
#endif
static __inline int16_t WebRtcSpl_GetSizeInBits(uint32_t n) {
int bits = 0;
int i32 = 32;
__asm __volatile(
"clz %[bits], %[n] \n\t"
"subu %[bits], %[i32], %[bits] \n\t"
: [bits] "=&r" (bits)
: [n] "r" (n), [i32] "r" (i32)
);
return bits;
}
static __inline int WebRtcSpl_NormW32(int32_t a) {
int zeros = 0;
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"bnez %[a], 1f \n\t"
" sra %[zeros], %[a], 31 \n\t"
"b 2f \n\t"
" move %[zeros], $zero \n\t"
"1: \n\t"
"xor %[zeros], %[a], %[zeros] \n\t"
"clz %[zeros], %[zeros] \n\t"
"addiu %[zeros], %[zeros], -1 \n\t"
"2: \n\t"
".set pop \n\t"
: [zeros]"=&r"(zeros)
: [a] "r" (a)
);
return zeros;
}
static __inline int WebRtcSpl_NormU32(uint32_t a) {
int zeros = 0;
__asm __volatile(
"clz %[zeros], %[a] \n\t"
: [zeros] "=r" (zeros)
: [a] "r" (a)
);
return (zeros & 0x1f);
}
static __inline int WebRtcSpl_NormW16(int16_t a) {
int zeros = 0;
int a0 = a << 16;
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"bnez %[a0], 1f \n\t"
" sra %[zeros], %[a0], 31 \n\t"
"b 2f \n\t"
" move %[zeros], $zero \n\t"
"1: \n\t"
"xor %[zeros], %[a0], %[zeros] \n\t"
"clz %[zeros], %[zeros] \n\t"
"addiu %[zeros], %[zeros], -1 \n\t"
"2: \n\t"
".set pop \n\t"
: [zeros]"=&r"(zeros)
: [a0] "r" (a0)
);
return zeros;
}
static __inline int32_t WebRtc_MulAccumW16(int16_t a,
int16_t b,
int32_t c) {
int32_t res = 0, c1 = 0;
__asm __volatile(
#if defined(MIPS32_R2_LE)
"seh %[a], %[a] \n\t"
"seh %[b], %[b] \n\t"
#else
"sll %[a], %[a], 16 \n\t"
"sll %[b], %[b], 16 \n\t"
"sra %[a], %[a], 16 \n\t"
"sra %[b], %[b], 16 \n\t"
#endif
"mul %[res], %[a], %[b] \n\t"
"addu %[c1], %[c], %[res] \n\t"
: [c1] "=r" (c1), [res] "=&r" (res)
: [a] "r" (a), [b] "r" (b), [c] "r" (c)
: "hi", "lo"
);
return (c1);
}
#endif // WEBRTC_SPL_SPL_INL_MIPS_H_

View File

@@ -0,0 +1,259 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_LevinsonDurbin().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#define SPL_LEVINSON_MAXORDER 20
int16_t WebRtcSpl_LevinsonDurbin(int32_t *R, int16_t *A, int16_t *K,
int16_t order)
{
int16_t i, j;
// Auto-correlation coefficients in high precision
int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1];
// LPC coefficients in high precision
int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1];
// LPC coefficients for next iteration
int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1];
// Reflection coefficient in high precision
int16_t K_hi, K_low;
// Prediction gain Alpha in high precision and with scale factor
int16_t Alpha_hi, Alpha_low, Alpha_exp;
int16_t tmp_hi, tmp_low;
int32_t temp1W32, temp2W32, temp3W32;
int16_t norm;
// Normalize the autocorrelation R[0]...R[order+1]
norm = WebRtcSpl_NormW32(R[0]);
for (i = order; i >= 0; i--)
{
temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm);
// Put R in hi and low format
R_hi[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
R_low[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16)), 1);
}
// K = A[1] = -R[1] / R[0]
temp2W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[1],16)
+ WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[1],1); // R[1] in Q31
temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1]
temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31
// Put back the sign on R[1]
if (temp2W32 > 0)
{
temp1W32 = -temp1W32;
}
// Put K in hi and low format
K_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
K_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)K_hi, 16)), 1);
// Store first reflection coefficient
K[0] = K_hi;
temp1W32 = WEBRTC_SPL_RSHIFT_W32(temp1W32, 4); // A[1] in Q27
// Put A[1] in hi and low format
A_hi[1] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
A_low[1] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[1], 16)), 1);
// Alpha = R[0] * (1-K^2)
temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14) + WEBRTC_SPL_MUL_16_16(K_hi, K_hi))
<< 1); // temp1W32 = k^2 in Q31
temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31
// Store temp1W32 = 1 - K[0]*K[0] on hi and low format
tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
// Calculate Alpha in Q31
temp1W32 = ((WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_hi)
+ (WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_low) >> 15)
+ (WEBRTC_SPL_MUL_16_16(R_low[0], tmp_hi) >> 15)) << 1);
// Normalize Alpha and put it in hi and low format
Alpha_exp = WebRtcSpl_NormW32(temp1W32);
temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp);
Alpha_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
Alpha_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)Alpha_hi, 16)), 1);
// Perform the iterative calculations in the Levinson-Durbin algorithm
for (i = 2; i <= order; i++)
{
/* ----
temp1W32 = R[i] + > R[j]*A[i-j]
/
----
j=1..i-1
*/
temp1W32 = 0;
for (j = 1; j < i; j++)
{
// temp1W32 is in Q31
temp1W32 += ((WEBRTC_SPL_MUL_16_16(R_hi[j], A_hi[i-j]) << 1)
+ (((WEBRTC_SPL_MUL_16_16(R_hi[j], A_low[i-j]) >> 15)
+ (WEBRTC_SPL_MUL_16_16(R_low[j], A_hi[i-j]) >> 15)) << 1));
}
temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4);
temp1W32 += (WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16)
+ WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1));
// K = -temp1W32 / Alpha
temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32)
temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
// Put the sign of temp1W32 back again
if (temp1W32 > 0)
{
temp3W32 = -temp3W32;
}
// Use the Alpha shifts from earlier to de-normalize
norm = WebRtcSpl_NormW32(temp3W32);
if ((Alpha_exp <= norm) || (temp3W32 == 0))
{
temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp);
} else
{
if (temp3W32 > 0)
{
temp3W32 = (int32_t)0x7fffffffL;
} else
{
temp3W32 = (int32_t)0x80000000L;
}
}
// Put K on hi and low format
K_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
K_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp3W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)K_hi, 16)), 1);
// Store Reflection coefficient in Q15
K[i - 1] = K_hi;
// Test for unstable filter.
// If unstable return 0 and let the user decide what to do in that case
if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750)
{
return 0; // Unstable filter
}
/*
Compute updated LPC coefficient: Anew[i]
Anew[j]= A[j] + K*A[i-j] for j=1..i-1
Anew[i]= K
*/
for (j = 1; j < i; j++)
{
// temp1W32 = A[j] in Q27
temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[j],16)
+ WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1);
// temp1W32 += K*A[i-j] in Q27
temp1W32 += ((WEBRTC_SPL_MUL_16_16(K_hi, A_hi[i-j])
+ (WEBRTC_SPL_MUL_16_16(K_hi, A_low[i-j]) >> 15)
+ (WEBRTC_SPL_MUL_16_16(K_low, A_hi[i-j]) >> 15)) << 1);
// Put Anew in hi and low format
A_upd_hi[j] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
A_upd_low[j] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)A_upd_hi[j], 16)), 1);
}
// temp3W32 = K in Q27 (Convert from Q31 to Q27)
temp3W32 = WEBRTC_SPL_RSHIFT_W32(temp3W32, 4);
// Store Anew in hi and low format
A_upd_hi[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
A_upd_low[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp3W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)A_upd_hi[i], 16)), 1);
// Alpha = Alpha * (1-K^2)
temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14)
+ WEBRTC_SPL_MUL_16_16(K_hi, K_hi)) << 1); // K*K in Q31
temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K in Q31
// Convert 1- K^2 in hi and low format
tmp_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
tmp_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)tmp_hi, 16)), 1);
// Calculate Alpha = Alpha * (1-K^2) in Q31
temp1W32 = ((WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_hi)
+ (WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_low) >> 15)
+ (WEBRTC_SPL_MUL_16_16(Alpha_low, tmp_hi) >> 15)) << 1);
// Normalize Alpha and store it on hi and low format
norm = WebRtcSpl_NormW32(temp1W32);
temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm);
Alpha_hi = (int16_t)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
Alpha_low = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((int32_t)Alpha_hi, 16)), 1);
// Update the total normalization of Alpha
Alpha_exp = Alpha_exp + norm;
// Update A[]
for (j = 1; j <= i; j++)
{
A_hi[j] = A_upd_hi[j];
A_low[j] = A_upd_low[j];
}
}
/*
Set A[0] to 1.0 and store the A[i] i=1...order in Q12
(Convert from Q27 and use rounding)
*/
A[0] = 4096;
for (i = 1; i <= order; i++)
{
// temp1W32 in Q27
temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[i], 16)
+ WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1);
// Round and store upper word
A[i] = (int16_t)WEBRTC_SPL_RSHIFT_W32((temp1W32<<1)+(int32_t)32768, 16);
}
return 1; // Stable filters
}

View File

@@ -0,0 +1,57 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_LpcToReflCoef().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#define SPL_LPC_TO_REFL_COEF_MAX_AR_MODEL_ORDER 50
void WebRtcSpl_LpcToReflCoef(int16_t* a16, int use_order, int16_t* k16)
{
int m, k;
int32_t tmp32[SPL_LPC_TO_REFL_COEF_MAX_AR_MODEL_ORDER];
int32_t tmp_inv_denom32;
int16_t tmp_inv_denom16;
k16[use_order - 1] = WEBRTC_SPL_LSHIFT_W16(a16[use_order], 3); //Q12<<3 => Q15
for (m = use_order - 1; m > 0; m--)
{
// (1 - k^2) in Q30
tmp_inv_denom32 = ((int32_t)1073741823) - WEBRTC_SPL_MUL_16_16(k16[m], k16[m]);
// (1 - k^2) in Q15
tmp_inv_denom16 = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp_inv_denom32, 15);
for (k = 1; k <= m; k++)
{
// tmp[k] = (a[k] - RC[m] * a[m-k+1]) / (1.0 - RC[m]*RC[m]);
// [Q12<<16 - (Q15*Q12)<<1] = [Q28 - Q28] = Q28
tmp32[k] = WEBRTC_SPL_LSHIFT_W32((int32_t)a16[k], 16)
- WEBRTC_SPL_LSHIFT_W32(WEBRTC_SPL_MUL_16_16(k16[m], a16[m-k+1]), 1);
tmp32[k] = WebRtcSpl_DivW32W16(tmp32[k], tmp_inv_denom16); //Q28/Q15 = Q13
}
for (k = 1; k < m; k++)
{
a16[k] = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32[k], 1); //Q13>>1 => Q12
}
tmp32[m] = WEBRTC_SPL_SAT(8191, tmp32[m], -8191);
k16[m - 1] = (int16_t)WEBRTC_SPL_LSHIFT_W32(tmp32[m], 2); //Q13<<2 => Q15
}
return;
}

View File

@@ -0,0 +1,243 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the implementation of functions
* WebRtcSpl_MaxAbsValueW16C()
* WebRtcSpl_MaxAbsValueW32C()
* WebRtcSpl_MaxValueW16C()
* WebRtcSpl_MaxValueW32C()
* WebRtcSpl_MinValueW16C()
* WebRtcSpl_MinValueW32C()
* WebRtcSpl_MaxAbsIndexW16()
* WebRtcSpl_MaxIndexW16()
* WebRtcSpl_MaxIndexW32()
* WebRtcSpl_MinIndexW16()
* WebRtcSpl_MinIndexW32()
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include <stdlib.h>
// TODO(bjorn/kma): Consolidate function pairs (e.g. combine
// WebRtcSpl_MaxAbsValueW16C and WebRtcSpl_MaxAbsIndexW16 into a single one.)
// TODO(kma): Move the next six functions into min_max_operations_c.c.
// Maximum absolute value of word16 vector. C version for generic platforms.
int16_t WebRtcSpl_MaxAbsValueW16C(const int16_t* vector, int length) {
int i = 0, absolute = 0, maximum = 0;
if (vector == NULL || length <= 0) {
return -1;
}
for (i = 0; i < length; i++) {
absolute = abs((int)vector[i]);
if (absolute > maximum) {
maximum = absolute;
}
}
// Guard the case for abs(-32768).
if (maximum > WEBRTC_SPL_WORD16_MAX) {
maximum = WEBRTC_SPL_WORD16_MAX;
}
return (int16_t)maximum;
}
// Maximum absolute value of word32 vector. C version for generic platforms.
int32_t WebRtcSpl_MaxAbsValueW32C(const int32_t* vector, int length) {
// Use uint32_t for the local variables, to accommodate the return value
// of abs(0x80000000), which is 0x80000000.
uint32_t absolute = 0, maximum = 0;
int i = 0;
if (vector == NULL || length <= 0) {
return -1;
}
for (i = 0; i < length; i++) {
absolute = abs((int)vector[i]);
if (absolute > maximum) {
maximum = absolute;
}
}
maximum = WEBRTC_SPL_MIN(maximum, WEBRTC_SPL_WORD32_MAX);
return (int32_t)maximum;
}
// Maximum value of word16 vector. C version for generic platforms.
int16_t WebRtcSpl_MaxValueW16C(const int16_t* vector, int length) {
int16_t maximum = WEBRTC_SPL_WORD16_MIN;
int i = 0;
if (vector == NULL || length <= 0) {
return maximum;
}
for (i = 0; i < length; i++) {
if (vector[i] > maximum)
maximum = vector[i];
}
return maximum;
}
// Maximum value of word32 vector. C version for generic platforms.
int32_t WebRtcSpl_MaxValueW32C(const int32_t* vector, int length) {
int32_t maximum = WEBRTC_SPL_WORD32_MIN;
int i = 0;
if (vector == NULL || length <= 0) {
return maximum;
}
for (i = 0; i < length; i++) {
if (vector[i] > maximum)
maximum = vector[i];
}
return maximum;
}
// Minimum value of word16 vector. C version for generic platforms.
int16_t WebRtcSpl_MinValueW16C(const int16_t* vector, int length) {
int16_t minimum = WEBRTC_SPL_WORD16_MAX;
int i = 0;
if (vector == NULL || length <= 0) {
return minimum;
}
for (i = 0; i < length; i++) {
if (vector[i] < minimum)
minimum = vector[i];
}
return minimum;
}
// Minimum value of word32 vector. C version for generic platforms.
int32_t WebRtcSpl_MinValueW32C(const int32_t* vector, int length) {
int32_t minimum = WEBRTC_SPL_WORD32_MAX;
int i = 0;
if (vector == NULL || length <= 0) {
return minimum;
}
for (i = 0; i < length; i++) {
if (vector[i] < minimum)
minimum = vector[i];
}
return minimum;
}
// Index of maximum absolute value in a word16 vector.
int WebRtcSpl_MaxAbsIndexW16(const int16_t* vector, int length) {
// Use type int for local variables, to accomodate the value of abs(-32768).
int i = 0, absolute = 0, maximum = 0, index = 0;
if (vector == NULL || length <= 0) {
return -1;
}
for (i = 0; i < length; i++) {
absolute = abs((int)vector[i]);
if (absolute > maximum) {
maximum = absolute;
index = i;
}
}
return index;
}
// Index of maximum value in a word16 vector.
int WebRtcSpl_MaxIndexW16(const int16_t* vector, int length) {
int i = 0, index = 0;
int16_t maximum = WEBRTC_SPL_WORD16_MIN;
if (vector == NULL || length <= 0) {
return -1;
}
for (i = 0; i < length; i++) {
if (vector[i] > maximum) {
maximum = vector[i];
index = i;
}
}
return index;
}
// Index of maximum value in a word32 vector.
int WebRtcSpl_MaxIndexW32(const int32_t* vector, int length) {
int i = 0, index = 0;
int32_t maximum = WEBRTC_SPL_WORD32_MIN;
if (vector == NULL || length <= 0) {
return -1;
}
for (i = 0; i < length; i++) {
if (vector[i] > maximum) {
maximum = vector[i];
index = i;
}
}
return index;
}
// Index of minimum value in a word16 vector.
int WebRtcSpl_MinIndexW16(const int16_t* vector, int length) {
int i = 0, index = 0;
int16_t minimum = WEBRTC_SPL_WORD16_MAX;
if (vector == NULL || length <= 0) {
return -1;
}
for (i = 0; i < length; i++) {
if (vector[i] < minimum) {
minimum = vector[i];
index = i;
}
}
return index;
}
// Index of minimum value in a word32 vector.
int WebRtcSpl_MinIndexW32(const int32_t* vector, int length) {
int i = 0, index = 0;
int32_t minimum = WEBRTC_SPL_WORD32_MAX;
if (vector == NULL || length <= 0) {
return -1;
}
for (i = 0; i < length; i++) {
if (vector[i] < minimum) {
minimum = vector[i];
index = i;
}
}
return index;
}

View File

@@ -0,0 +1,385 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the implementation of function
* WebRtcSpl_MaxAbsValueW16()
*
* The description header can be found in signal_processing_library.h.
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// Maximum absolute value of word16 vector.
int16_t WebRtcSpl_MaxAbsValueW16_mips(const int16_t* vector, int length) {
int32_t totMax = 0;
int32_t tmp32_0, tmp32_1, tmp32_2, tmp32_3;
int i, loop_size;
if (vector == NULL || length <= 0) {
return -1;
}
#if defined(MIPS_DSP_R1)
const int32_t* tmpvec32 = (int32_t*)vector;
loop_size = length >> 4;
for (i = 0; i < loop_size; i++) {
__asm__ volatile (
"lw %[tmp32_0], 0(%[tmpvec32]) \n\t"
"lw %[tmp32_1], 4(%[tmpvec32]) \n\t"
"lw %[tmp32_2], 8(%[tmpvec32]) \n\t"
"lw %[tmp32_3], 12(%[tmpvec32]) \n\t"
"absq_s.ph %[tmp32_0], %[tmp32_0] \n\t"
"absq_s.ph %[tmp32_1], %[tmp32_1] \n\t"
"cmp.lt.ph %[totMax], %[tmp32_0] \n\t"
"pick.ph %[totMax], %[tmp32_0], %[totMax] \n\t"
"lw %[tmp32_0], 16(%[tmpvec32]) \n\t"
"absq_s.ph %[tmp32_2], %[tmp32_2] \n\t"
"cmp.lt.ph %[totMax], %[tmp32_1] \n\t"
"pick.ph %[totMax], %[tmp32_1], %[totMax] \n\t"
"lw %[tmp32_1], 20(%[tmpvec32]) \n\t"
"absq_s.ph %[tmp32_3], %[tmp32_3] \n\t"
"cmp.lt.ph %[totMax], %[tmp32_2] \n\t"
"pick.ph %[totMax], %[tmp32_2], %[totMax] \n\t"
"lw %[tmp32_2], 24(%[tmpvec32]) \n\t"
"cmp.lt.ph %[totMax], %[tmp32_3] \n\t"
"pick.ph %[totMax], %[tmp32_3], %[totMax] \n\t"
"lw %[tmp32_3], 28(%[tmpvec32]) \n\t"
"absq_s.ph %[tmp32_0], %[tmp32_0] \n\t"
"absq_s.ph %[tmp32_1], %[tmp32_1] \n\t"
"cmp.lt.ph %[totMax], %[tmp32_0] \n\t"
"pick.ph %[totMax], %[tmp32_0], %[totMax] \n\t"
"absq_s.ph %[tmp32_2], %[tmp32_2] \n\t"
"cmp.lt.ph %[totMax], %[tmp32_1] \n\t"
"pick.ph %[totMax], %[tmp32_1], %[totMax] \n\t"
"absq_s.ph %[tmp32_3], %[tmp32_3] \n\t"
"cmp.lt.ph %[totMax], %[tmp32_2] \n\t"
"pick.ph %[totMax], %[tmp32_2], %[totMax] \n\t"
"cmp.lt.ph %[totMax], %[tmp32_3] \n\t"
"pick.ph %[totMax], %[tmp32_3], %[totMax] \n\t"
"addiu %[tmpvec32], %[tmpvec32], 32 \n\t"
: [tmp32_0] "=&r" (tmp32_0), [tmp32_1] "=&r" (tmp32_1),
[tmp32_2] "=&r" (tmp32_2), [tmp32_3] "=&r" (tmp32_3),
[totMax] "+r" (totMax), [tmpvec32] "+r" (tmpvec32)
:
: "memory"
);
}
__asm__ volatile (
"rotr %[tmp32_0], %[totMax], 16 \n\t"
"cmp.lt.ph %[totMax], %[tmp32_0] \n\t"
"pick.ph %[totMax], %[tmp32_0], %[totMax] \n\t"
"packrl.ph %[totMax], $0, %[totMax] \n\t"
: [tmp32_0] "=&r" (tmp32_0), [totMax] "+r" (totMax)
:
);
loop_size = length & 0xf;
for (i = 0; i < loop_size; i++) {
__asm__ volatile (
"lh %[tmp32_0], 0(%[tmpvec32]) \n\t"
"addiu %[tmpvec32], %[tmpvec32], 2 \n\t"
"absq_s.w %[tmp32_0], %[tmp32_0] \n\t"
"slt %[tmp32_1], %[totMax], %[tmp32_0] \n\t"
"movn %[totMax], %[tmp32_0], %[tmp32_1] \n\t"
: [tmp32_0] "=&r" (tmp32_0), [tmp32_1] "=&r" (tmp32_1),
[tmpvec32] "+r" (tmpvec32), [totMax] "+r" (totMax)
:
: "memory"
);
}
#else // #if defined(MIPS_DSP_R1)
int32_t v16MaxMax = WEBRTC_SPL_WORD16_MAX;
int32_t r, r1, r2, r3;
const int16_t* tmpvector = vector;
loop_size = length >> 4;
for (i = 0; i < loop_size; i++) {
__asm__ volatile (
"lh %[tmp32_0], 0(%[tmpvector]) \n\t"
"lh %[tmp32_1], 2(%[tmpvector]) \n\t"
"lh %[tmp32_2], 4(%[tmpvector]) \n\t"
"lh %[tmp32_3], 6(%[tmpvector]) \n\t"
"abs %[tmp32_0], %[tmp32_0] \n\t"
"abs %[tmp32_1], %[tmp32_1] \n\t"
"abs %[tmp32_2], %[tmp32_2] \n\t"
"abs %[tmp32_3], %[tmp32_3] \n\t"
"slt %[r], %[totMax], %[tmp32_0] \n\t"
"movn %[totMax], %[tmp32_0], %[r] \n\t"
"slt %[r1], %[totMax], %[tmp32_1] \n\t"
"movn %[totMax], %[tmp32_1], %[r1] \n\t"
"slt %[r2], %[totMax], %[tmp32_2] \n\t"
"movn %[totMax], %[tmp32_2], %[r2] \n\t"
"slt %[r3], %[totMax], %[tmp32_3] \n\t"
"movn %[totMax], %[tmp32_3], %[r3] \n\t"
"lh %[tmp32_0], 8(%[tmpvector]) \n\t"
"lh %[tmp32_1], 10(%[tmpvector]) \n\t"
"lh %[tmp32_2], 12(%[tmpvector]) \n\t"
"lh %[tmp32_3], 14(%[tmpvector]) \n\t"
"abs %[tmp32_0], %[tmp32_0] \n\t"
"abs %[tmp32_1], %[tmp32_1] \n\t"
"abs %[tmp32_2], %[tmp32_2] \n\t"
"abs %[tmp32_3], %[tmp32_3] \n\t"
"slt %[r], %[totMax], %[tmp32_0] \n\t"
"movn %[totMax], %[tmp32_0], %[r] \n\t"
"slt %[r1], %[totMax], %[tmp32_1] \n\t"
"movn %[totMax], %[tmp32_1], %[r1] \n\t"
"slt %[r2], %[totMax], %[tmp32_2] \n\t"
"movn %[totMax], %[tmp32_2], %[r2] \n\t"
"slt %[r3], %[totMax], %[tmp32_3] \n\t"
"movn %[totMax], %[tmp32_3], %[r3] \n\t"
"lh %[tmp32_0], 16(%[tmpvector]) \n\t"
"lh %[tmp32_1], 18(%[tmpvector]) \n\t"
"lh %[tmp32_2], 20(%[tmpvector]) \n\t"
"lh %[tmp32_3], 22(%[tmpvector]) \n\t"
"abs %[tmp32_0], %[tmp32_0] \n\t"
"abs %[tmp32_1], %[tmp32_1] \n\t"
"abs %[tmp32_2], %[tmp32_2] \n\t"
"abs %[tmp32_3], %[tmp32_3] \n\t"
"slt %[r], %[totMax], %[tmp32_0] \n\t"
"movn %[totMax], %[tmp32_0], %[r] \n\t"
"slt %[r1], %[totMax], %[tmp32_1] \n\t"
"movn %[totMax], %[tmp32_1], %[r1] \n\t"
"slt %[r2], %[totMax], %[tmp32_2] \n\t"
"movn %[totMax], %[tmp32_2], %[r2] \n\t"
"slt %[r3], %[totMax], %[tmp32_3] \n\t"
"movn %[totMax], %[tmp32_3], %[r3] \n\t"
"lh %[tmp32_0], 24(%[tmpvector]) \n\t"
"lh %[tmp32_1], 26(%[tmpvector]) \n\t"
"lh %[tmp32_2], 28(%[tmpvector]) \n\t"
"lh %[tmp32_3], 30(%[tmpvector]) \n\t"
"abs %[tmp32_0], %[tmp32_0] \n\t"
"abs %[tmp32_1], %[tmp32_1] \n\t"
"abs %[tmp32_2], %[tmp32_2] \n\t"
"abs %[tmp32_3], %[tmp32_3] \n\t"
"slt %[r], %[totMax], %[tmp32_0] \n\t"
"movn %[totMax], %[tmp32_0], %[r] \n\t"
"slt %[r1], %[totMax], %[tmp32_1] \n\t"
"movn %[totMax], %[tmp32_1], %[r1] \n\t"
"slt %[r2], %[totMax], %[tmp32_2] \n\t"
"movn %[totMax], %[tmp32_2], %[r2] \n\t"
"slt %[r3], %[totMax], %[tmp32_3] \n\t"
"movn %[totMax], %[tmp32_3], %[r3] \n\t"
"addiu %[tmpvector], %[tmpvector], 32 \n\t"
: [tmp32_0] "=&r" (tmp32_0), [tmp32_1] "=&r" (tmp32_1),
[tmp32_2] "=&r" (tmp32_2), [tmp32_3] "=&r" (tmp32_3),
[totMax] "+r" (totMax), [r] "=&r" (r), [tmpvector] "+r" (tmpvector),
[r1] "=&r" (r1), [r2] "=&r" (r2), [r3] "=&r" (r3)
:
: "memory"
);
}
loop_size = length & 0xf;
for (i = 0; i < loop_size; i++) {
__asm__ volatile (
"lh %[tmp32_0], 0(%[tmpvector]) \n\t"
"addiu %[tmpvector], %[tmpvector], 2 \n\t"
"abs %[tmp32_0], %[tmp32_0] \n\t"
"slt %[tmp32_1], %[totMax], %[tmp32_0] \n\t"
"movn %[totMax], %[tmp32_0], %[tmp32_1] \n\t"
: [tmp32_0] "=&r" (tmp32_0), [tmp32_1] "=&r" (tmp32_1),
[tmpvector] "+r" (tmpvector), [totMax] "+r" (totMax)
:
: "memory"
);
}
__asm__ volatile (
"slt %[r], %[v16MaxMax], %[totMax] \n\t"
"movn %[totMax], %[v16MaxMax], %[r] \n\t"
: [totMax] "+r" (totMax), [r] "=&r" (r)
: [v16MaxMax] "r" (v16MaxMax)
);
#endif // #if defined(MIPS_DSP_R1)
return (int16_t)totMax;
}
#if defined(MIPS_DSP_R1_LE)
// Maximum absolute value of word32 vector. Version for MIPS platform.
int32_t WebRtcSpl_MaxAbsValueW32_mips(const int32_t* vector, int length) {
// Use uint32_t for the local variables, to accommodate the return value
// of abs(0x80000000), which is 0x80000000.
uint32_t absolute = 0, maximum = 0;
int tmp1 = 0, max_value = 0x7fffffff;
if (vector == NULL || length <= 0) {
return -1;
}
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
"1: \n\t"
"lw %[absolute], 0(%[vector]) \n\t"
"absq_s.w %[absolute], %[absolute] \n\t"
"addiu %[length], %[length], -1 \n\t"
"slt %[tmp1], %[maximum], %[absolute] \n\t"
"movn %[maximum], %[absolute], %[tmp1] \n\t"
"bgtz %[length], 1b \n\t"
" addiu %[vector], %[vector], 4 \n\t"
"slt %[tmp1], %[max_value], %[maximum] \n\t"
"movn %[maximum], %[max_value], %[tmp1] \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [maximum] "+r" (maximum), [absolute] "+r" (absolute)
: [vector] "r" (vector), [length] "r" (length), [max_value] "r" (max_value)
: "memory"
);
return (int32_t)maximum;
}
#endif // #if defined(MIPS_DSP_R1_LE)
// Maximum value of word16 vector. Version for MIPS platform.
int16_t WebRtcSpl_MaxValueW16_mips(const int16_t* vector, int length) {
int16_t maximum = WEBRTC_SPL_WORD16_MIN;
int tmp1;
int16_t value;
if (vector == NULL || length <= 0) {
return maximum;
}
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
"1: \n\t"
"lh %[value], 0(%[vector]) \n\t"
"addiu %[length], %[length], -1 \n\t"
"slt %[tmp1], %[maximum], %[value] \n\t"
"movn %[maximum], %[value], %[tmp1] \n\t"
"bgtz %[length], 1b \n\t"
" addiu %[vector], %[vector], 2 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [maximum] "+r" (maximum), [value] "=&r" (value)
: [vector] "r" (vector), [length] "r" (length)
: "memory"
);
return maximum;
}
// Maximum value of word32 vector. Version for MIPS platform.
int32_t WebRtcSpl_MaxValueW32_mips(const int32_t* vector, int length) {
int32_t maximum = WEBRTC_SPL_WORD32_MIN;
int tmp1, value;
if (vector == NULL || length <= 0) {
return maximum;
}
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
"1: \n\t"
"lw %[value], 0(%[vector]) \n\t"
"addiu %[length], %[length], -1 \n\t"
"slt %[tmp1], %[maximum], %[value] \n\t"
"movn %[maximum], %[value], %[tmp1] \n\t"
"bgtz %[length], 1b \n\t"
" addiu %[vector], %[vector], 4 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [maximum] "+r" (maximum), [value] "=&r" (value)
: [vector] "r" (vector), [length] "r" (length)
: "memory"
);
return maximum;
}
// Minimum value of word16 vector. Version for MIPS platform.
int16_t WebRtcSpl_MinValueW16_mips(const int16_t* vector, int length) {
int16_t minimum = WEBRTC_SPL_WORD16_MAX;
int tmp1;
int16_t value;
if (vector == NULL || length <= 0) {
return minimum;
}
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
"1: \n\t"
"lh %[value], 0(%[vector]) \n\t"
"addiu %[length], %[length], -1 \n\t"
"slt %[tmp1], %[value], %[minimum] \n\t"
"movn %[minimum], %[value], %[tmp1] \n\t"
"bgtz %[length], 1b \n\t"
" addiu %[vector], %[vector], 2 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [minimum] "+r" (minimum), [value] "=&r" (value)
: [vector] "r" (vector), [length] "r" (length)
: "memory"
);
return minimum;
}
// Minimum value of word32 vector. Version for MIPS platform.
int32_t WebRtcSpl_MinValueW32_mips(const int32_t* vector, int length) {
int32_t minimum = WEBRTC_SPL_WORD32_MAX;
int tmp1, value;
if (vector == NULL || length <= 0) {
return minimum;
}
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
"1: \n\t"
"lw %[value], 0(%[vector]) \n\t"
"addiu %[length], %[length], -1 \n\t"
"slt %[tmp1], %[value], %[minimum] \n\t"
"movn %[minimum], %[value], %[tmp1] \n\t"
"bgtz %[length], 1b \n\t"
" addiu %[vector], %[vector], 4 \n\t"
".set pop \n\t"
: [tmp1] "=&r" (tmp1), [minimum] "+r" (minimum), [value] "=&r" (value)
: [vector] "r" (vector), [length] "r" (length)
: "memory"
);
return minimum;
}

View File

@@ -0,0 +1,283 @@
@
@ Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
@
@ Use of this source code is governed by a BSD-style license
@ that can be found in the LICENSE file in the root of the source
@ tree. An additional intellectual property rights grant can be found
@ in the file PATENTS. All contributing project authors may
@ be found in the AUTHORS file in the root of the source tree.
@
@ This file contains some minimum and maximum functions, optimized for
@ ARM Neon platform. The description header can be found in
@ signal_processing_library.h
@
@ The reference C code is in file min_max_operations.c. Code here is basically
@ a loop unrolling by 8 with Neon instructions. Bit-exact.
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_FUNCTION WebRtcSpl_MaxAbsValueW16Neon
GLOBAL_FUNCTION WebRtcSpl_MaxAbsValueW32Neon
GLOBAL_FUNCTION WebRtcSpl_MaxValueW16Neon
GLOBAL_FUNCTION WebRtcSpl_MaxValueW32Neon
GLOBAL_FUNCTION WebRtcSpl_MinValueW16Neon
GLOBAL_FUNCTION WebRtcSpl_MinValueW32Neon
.align 2
@ int16_t WebRtcSpl_MaxAbsValueW16Neon(const int16_t* vector, int length);
DEFINE_FUNCTION WebRtcSpl_MaxAbsValueW16Neon
mov r2, #-1 @ Initialize the return value.
cmp r0, #0
beq END_MAX_ABS_VALUE_W16
cmp r1, #0
ble END_MAX_ABS_VALUE_W16
cmp r1, #8
blt LOOP_MAX_ABS_VALUE_W16
vmov.i16 q12, #0
sub r1, #8 @ Counter for loops
LOOP_UNROLLED_BY_8_MAX_ABS_VALUE_W16:
vld1.16 {q13}, [r0]!
subs r1, #8
vabs.s16 q13, q13 @ Note vabs doesn't change the value of -32768.
vmax.u16 q12, q13 @ Use u16 so we don't lose the value -32768.
bge LOOP_UNROLLED_BY_8_MAX_ABS_VALUE_W16
@ Find the maximum value in the Neon registers and move it to r2.
vmax.u16 d24, d25
vpmax.u16 d24, d24, d24
vpmax.u16 d24, d24, d24
adds r1, #8
vmov.u16 r2, d24[0]
beq END_MAX_ABS_VALUE_W16
LOOP_MAX_ABS_VALUE_W16:
ldrsh r3, [r0], #2
eor r12, r3, r3, asr #31 @ eor and then sub, to get absolute value.
sub r12, r12, r3, asr #31
cmp r2, r12
movlt r2, r12
subs r1, #1
bne LOOP_MAX_ABS_VALUE_W16
END_MAX_ABS_VALUE_W16:
cmp r2, #0x8000 @ Guard against the case for -32768.
subeq r2, #1
mov r0, r2
bx lr
@ int32_t WebRtcSpl_MaxAbsValueW32Neon(const int32_t* vector, int length);
DEFINE_FUNCTION WebRtcSpl_MaxAbsValueW32Neon
cmp r0, #0
moveq r0, #-1
beq EXIT @ Return -1 for a NULL pointer.
cmp r1, #0 @ length
movle r0, #-1
ble EXIT @ Return -1 if length <= 0.
vmov.i32 q11, #0
vmov.i32 q12, #0
cmp r1, #8
blt LOOP_MAX_ABS_VALUE_W32
sub r1, #8 @ Counter for loops
LOOP_UNROLLED_BY_8_MAX_ABS_VALUE_W32:
vld1.32 {q13, q14}, [r0]!
subs r1, #8 @ Counter for loops
vabs.s32 q13, q13 @ vabs doesn't change the value of 0x80000000.
vabs.s32 q14, q14
vmax.u32 q11, q13 @ Use u32 so we don't lose the value 0x80000000.
vmax.u32 q12, q14
bge LOOP_UNROLLED_BY_8_MAX_ABS_VALUE_W32
@ Find the maximum value in the Neon registers and move it to r2.
vmax.u32 q12, q11
vmax.u32 d24, d25
vpmax.u32 d24, d24, d24
adds r1, #8
vmov.u32 r2, d24[0]
beq END_MAX_ABS_VALUE_W32
LOOP_MAX_ABS_VALUE_W32:
ldr r3, [r0], #4
eor r12, r3, r3, asr #31 @ eor and then sub, to get absolute value.
sub r12, r12, r3, asr #31
cmp r2, r12
movcc r2, r12
subs r1, #1
bne LOOP_MAX_ABS_VALUE_W32
END_MAX_ABS_VALUE_W32:
mvn r0, #0x80000000 @ Guard against the case for 0x80000000.
cmp r2, r0
movcc r0, r2
EXIT:
bx lr
@ int16_t WebRtcSpl_MaxValueW16Neon(const int16_t* vector, int length);
DEFINE_FUNCTION WebRtcSpl_MaxValueW16Neon
mov r2, #0x8000 @ Initialize the return value.
cmp r0, #0
beq END_MAX_VALUE_W16
cmp r1, #0
ble END_MAX_VALUE_W16
vmov.i16 q12, #0x8000
cmp r1, #8
blt LOOP_MAX_VALUE_W16
sub r1, #8 @ Counter for loops
LOOP_UNROLLED_BY_8_MAX_VALUE_W16:
vld1.16 {q13}, [r0]!
subs r1, #8
vmax.s16 q12, q13
bge LOOP_UNROLLED_BY_8_MAX_VALUE_W16
@ Find the maximum value in the Neon registers and move it to r2.
vmax.s16 d24, d25
vpmax.s16 d24, d24, d24
vpmax.s16 d24, d24, d24
adds r1, #8
vmov.u16 r2, d24[0]
beq END_MAX_VALUE_W16
LOOP_MAX_VALUE_W16:
ldrsh r3, [r0], #2
cmp r2, r3
movlt r2, r3
subs r1, #1
bne LOOP_MAX_VALUE_W16
END_MAX_VALUE_W16:
mov r0, r2
bx lr
@ int32_t WebRtcSpl_MaxValueW32Neon(const int32_t* vector, int length);
DEFINE_FUNCTION WebRtcSpl_MaxValueW32Neon
mov r2, #0x80000000 @ Initialize the return value.
cmp r0, #0
beq END_MAX_VALUE_W32
cmp r1, #0
ble END_MAX_VALUE_W32
vmov.i32 q11, #0x80000000
vmov.i32 q12, #0x80000000
cmp r1, #8
blt LOOP_MAX_VALUE_W32
sub r1, #8 @ Counter for loops
LOOP_UNROLLED_BY_8_MAX_VALUE_W32:
vld1.32 {q13, q14}, [r0]!
subs r1, #8
vmax.s32 q11, q13
vmax.s32 q12, q14
bge LOOP_UNROLLED_BY_8_MAX_VALUE_W32
@ Find the maximum value in the Neon registers and move it to r2.
vmax.s32 q12, q11
vpmax.s32 d24, d24, d25
vpmax.s32 d24, d24, d24
adds r1, #8
vmov.s32 r2, d24[0]
beq END_MAX_VALUE_W32
LOOP_MAX_VALUE_W32:
ldr r3, [r0], #4
cmp r2, r3
movlt r2, r3
subs r1, #1
bne LOOP_MAX_VALUE_W32
END_MAX_VALUE_W32:
mov r0, r2
bx lr
@ int16_t WebRtcSpl_MinValueW16Neon(const int16_t* vector, int length);
DEFINE_FUNCTION WebRtcSpl_MinValueW16Neon
movw r2, #0x7FFF @ Initialize the return value.
cmp r0, #0
beq END_MIN_VALUE_W16
cmp r1, #0
ble END_MIN_VALUE_W16
vmov.i16 q12, #0x7FFF
cmp r1, #8
blt LOOP_MIN_VALUE_W16
sub r1, #8 @ Counter for loops
LOOP_UNROLLED_BY_8_MIN_VALUE_W16:
vld1.16 {q13}, [r0]!
subs r1, #8
vmin.s16 q12, q13
bge LOOP_UNROLLED_BY_8_MIN_VALUE_W16
@ Find the maximum value in the Neon registers and move it to r2.
vmin.s16 d24, d25
vpmin.s16 d24, d24, d24
vpmin.s16 d24, d24, d24
adds r1, #8
vmov.s16 r2, d24[0]
sxth r2, r2
beq END_MIN_VALUE_W16
LOOP_MIN_VALUE_W16:
ldrsh r3, [r0], #2
cmp r2, r3
movge r2, r3
subs r1, #1
bne LOOP_MIN_VALUE_W16
END_MIN_VALUE_W16:
mov r0, r2
bx lr
@ int32_t WebRtcSpl_MinValueW32Neon(const int32_t* vector, int length);
DEFINE_FUNCTION WebRtcSpl_MinValueW32Neon
mov r2, #0x7FFFFFFF @ Initialize the return value.
cmp r0, #0
beq END_MIN_VALUE_W32
cmp r1, #0
ble END_MIN_VALUE_W32
vdup.32 q11, r2
vdup.32 q12, r2
cmp r1, #8
blt LOOP_MIN_VALUE_W32
sub r1, #8 @ Counter for loops
LOOP_UNROLLED_BY_8_MIN_VALUE_W32:
vld1.32 {q13, q14}, [r0]!
subs r1, #8
vmin.s32 q11, q13
vmin.s32 q12, q14
bge LOOP_UNROLLED_BY_8_MIN_VALUE_W32
@ Find the maximum value in the Neon registers and move it to r2.
vmin.s32 q12, q11
vpmin.s32 d24, d24, d25
vpmin.s32 d24, d24, d24
adds r1, #8
vmov.s32 r2, d24[0]
beq END_MIN_VALUE_W32
LOOP_MIN_VALUE_W32:
ldr r3, [r0], #4
cmp r2, r3
movge r2, r3
subs r1, #1
bne LOOP_MIN_VALUE_W32
END_MIN_VALUE_W32:
mov r0, r2
bx lr

View File

@@ -0,0 +1,115 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the randomization functions
* WebRtcSpl_RandU()
* WebRtcSpl_RandN()
* WebRtcSpl_RandUArray()
*
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
static const uint32_t kMaxSeedUsed = 0x80000000;
static const int16_t kRandNTable[] = {
9178, -7260, 40, 10189, 4894, -3531, -13779, 14764,
-4008, -8884, -8990, 1008, 7368, 5184, 3251, -5817,
-9786, 5963, 1770, 8066, -7135, 10772, -2298, 1361,
6484, 2241, -8633, 792, 199, -3344, 6553, -10079,
-15040, 95, 11608, -12469, 14161, -4176, 2476, 6403,
13685, -16005, 6646, 2239, 10916, -3004, -602, -3141,
2142, 14144, -5829, 5305, 8209, 4713, 2697, -5112,
16092, -1210, -2891, -6631, -5360, -11878, -6781, -2739,
-6392, 536, 10923, 10872, 5059, -4748, -7770, 5477,
38, -1025, -2892, 1638, 6304, 14375, -11028, 1553,
-1565, 10762, -393, 4040, 5257, 12310, 6554, -4799,
4899, -6354, 1603, -1048, -2220, 8247, -186, -8944,
-12004, 2332, 4801, -4933, 6371, 131, 8614, -5927,
-8287, -22760, 4033, -15162, 3385, 3246, 3153, -5250,
3766, 784, 6494, -62, 3531, -1582, 15572, 662,
-3952, -330, -3196, 669, 7236, -2678, -6569, 23319,
-8645, -741, 14830, -15976, 4903, 315, -11342, 10311,
1858, -7777, 2145, 5436, 5677, -113, -10033, 826,
-1353, 17210, 7768, 986, -1471, 8291, -4982, 8207,
-14911, -6255, -2449, -11881, -7059, -11703, -4338, 8025,
7538, -2823, -12490, 9470, -1613, -2529, -10092, -7807,
9480, 6970, -12844, 5123, 3532, 4816, 4803, -8455,
-5045, 14032, -4378, -1643, 5756, -11041, -2732, -16618,
-6430, -18375, -3320, 6098, 5131, -4269, -8840, 2482,
-7048, 1547, -21890, -6505, -7414, -424, -11722, 7955,
1653, -17299, 1823, 473, -9232, 3337, 1111, 873,
4018, -8982, 9889, 3531, -11763, -3799, 7373, -4539,
3231, 7054, -8537, 7616, 6244, 16635, 447, -2915,
13967, 705, -2669, -1520, -1771, -16188, 5956, 5117,
6371, -9936, -1448, 2480, 5128, 7550, -8130, 5236,
8213, -6443, 7707, -1950, -13811, 7218, 7031, -3883,
67, 5731, -2874, 13480, -3743, 9298, -3280, 3552,
-4425, -18, -3785, -9988, -5357, 5477, -11794, 2117,
1416, -9935, 3376, 802, -5079, -8243, 12652, 66,
3653, -2368, 6781, -21895, -7227, 2487, 7839, -385,
6646, -7016, -4658, 5531, -1705, 834, 129, 3694,
-1343, 2238, -22640, -6417, -11139, 11301, -2945, -3494,
-5626, 185, -3615, -2041, -7972, -3106, -60, -23497,
-1566, 17064, 3519, 2518, 304, -6805, -10269, 2105,
1936, -426, -736, -8122, -1467, 4238, -6939, -13309,
360, 7402, -7970, 12576, 3287, 12194, -6289, -16006,
9171, 4042, -9193, 9123, -2512, 6388, -4734, -8739,
1028, -5406, -1696, 5889, -666, -4736, 4971, 3565,
9362, -6292, 3876, -3652, -19666, 7523, -4061, 391,
-11773, 7502, -3763, 4929, -9478, 13278, 2805, 4496,
7814, 16419, 12455, -14773, 2127, -2746, 3763, 4847,
3698, 6978, 4751, -6957, -3581, -45, 6252, 1513,
-4797, -7925, 11270, 16188, -2359, -5269, 9376, -10777,
7262, 20031, -6515, -2208, -5353, 8085, -1341, -1303,
7333, 5576, 3625, 5763, -7931, 9833, -3371, -10305,
6534, -13539, -9971, 997, 8464, -4064, -1495, 1857,
13624, 5458, 9490, -11086, -4524, 12022, -550, -198,
408, -8455, -7068, 10289, 9712, -3366, 9028, -7621,
-5243, 2362, 6909, 4672, -4933, -1799, 4709, -4563,
-62, -566, 1624, -7010, 14730, -17791, -3697, -2344,
-1741, 7099, -9509, -6855, -1989, 3495, -2289, 2031,
12784, 891, 14189, -3963, -5683, 421, -12575, 1724,
-12682, -5970, -8169, 3143, -1824, -5488, -5130, 8536,
12799, 794, 5738, 3459, -11689, -258, -3738, -3775,
-8742, 2333, 8312, -9383, 10331, 13119, 8398, 10644,
-19433, -6446, -16277, -11793, 16284, 9345, 15222, 15834,
2009, -7349, 130, -14547, 338, -5998, 3337, 21492,
2406, 7703, -951, 11196, -564, 3406, 2217, 4806,
2374, -5797, 11839, 8940, -11874, 18213, 2855, 10492
};
static uint32_t IncreaseSeed(uint32_t* seed) {
seed[0] = (seed[0] * ((int32_t)69069) + 1) & (kMaxSeedUsed - 1);
return seed[0];
}
int16_t WebRtcSpl_RandU(uint32_t* seed) {
return (int16_t)(IncreaseSeed(seed) >> 16);
}
int16_t WebRtcSpl_RandN(uint32_t* seed) {
return kRandNTable[IncreaseSeed(seed) >> 23];
}
// Creates an array of uniformly distributed variables.
int16_t WebRtcSpl_RandUArray(int16_t* vector,
int16_t vector_length,
uint32_t* seed) {
int i;
for (i = 0; i < vector_length; i++) {
vector[i] = WebRtcSpl_RandU(seed);
}
return vector_length;
}

View File

@@ -0,0 +1,126 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include <stdlib.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
struct RealFFT {
int order;
};
struct RealFFT* WebRtcSpl_CreateRealFFTC(int order) {
struct RealFFT* self = NULL;
if (order > kMaxFFTOrder || order < 0) {
return NULL;
}
self = malloc(sizeof(struct RealFFT));
if (self == NULL) {
return NULL;
}
self->order = order;
return self;
}
void WebRtcSpl_FreeRealFFTC(struct RealFFT* self) {
if (self != NULL) {
free(self);
}
}
// The C version FFT functions (i.e. WebRtcSpl_RealForwardFFTC and
// WebRtcSpl_RealInverseFFTC) are real-valued FFT wrappers for complex-valued
// FFT implementation in SPL.
int WebRtcSpl_RealForwardFFTC(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out) {
int i = 0;
int j = 0;
int result = 0;
int n = 1 << self->order;
// The complex-value FFT implementation needs a buffer to hold 2^order
// 16-bit COMPLEX numbers, for both time and frequency data.
int16_t complex_buffer[2 << kMaxFFTOrder];
// Insert zeros to the imaginary parts for complex forward FFT input.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
complex_buffer[j] = real_data_in[i];
complex_buffer[j + 1] = 0;
};
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexFFT(complex_buffer, self->order, 1);
// For real FFT output, use only the first N + 2 elements from
// complex forward FFT.
memcpy(complex_data_out, complex_buffer, sizeof(int16_t) * (n + 2));
return result;
}
int WebRtcSpl_RealInverseFFTC(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out) {
int i = 0;
int j = 0;
int result = 0;
int n = 1 << self->order;
// Create the buffer specific to complex-valued FFT implementation.
int16_t complex_buffer[2 << kMaxFFTOrder];
// For n-point FFT, first copy the first n + 2 elements into complex
// FFT, then construct the remaining n - 2 elements by real FFT's
// conjugate-symmetric properties.
memcpy(complex_buffer, complex_data_in, sizeof(int16_t) * (n + 2));
for (i = n + 2; i < 2 * n; i += 2) {
complex_buffer[i] = complex_data_in[2 * n - i];
complex_buffer[i + 1] = -complex_data_in[2 * n - i + 1];
}
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexIFFT(complex_buffer, self->order, 1);
// Strip out the imaginary parts of the complex inverse FFT output.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
real_data_out[i] = complex_buffer[j];
}
return result;
}
#if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON)
// TODO(kma): Replace the following function bodies into optimized functions
// for ARM Neon.
struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order) {
return WebRtcSpl_CreateRealFFTC(order);
}
void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self) {
WebRtcSpl_FreeRealFFTC(self);
}
int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out) {
return WebRtcSpl_RealForwardFFTC(self, real_data_in, complex_data_out);
}
int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out) {
return WebRtcSpl_RealInverseFFTC(self, complex_data_in, real_data_out);
}
#endif // WEBRTC_DETECT_ARM_NEON || WEBRTC_ARCH_ARM_NEON

View File

@@ -0,0 +1,108 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/test/testsupport/gtest_disable.h"
#include "webrtc/typedefs.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace webrtc {
namespace {
// FFT order.
const int kOrder = 5;
// Lengths for real FFT's time and frequency bufffers.
// For N-point FFT, the length requirements from API are N and N+2 respectively.
const int kTimeDataLength = 1 << kOrder;
const int kFreqDataLength = (1 << kOrder) + 2;
// For complex FFT's time and freq buffer. The implementation requires
// 2*N 16-bit words.
const int kComplexFftDataLength = 2 << kOrder;
// Reference data for time signal.
const int16_t kRefData[kTimeDataLength] = {
11739, 6848, -8688, 31980, -30295, 25242, 27085, 19410,
-26299, 15607, -10791, 11778, -23819, 14498, -25772, 10076,
1173, 6848, -8688, 31980, -30295, 2522, 27085, 19410,
-2629, 5607, -3, 1178, -23819, 1498, -25772, 10076
};
class RealFFTTest : public ::testing::Test {
protected:
RealFFTTest() {
WebRtcSpl_Init();
}
};
TEST_F(RealFFTTest, CreateFailsOnBadInput) {
RealFFT* fft = WebRtcSpl_CreateRealFFT(11);
EXPECT_TRUE(fft == NULL);
fft = WebRtcSpl_CreateRealFFT(-1);
EXPECT_TRUE(fft == NULL);
}
TEST_F(RealFFTTest, RealAndComplexMatch) {
int i = 0;
int j = 0;
int16_t real_fft_time[kTimeDataLength] = {0};
int16_t real_fft_freq[kFreqDataLength] = {0};
// One common buffer for complex FFT's time and frequency data.
int16_t complex_fft_buff[kComplexFftDataLength] = {0};
// Prepare the inputs to forward FFT's.
memcpy(real_fft_time, kRefData, sizeof(kRefData));
for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
complex_fft_buff[j] = kRefData[i];
complex_fft_buff[j + 1] = 0; // Insert zero's to imaginary parts.
};
// Create and run real forward FFT.
RealFFT* fft = WebRtcSpl_CreateRealFFT(kOrder);
EXPECT_TRUE(fft != NULL);
EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_fft_time, real_fft_freq));
// Run complex forward FFT.
WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_fft_buff, kOrder, 1));
// Verify the results between complex and real forward FFT.
for (i = 0; i < kFreqDataLength; i++) {
EXPECT_EQ(real_fft_freq[i], complex_fft_buff[i]);
}
// Prepare the inputs to inverse real FFT.
// We use whatever data in complex_fft_buff[] since we don't care
// about data contents. Only kFreqDataLength 16-bit words are copied
// from complex_fft_buff to real_fft_freq since remaining words (2nd half)
// are conjugate-symmetric to the first half in theory.
memcpy(real_fft_freq, complex_fft_buff, sizeof(real_fft_freq));
// Run real inverse FFT.
int real_scale = WebRtcSpl_RealInverseFFT(fft, real_fft_freq, real_fft_time);
EXPECT_GE(real_scale, 0);
// Run complex inverse FFT.
WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
int complex_scale = WebRtcSpl_ComplexIFFT(complex_fft_buff, kOrder, 1);
// Verify the results between complex and real inverse FFT.
// They are not bit-exact, since complex IFFT doesn't produce
// exactly conjugate-symmetric data (between first and second half).
EXPECT_EQ(real_scale, complex_scale);
for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
EXPECT_LE(abs(real_fft_time[i] - complex_fft_buff[j]), 1);
}
WebRtcSpl_FreeRealFFT(fft);
}
} // namespace
} // namespace webrtc

View File

@@ -0,0 +1,60 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_ReflCoefToLpc().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_ReflCoefToLpc(const int16_t *k, int use_order, int16_t *a)
{
int16_t any[WEBRTC_SPL_MAX_LPC_ORDER + 1];
int16_t *aptr, *aptr2, *anyptr;
const int16_t *kptr;
int m, i;
kptr = k;
*a = 4096; // i.e., (Word16_MAX >> 3)+1.
*any = *a;
a[1] = WEBRTC_SPL_RSHIFT_W16((*k), 3);
for (m = 1; m < use_order; m++)
{
kptr++;
aptr = a;
aptr++;
aptr2 = &a[m];
anyptr = any;
anyptr++;
any[m + 1] = WEBRTC_SPL_RSHIFT_W16((*kptr), 3);
for (i = 0; i < m; i++)
{
*anyptr = (*aptr)
+ (int16_t)WEBRTC_SPL_MUL_16_16_RSFT((*aptr2), (*kptr), 15);
anyptr++;
aptr++;
aptr2--;
}
aptr = a;
anyptr = any;
for (i = 0; i < (m + 2); i++)
{
*aptr = *anyptr;
aptr++;
anyptr++;
}
}
}

View File

@@ -0,0 +1,505 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling functions for 22 kHz.
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_audio/signal_processing/resample_by_2_internal.h"
// Declaration of internally used functions
static void WebRtcSpl_32khzTo22khzIntToShort(const int32_t *In, int16_t *Out,
int32_t K);
void WebRtcSpl_32khzTo22khzIntToInt(const int32_t *In, int32_t *Out,
int32_t K);
// interpolation coefficients
static const int16_t kCoefficients32To22[5][9] = {
{127, -712, 2359, -6333, 23456, 16775, -3695, 945, -154},
{-39, 230, -830, 2785, 32366, -2324, 760, -218, 38},
{117, -663, 2222, -6133, 26634, 13070, -3174, 831, -137},
{-77, 457, -1677, 5958, 31175, -4136, 1405, -408, 71},
{ 98, -560, 1900, -5406, 29240, 9423, -2480, 663, -110}
};
//////////////////////
// 22 kHz -> 16 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 4, 5, 10
#define SUB_BLOCKS_22_16 5
// 22 -> 16 resampler
void WebRtcSpl_Resample22khzTo16khz(const int16_t* in, int16_t* out,
WebRtcSpl_State22khzTo16khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_22_16 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_22_16; k++)
{
///// 22 --> 44 /////
// int16_t in[220/SUB_BLOCKS_22_16]
// int32_t out[440/SUB_BLOCKS_22_16]
/////
WebRtcSpl_UpBy2ShortToInt(in, 220 / SUB_BLOCKS_22_16, tmpmem + 16, state->S_22_44);
///// 44 --> 32 /////
// int32_t in[440/SUB_BLOCKS_22_16]
// int32_t out[320/SUB_BLOCKS_22_16]
/////
// copy state to and from input array
tmpmem[8] = state->S_44_32[0];
tmpmem[9] = state->S_44_32[1];
tmpmem[10] = state->S_44_32[2];
tmpmem[11] = state->S_44_32[3];
tmpmem[12] = state->S_44_32[4];
tmpmem[13] = state->S_44_32[5];
tmpmem[14] = state->S_44_32[6];
tmpmem[15] = state->S_44_32[7];
state->S_44_32[0] = tmpmem[440 / SUB_BLOCKS_22_16 + 8];
state->S_44_32[1] = tmpmem[440 / SUB_BLOCKS_22_16 + 9];
state->S_44_32[2] = tmpmem[440 / SUB_BLOCKS_22_16 + 10];
state->S_44_32[3] = tmpmem[440 / SUB_BLOCKS_22_16 + 11];
state->S_44_32[4] = tmpmem[440 / SUB_BLOCKS_22_16 + 12];
state->S_44_32[5] = tmpmem[440 / SUB_BLOCKS_22_16 + 13];
state->S_44_32[6] = tmpmem[440 / SUB_BLOCKS_22_16 + 14];
state->S_44_32[7] = tmpmem[440 / SUB_BLOCKS_22_16 + 15];
WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 40 / SUB_BLOCKS_22_16);
///// 32 --> 16 /////
// int32_t in[320/SUB_BLOCKS_22_16]
// int32_t out[160/SUB_BLOCKS_22_16]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 320 / SUB_BLOCKS_22_16, out, state->S_32_16);
// move input/output pointers 10/SUB_BLOCKS_22_16 ms seconds ahead
in += 220 / SUB_BLOCKS_22_16;
out += 160 / SUB_BLOCKS_22_16;
}
}
// initialize state of 22 -> 16 resampler
void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_22_44[k] = 0;
state->S_44_32[k] = 0;
state->S_32_16[k] = 0;
}
}
//////////////////////
// 16 kHz -> 22 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 4, 5, 10
#define SUB_BLOCKS_16_22 4
// 16 -> 22 resampler
void WebRtcSpl_Resample16khzTo22khz(const int16_t* in, int16_t* out,
WebRtcSpl_State16khzTo22khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_16_22 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_16_22; k++)
{
///// 16 --> 32 /////
// int16_t in[160/SUB_BLOCKS_16_22]
// int32_t out[320/SUB_BLOCKS_16_22]
/////
WebRtcSpl_UpBy2ShortToInt(in, 160 / SUB_BLOCKS_16_22, tmpmem + 8, state->S_16_32);
///// 32 --> 22 /////
// int32_t in[320/SUB_BLOCKS_16_22]
// int32_t out[220/SUB_BLOCKS_16_22]
/////
// copy state to and from input array
tmpmem[0] = state->S_32_22[0];
tmpmem[1] = state->S_32_22[1];
tmpmem[2] = state->S_32_22[2];
tmpmem[3] = state->S_32_22[3];
tmpmem[4] = state->S_32_22[4];
tmpmem[5] = state->S_32_22[5];
tmpmem[6] = state->S_32_22[6];
tmpmem[7] = state->S_32_22[7];
state->S_32_22[0] = tmpmem[320 / SUB_BLOCKS_16_22];
state->S_32_22[1] = tmpmem[320 / SUB_BLOCKS_16_22 + 1];
state->S_32_22[2] = tmpmem[320 / SUB_BLOCKS_16_22 + 2];
state->S_32_22[3] = tmpmem[320 / SUB_BLOCKS_16_22 + 3];
state->S_32_22[4] = tmpmem[320 / SUB_BLOCKS_16_22 + 4];
state->S_32_22[5] = tmpmem[320 / SUB_BLOCKS_16_22 + 5];
state->S_32_22[6] = tmpmem[320 / SUB_BLOCKS_16_22 + 6];
state->S_32_22[7] = tmpmem[320 / SUB_BLOCKS_16_22 + 7];
WebRtcSpl_32khzTo22khzIntToShort(tmpmem, out, 20 / SUB_BLOCKS_16_22);
// move input/output pointers 10/SUB_BLOCKS_16_22 ms seconds ahead
in += 160 / SUB_BLOCKS_16_22;
out += 220 / SUB_BLOCKS_16_22;
}
}
// initialize state of 16 -> 22 resampler
void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_16_32[k] = 0;
state->S_32_22[k] = 0;
}
}
//////////////////////
// 22 kHz -> 8 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 5, 10
#define SUB_BLOCKS_22_8 2
// 22 -> 8 resampler
void WebRtcSpl_Resample22khzTo8khz(const int16_t* in, int16_t* out,
WebRtcSpl_State22khzTo8khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_22_8 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_22_8; k++)
{
///// 22 --> 22 lowpass /////
// int16_t in[220/SUB_BLOCKS_22_8]
// int32_t out[220/SUB_BLOCKS_22_8]
/////
WebRtcSpl_LPBy2ShortToInt(in, 220 / SUB_BLOCKS_22_8, tmpmem + 16, state->S_22_22);
///// 22 --> 16 /////
// int32_t in[220/SUB_BLOCKS_22_8]
// int32_t out[160/SUB_BLOCKS_22_8]
/////
// copy state to and from input array
tmpmem[8] = state->S_22_16[0];
tmpmem[9] = state->S_22_16[1];
tmpmem[10] = state->S_22_16[2];
tmpmem[11] = state->S_22_16[3];
tmpmem[12] = state->S_22_16[4];
tmpmem[13] = state->S_22_16[5];
tmpmem[14] = state->S_22_16[6];
tmpmem[15] = state->S_22_16[7];
state->S_22_16[0] = tmpmem[220 / SUB_BLOCKS_22_8 + 8];
state->S_22_16[1] = tmpmem[220 / SUB_BLOCKS_22_8 + 9];
state->S_22_16[2] = tmpmem[220 / SUB_BLOCKS_22_8 + 10];
state->S_22_16[3] = tmpmem[220 / SUB_BLOCKS_22_8 + 11];
state->S_22_16[4] = tmpmem[220 / SUB_BLOCKS_22_8 + 12];
state->S_22_16[5] = tmpmem[220 / SUB_BLOCKS_22_8 + 13];
state->S_22_16[6] = tmpmem[220 / SUB_BLOCKS_22_8 + 14];
state->S_22_16[7] = tmpmem[220 / SUB_BLOCKS_22_8 + 15];
WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 20 / SUB_BLOCKS_22_8);
///// 16 --> 8 /////
// int32_t in[160/SUB_BLOCKS_22_8]
// int32_t out[80/SUB_BLOCKS_22_8]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 160 / SUB_BLOCKS_22_8, out, state->S_16_8);
// move input/output pointers 10/SUB_BLOCKS_22_8 ms seconds ahead
in += 220 / SUB_BLOCKS_22_8;
out += 80 / SUB_BLOCKS_22_8;
}
}
// initialize state of 22 -> 8 resampler
void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_22_22[k] = 0;
state->S_22_22[k + 8] = 0;
state->S_22_16[k] = 0;
state->S_16_8[k] = 0;
}
}
//////////////////////
// 8 kHz -> 22 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 5, 10
#define SUB_BLOCKS_8_22 2
// 8 -> 22 resampler
void WebRtcSpl_Resample8khzTo22khz(const int16_t* in, int16_t* out,
WebRtcSpl_State8khzTo22khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_8_22 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_8_22; k++)
{
///// 8 --> 16 /////
// int16_t in[80/SUB_BLOCKS_8_22]
// int32_t out[160/SUB_BLOCKS_8_22]
/////
WebRtcSpl_UpBy2ShortToInt(in, 80 / SUB_BLOCKS_8_22, tmpmem + 18, state->S_8_16);
///// 16 --> 11 /////
// int32_t in[160/SUB_BLOCKS_8_22]
// int32_t out[110/SUB_BLOCKS_8_22]
/////
// copy state to and from input array
tmpmem[10] = state->S_16_11[0];
tmpmem[11] = state->S_16_11[1];
tmpmem[12] = state->S_16_11[2];
tmpmem[13] = state->S_16_11[3];
tmpmem[14] = state->S_16_11[4];
tmpmem[15] = state->S_16_11[5];
tmpmem[16] = state->S_16_11[6];
tmpmem[17] = state->S_16_11[7];
state->S_16_11[0] = tmpmem[160 / SUB_BLOCKS_8_22 + 10];
state->S_16_11[1] = tmpmem[160 / SUB_BLOCKS_8_22 + 11];
state->S_16_11[2] = tmpmem[160 / SUB_BLOCKS_8_22 + 12];
state->S_16_11[3] = tmpmem[160 / SUB_BLOCKS_8_22 + 13];
state->S_16_11[4] = tmpmem[160 / SUB_BLOCKS_8_22 + 14];
state->S_16_11[5] = tmpmem[160 / SUB_BLOCKS_8_22 + 15];
state->S_16_11[6] = tmpmem[160 / SUB_BLOCKS_8_22 + 16];
state->S_16_11[7] = tmpmem[160 / SUB_BLOCKS_8_22 + 17];
WebRtcSpl_32khzTo22khzIntToInt(tmpmem + 10, tmpmem, 10 / SUB_BLOCKS_8_22);
///// 11 --> 22 /////
// int32_t in[110/SUB_BLOCKS_8_22]
// int16_t out[220/SUB_BLOCKS_8_22]
/////
WebRtcSpl_UpBy2IntToShort(tmpmem, 110 / SUB_BLOCKS_8_22, out, state->S_11_22);
// move input/output pointers 10/SUB_BLOCKS_8_22 ms seconds ahead
in += 80 / SUB_BLOCKS_8_22;
out += 220 / SUB_BLOCKS_8_22;
}
}
// initialize state of 8 -> 22 resampler
void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_8_16[k] = 0;
state->S_16_11[k] = 0;
state->S_11_22[k] = 0;
}
}
// compute two inner-products and store them to output array
static void WebRtcSpl_DotProdIntToInt(const int32_t* in1, const int32_t* in2,
const int16_t* coef_ptr, int32_t* out1,
int32_t* out2)
{
int32_t tmp1 = 16384;
int32_t tmp2 = 16384;
int16_t coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
*out1 = tmp1 + coef * in1[8];
*out2 = tmp2 + coef * in2[-8];
}
// compute two inner-products and store them to output array
static void WebRtcSpl_DotProdIntToShort(const int32_t* in1, const int32_t* in2,
const int16_t* coef_ptr, int16_t* out1,
int16_t* out2)
{
int32_t tmp1 = 16384;
int32_t tmp2 = 16384;
int16_t coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
tmp1 += coef * in1[8];
tmp2 += coef * in2[-8];
// scale down, round and saturate
tmp1 >>= 15;
if (tmp1 > (int32_t)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (int32_t)0xFFFF8000)
tmp1 = 0xFFFF8000;
tmp2 >>= 15;
if (tmp2 > (int32_t)0x00007FFF)
tmp2 = 0x00007FFF;
if (tmp2 < (int32_t)0xFFFF8000)
tmp2 = 0xFFFF8000;
*out1 = (int16_t)tmp1;
*out2 = (int16_t)tmp2;
}
// Resampling ratio: 11/16
// input: int32_t (normalized, not saturated) :: size 16 * K
// output: int32_t (shifted 15 positions to the left, + offset 16384) :: size 11 * K
// K: Number of blocks
void WebRtcSpl_32khzTo22khzIntToInt(const int32_t* In,
int32_t* Out,
int32_t K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (16 input samples -> 11 output samples);
// process in sub blocks of size 16 samples.
int32_t m;
for (m = 0; m < K; m++)
{
// first output sample
Out[0] = ((int32_t)In[3] << 15) + (1 << 14);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]);
// update pointers
In += 16;
Out += 11;
}
}
// Resampling ratio: 11/16
// input: int32_t (normalized, not saturated) :: size 16 * K
// output: int16_t (saturated) :: size 11 * K
// K: Number of blocks
void WebRtcSpl_32khzTo22khzIntToShort(const int32_t *In,
int16_t *Out,
int32_t K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (16 input samples -> 11 output samples);
// process in sub blocks of size 16 samples.
int32_t tmp;
int32_t m;
for (m = 0; m < K; m++)
{
// first output sample
tmp = In[3];
if (tmp > (int32_t)0x00007FFF)
tmp = 0x00007FFF;
if (tmp < (int32_t)0xFFFF8000)
tmp = 0xFFFF8000;
Out[0] = (int16_t)tmp;
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]);
// update pointers
In += 16;
Out += 11;
}
}

View File

@@ -0,0 +1,186 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains resampling functions between 48 kHz and nb/wb.
* The description header can be found in signal_processing_library.h
*
*/
#include <string.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_audio/signal_processing/resample_by_2_internal.h"
////////////////////////////
///// 48 kHz -> 16 kHz /////
////////////////////////////
// 48 -> 16 resampler
void WebRtcSpl_Resample48khzTo16khz(const int16_t* in, int16_t* out,
WebRtcSpl_State48khzTo16khz* state, int32_t* tmpmem)
{
///// 48 --> 48(LP) /////
// int16_t in[480]
// int32_t out[480]
/////
WebRtcSpl_LPBy2ShortToInt(in, 480, tmpmem + 16, state->S_48_48);
///// 48 --> 32 /////
// int32_t in[480]
// int32_t out[320]
/////
// copy state to and from input array
memcpy(tmpmem + 8, state->S_48_32, 8 * sizeof(int32_t));
memcpy(state->S_48_32, tmpmem + 488, 8 * sizeof(int32_t));
WebRtcSpl_Resample48khzTo32khz(tmpmem + 8, tmpmem, 160);
///// 32 --> 16 /////
// int32_t in[320]
// int16_t out[160]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 320, out, state->S_32_16);
}
// initialize state of 48 -> 16 resampler
void WebRtcSpl_ResetResample48khzTo16khz(WebRtcSpl_State48khzTo16khz* state)
{
memset(state->S_48_48, 0, 16 * sizeof(int32_t));
memset(state->S_48_32, 0, 8 * sizeof(int32_t));
memset(state->S_32_16, 0, 8 * sizeof(int32_t));
}
////////////////////////////
///// 16 kHz -> 48 kHz /////
////////////////////////////
// 16 -> 48 resampler
void WebRtcSpl_Resample16khzTo48khz(const int16_t* in, int16_t* out,
WebRtcSpl_State16khzTo48khz* state, int32_t* tmpmem)
{
///// 16 --> 32 /////
// int16_t in[160]
// int32_t out[320]
/////
WebRtcSpl_UpBy2ShortToInt(in, 160, tmpmem + 16, state->S_16_32);
///// 32 --> 24 /////
// int32_t in[320]
// int32_t out[240]
// copy state to and from input array
/////
memcpy(tmpmem + 8, state->S_32_24, 8 * sizeof(int32_t));
memcpy(state->S_32_24, tmpmem + 328, 8 * sizeof(int32_t));
WebRtcSpl_Resample32khzTo24khz(tmpmem + 8, tmpmem, 80);
///// 24 --> 48 /////
// int32_t in[240]
// int16_t out[480]
/////
WebRtcSpl_UpBy2IntToShort(tmpmem, 240, out, state->S_24_48);
}
// initialize state of 16 -> 48 resampler
void WebRtcSpl_ResetResample16khzTo48khz(WebRtcSpl_State16khzTo48khz* state)
{
memset(state->S_16_32, 0, 8 * sizeof(int32_t));
memset(state->S_32_24, 0, 8 * sizeof(int32_t));
memset(state->S_24_48, 0, 8 * sizeof(int32_t));
}
////////////////////////////
///// 48 kHz -> 8 kHz /////
////////////////////////////
// 48 -> 8 resampler
void WebRtcSpl_Resample48khzTo8khz(const int16_t* in, int16_t* out,
WebRtcSpl_State48khzTo8khz* state, int32_t* tmpmem)
{
///// 48 --> 24 /////
// int16_t in[480]
// int32_t out[240]
/////
WebRtcSpl_DownBy2ShortToInt(in, 480, tmpmem + 256, state->S_48_24);
///// 24 --> 24(LP) /////
// int32_t in[240]
// int32_t out[240]
/////
WebRtcSpl_LPBy2IntToInt(tmpmem + 256, 240, tmpmem + 16, state->S_24_24);
///// 24 --> 16 /////
// int32_t in[240]
// int32_t out[160]
/////
// copy state to and from input array
memcpy(tmpmem + 8, state->S_24_16, 8 * sizeof(int32_t));
memcpy(state->S_24_16, tmpmem + 248, 8 * sizeof(int32_t));
WebRtcSpl_Resample48khzTo32khz(tmpmem + 8, tmpmem, 80);
///// 16 --> 8 /////
// int32_t in[160]
// int16_t out[80]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 160, out, state->S_16_8);
}
// initialize state of 48 -> 8 resampler
void WebRtcSpl_ResetResample48khzTo8khz(WebRtcSpl_State48khzTo8khz* state)
{
memset(state->S_48_24, 0, 8 * sizeof(int32_t));
memset(state->S_24_24, 0, 16 * sizeof(int32_t));
memset(state->S_24_16, 0, 8 * sizeof(int32_t));
memset(state->S_16_8, 0, 8 * sizeof(int32_t));
}
////////////////////////////
///// 8 kHz -> 48 kHz /////
////////////////////////////
// 8 -> 48 resampler
void WebRtcSpl_Resample8khzTo48khz(const int16_t* in, int16_t* out,
WebRtcSpl_State8khzTo48khz* state, int32_t* tmpmem)
{
///// 8 --> 16 /////
// int16_t in[80]
// int32_t out[160]
/////
WebRtcSpl_UpBy2ShortToInt(in, 80, tmpmem + 264, state->S_8_16);
///// 16 --> 12 /////
// int32_t in[160]
// int32_t out[120]
/////
// copy state to and from input array
memcpy(tmpmem + 256, state->S_16_12, 8 * sizeof(int32_t));
memcpy(state->S_16_12, tmpmem + 416, 8 * sizeof(int32_t));
WebRtcSpl_Resample32khzTo24khz(tmpmem + 256, tmpmem + 240, 40);
///// 12 --> 24 /////
// int32_t in[120]
// int16_t out[240]
/////
WebRtcSpl_UpBy2IntToInt(tmpmem + 240, 120, tmpmem, state->S_12_24);
///// 24 --> 48 /////
// int32_t in[240]
// int16_t out[480]
/////
WebRtcSpl_UpBy2IntToShort(tmpmem, 240, out, state->S_24_48);
}
// initialize state of 8 -> 48 resampler
void WebRtcSpl_ResetResample8khzTo48khz(WebRtcSpl_State8khzTo48khz* state)
{
memset(state->S_8_16, 0, 8 * sizeof(int32_t));
memset(state->S_16_12, 0, 8 * sizeof(int32_t));
memset(state->S_12_24, 0, 8 * sizeof(int32_t));
memset(state->S_24_48, 0, 8 * sizeof(int32_t));
}

View File

@@ -0,0 +1,183 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling by two functions.
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#ifdef WEBRTC_ARCH_ARM_V7
// allpass filter coefficients.
static const uint32_t kResampleAllpass1[3] = {3284, 24441, 49528 << 15};
static const uint32_t kResampleAllpass2[3] =
{12199, 37471 << 15, 60255 << 15};
// Multiply two 32-bit values and accumulate to another input value.
// Return: state + ((diff * tbl_value) >> 16)
static __inline int32_t MUL_ACCUM_1(int32_t tbl_value,
int32_t diff,
int32_t state) {
int32_t result;
__asm __volatile ("smlawb %0, %1, %2, %3": "=r"(result): "r"(diff),
"r"(tbl_value), "r"(state));
return result;
}
// Multiply two 32-bit values and accumulate to another input value.
// Return: Return: state + (((diff << 1) * tbl_value) >> 32)
//
// The reason to introduce this function is that, in case we can't use smlawb
// instruction (in MUL_ACCUM_1) due to input value range, we can still use
// smmla to save some cycles.
static __inline int32_t MUL_ACCUM_2(int32_t tbl_value,
int32_t diff,
int32_t state) {
int32_t result;
__asm __volatile ("smmla %0, %1, %2, %3": "=r"(result): "r"(diff << 1),
"r"(tbl_value), "r"(state));
return result;
}
#else
// allpass filter coefficients.
static const uint16_t kResampleAllpass1[3] = {3284, 24441, 49528};
static const uint16_t kResampleAllpass2[3] = {12199, 37471, 60255};
// Multiply a 32-bit value with a 16-bit value and accumulate to another input:
#define MUL_ACCUM_1(a, b, c) WEBRTC_SPL_SCALEDIFF32(a, b, c)
#define MUL_ACCUM_2(a, b, c) WEBRTC_SPL_SCALEDIFF32(a, b, c)
#endif // WEBRTC_ARCH_ARM_V7
// decimator
#if !defined(MIPS32_LE)
void WebRtcSpl_DownsampleBy2(const int16_t* in, int16_t len,
int16_t* out, int32_t* filtState) {
int32_t tmp1, tmp2, diff, in32, out32;
int16_t i;
register int32_t state0 = filtState[0];
register int32_t state1 = filtState[1];
register int32_t state2 = filtState[2];
register int32_t state3 = filtState[3];
register int32_t state4 = filtState[4];
register int32_t state5 = filtState[5];
register int32_t state6 = filtState[6];
register int32_t state7 = filtState[7];
for (i = (len >> 1); i > 0; i--) {
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
}
filtState[0] = state0;
filtState[1] = state1;
filtState[2] = state2;
filtState[3] = state3;
filtState[4] = state4;
filtState[5] = state5;
filtState[6] = state6;
filtState[7] = state7;
}
#endif // #if defined(MIPS32_LE)
void WebRtcSpl_UpsampleBy2(const int16_t* in, int16_t len,
int16_t* out, int32_t* filtState) {
int32_t tmp1, tmp2, diff, in32, out32;
int16_t i;
register int32_t state0 = filtState[0];
register int32_t state1 = filtState[1];
register int32_t state2 = filtState[2];
register int32_t state3 = filtState[3];
register int32_t state4 = filtState[4];
register int32_t state5 = filtState[5];
register int32_t state6 = filtState[6];
register int32_t state7 = filtState[7];
for (i = len; i > 0; i--) {
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state2);
state2 = tmp2;
// round; limit amplitude to prevent wrap-around; write to output array
out32 = (state3 + 512) >> 10;
*out++ = WebRtcSpl_SatW32ToW16(out32);
// upper allpass filter
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state6);
state6 = tmp2;
// round; limit amplitude to prevent wrap-around; write to output array
out32 = (state7 + 512) >> 10;
*out++ = WebRtcSpl_SatW32ToW16(out32);
}
filtState[0] = state0;
filtState[1] = state1;
filtState[2] = state2;
filtState[3] = state3;
filtState[4] = state4;
filtState[5] = state5;
filtState[6] = state6;
filtState[7] = state7;
}

View File

@@ -0,0 +1,679 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file contains some internal resampling functions.
*
*/
#include "webrtc/common_audio/signal_processing/resample_by_2_internal.h"
// allpass filter coefficients.
static const int16_t kResampleAllpass[2][3] = {
{821, 6110, 12382},
{3050, 9368, 15063}
};
//
// decimator
// input: int32_t (shifted 15 positions to the left, + offset 16384) OVERWRITTEN!
// output: int16_t (saturated) (of length len/2)
// state: filter state array; length = 8
void WebRtcSpl_DownBy2IntToShort(int32_t *in, int32_t len, int16_t *out,
int32_t *state)
{
int32_t tmp0, tmp1, diff;
int32_t i;
len >>= 1;
// lower allpass filter (operates on even input samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// divide by two and store temporarily
in[i << 1] = (state[3] >> 1);
}
in++;
// upper allpass filter (operates on odd input samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// divide by two and store temporarily
in[i << 1] = (state[7] >> 1);
}
in--;
// combine allpass outputs
for (i = 0; i < len; i += 2)
{
// divide by two, add both allpass outputs and round
tmp0 = (in[i << 1] + in[(i << 1) + 1]) >> 15;
tmp1 = (in[(i << 1) + 2] + in[(i << 1) + 3]) >> 15;
if (tmp0 > (int32_t)0x00007FFF)
tmp0 = 0x00007FFF;
if (tmp0 < (int32_t)0xFFFF8000)
tmp0 = 0xFFFF8000;
out[i] = (int16_t)tmp0;
if (tmp1 > (int32_t)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (int32_t)0xFFFF8000)
tmp1 = 0xFFFF8000;
out[i + 1] = (int16_t)tmp1;
}
}
//
// decimator
// input: int16_t
// output: int32_t (shifted 15 positions to the left, + offset 16384) (of length len/2)
// state: filter state array; length = 8
void WebRtcSpl_DownBy2ShortToInt(const int16_t *in,
int32_t len,
int32_t *out,
int32_t *state)
{
int32_t tmp0, tmp1, diff;
int32_t i;
len >>= 1;
// lower allpass filter (operates on even input samples)
for (i = 0; i < len; i++)
{
tmp0 = ((int32_t)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// divide by two and store temporarily
out[i] = (state[3] >> 1);
}
in++;
// upper allpass filter (operates on odd input samples)
for (i = 0; i < len; i++)
{
tmp0 = ((int32_t)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// divide by two and store temporarily
out[i] += (state[7] >> 1);
}
in--;
}
//
// interpolator
// input: int16_t
// output: int32_t (normalized, not saturated) (of length len*2)
// state: filter state array; length = 8
void WebRtcSpl_UpBy2ShortToInt(const int16_t *in, int32_t len, int32_t *out,
int32_t *state)
{
int32_t tmp0, tmp1, diff;
int32_t i;
// upper allpass filter (generates odd output samples)
for (i = 0; i < len; i++)
{
tmp0 = ((int32_t)in[i] << 15) + (1 << 14);
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// scale down, round and store
out[i << 1] = state[7] >> 15;
}
out++;
// lower allpass filter (generates even output samples)
for (i = 0; i < len; i++)
{
tmp0 = ((int32_t)in[i] << 15) + (1 << 14);
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3] >> 15;
}
}
//
// interpolator
// input: int32_t (shifted 15 positions to the left, + offset 16384)
// output: int32_t (shifted 15 positions to the left, + offset 16384) (of length len*2)
// state: filter state array; length = 8
void WebRtcSpl_UpBy2IntToInt(const int32_t *in, int32_t len, int32_t *out,
int32_t *state)
{
int32_t tmp0, tmp1, diff;
int32_t i;
// upper allpass filter (generates odd output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// scale down, round and store
out[i << 1] = state[7];
}
out++;
// lower allpass filter (generates even output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3];
}
}
//
// interpolator
// input: int32_t (shifted 15 positions to the left, + offset 16384)
// output: int16_t (saturated) (of length len*2)
// state: filter state array; length = 8
void WebRtcSpl_UpBy2IntToShort(const int32_t *in, int32_t len, int16_t *out,
int32_t *state)
{
int32_t tmp0, tmp1, diff;
int32_t i;
// upper allpass filter (generates odd output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// scale down, saturate and store
tmp1 = state[7] >> 15;
if (tmp1 > (int32_t)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (int32_t)0xFFFF8000)
tmp1 = 0xFFFF8000;
out[i << 1] = (int16_t)tmp1;
}
out++;
// lower allpass filter (generates even output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, saturate and store
tmp1 = state[3] >> 15;
if (tmp1 > (int32_t)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (int32_t)0xFFFF8000)
tmp1 = 0xFFFF8000;
out[i << 1] = (int16_t)tmp1;
}
}
// lowpass filter
// input: int16_t
// output: int32_t (normalized, not saturated)
// state: filter state array; length = 8
void WebRtcSpl_LPBy2ShortToInt(const int16_t* in, int32_t len, int32_t* out,
int32_t* state)
{
int32_t tmp0, tmp1, diff;
int32_t i;
len >>= 1;
// lower allpass filter: odd input -> even output samples
in++;
// initial state of polyphase delay element
tmp0 = state[12];
for (i = 0; i < len; i++)
{
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3] >> 1;
tmp0 = ((int32_t)in[i << 1] << 15) + (1 << 14);
}
in--;
// upper allpass filter: even input -> even output samples
for (i = 0; i < len; i++)
{
tmp0 = ((int32_t)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[7] >> 1)) >> 15;
}
// switch to odd output samples
out++;
// lower allpass filter: even input -> odd output samples
for (i = 0; i < len; i++)
{
tmp0 = ((int32_t)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[9];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[8] + diff * kResampleAllpass[1][0];
state[8] = tmp0;
diff = tmp1 - state[10];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[9] + diff * kResampleAllpass[1][1];
state[9] = tmp1;
diff = tmp0 - state[11];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[11] = state[10] + diff * kResampleAllpass[1][2];
state[10] = tmp0;
// scale down, round and store
out[i << 1] = state[11] >> 1;
}
// upper allpass filter: odd input -> odd output samples
in++;
for (i = 0; i < len; i++)
{
tmp0 = ((int32_t)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[13];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[12] + diff * kResampleAllpass[0][0];
state[12] = tmp0;
diff = tmp1 - state[14];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[13] + diff * kResampleAllpass[0][1];
state[13] = tmp1;
diff = tmp0 - state[15];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[15] = state[14] + diff * kResampleAllpass[0][2];
state[14] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[15] >> 1)) >> 15;
}
}
// lowpass filter
// input: int32_t (shifted 15 positions to the left, + offset 16384)
// output: int32_t (normalized, not saturated)
// state: filter state array; length = 8
void WebRtcSpl_LPBy2IntToInt(const int32_t* in, int32_t len, int32_t* out,
int32_t* state)
{
int32_t tmp0, tmp1, diff;
int32_t i;
len >>= 1;
// lower allpass filter: odd input -> even output samples
in++;
// initial state of polyphase delay element
tmp0 = state[12];
for (i = 0; i < len; i++)
{
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3] >> 1;
tmp0 = in[i << 1];
}
in--;
// upper allpass filter: even input -> even output samples
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[7] >> 1)) >> 15;
}
// switch to odd output samples
out++;
// lower allpass filter: even input -> odd output samples
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[9];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[8] + diff * kResampleAllpass[1][0];
state[8] = tmp0;
diff = tmp1 - state[10];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[9] + diff * kResampleAllpass[1][1];
state[9] = tmp1;
diff = tmp0 - state[11];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[11] = state[10] + diff * kResampleAllpass[1][2];
state[10] = tmp0;
// scale down, round and store
out[i << 1] = state[11] >> 1;
}
// upper allpass filter: odd input -> odd output samples
in++;
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[13];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[12] + diff * kResampleAllpass[0][0];
state[12] = tmp0;
diff = tmp1 - state[14];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[13] + diff * kResampleAllpass[0][1];
state[13] = tmp1;
diff = tmp0 - state[15];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[15] = state[14] + diff * kResampleAllpass[0][2];
state[14] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[15] >> 1)) >> 15;
}
}

View File

@@ -0,0 +1,47 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file contains some internal resampling functions.
*
*/
#ifndef WEBRTC_SPL_RESAMPLE_BY_2_INTERNAL_H_
#define WEBRTC_SPL_RESAMPLE_BY_2_INTERNAL_H_
#include "webrtc/typedefs.h"
/*******************************************************************
* resample_by_2_fast.c
* Functions for internal use in the other resample functions
******************************************************************/
void WebRtcSpl_DownBy2IntToShort(int32_t *in, int32_t len, int16_t *out,
int32_t *state);
void WebRtcSpl_DownBy2ShortToInt(const int16_t *in, int32_t len,
int32_t *out, int32_t *state);
void WebRtcSpl_UpBy2ShortToInt(const int16_t *in, int32_t len,
int32_t *out, int32_t *state);
void WebRtcSpl_UpBy2IntToInt(const int32_t *in, int32_t len, int32_t *out,
int32_t *state);
void WebRtcSpl_UpBy2IntToShort(const int32_t *in, int32_t len,
int16_t *out, int32_t *state);
void WebRtcSpl_LPBy2ShortToInt(const int16_t* in, int32_t len,
int32_t* out, int32_t* state);
void WebRtcSpl_LPBy2IntToInt(const int32_t* in, int32_t len, int32_t* out,
int32_t* state);
#endif // WEBRTC_SPL_RESAMPLE_BY_2_INTERNAL_H_

View File

@@ -0,0 +1,290 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling by two functions.
* The description header can be found in signal_processing_library.h
*
*/
#if defined(MIPS32_LE)
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// allpass filter coefficients.
static const uint16_t kResampleAllpass1[3] = {3284, 24441, 49528};
static const uint16_t kResampleAllpass2[3] = {12199, 37471, 60255};
// Multiply a 32-bit value with a 16-bit value and accumulate to another input:
#define MUL_ACCUM_1(a, b, c) WEBRTC_SPL_SCALEDIFF32(a, b, c)
#define MUL_ACCUM_2(a, b, c) WEBRTC_SPL_SCALEDIFF32(a, b, c)
// decimator
void WebRtcSpl_DownsampleBy2(const int16_t* in,
int16_t len,
int16_t* out,
int32_t* filtState) {
int32_t out32;
int16_t i, len1;
register int32_t state0 = filtState[0];
register int32_t state1 = filtState[1];
register int32_t state2 = filtState[2];
register int32_t state3 = filtState[3];
register int32_t state4 = filtState[4];
register int32_t state5 = filtState[5];
register int32_t state6 = filtState[6];
register int32_t state7 = filtState[7];
#if defined(MIPS_DSP_R2_LE)
int32_t k1Res0, k1Res1, k1Res2, k2Res0, k2Res1, k2Res2;
k1Res0= 3284;
k1Res1= 24441;
k1Res2= 49528;
k2Res0= 12199;
k2Res1= 37471;
k2Res2= 60255;
len1 = (len >> 1);
const int32_t* inw = (int32_t*)in;
int32_t tmp11, tmp12, tmp21, tmp22;
int32_t in322, in321;
int32_t diff1, diff2;
for (i = len1; i > 0; i--) {
__asm__ volatile (
"lh %[in321], 0(%[inw]) \n\t"
"lh %[in322], 2(%[inw]) \n\t"
"sll %[in321], %[in321], 10 \n\t"
"sll %[in322], %[in322], 10 \n\t"
"addiu %[inw], %[inw], 4 \n\t"
"subu %[diff1], %[in321], %[state1] \n\t"
"subu %[diff2], %[in322], %[state5] \n\t"
: [in322] "=&r" (in322), [in321] "=&r" (in321),
[diff1] "=&r" (diff1), [diff2] "=r" (diff2), [inw] "+r" (inw)
: [state1] "r" (state1), [state5] "r" (state5)
: "memory"
);
__asm__ volatile (
"mult $ac0, %[diff1], %[k2Res0] \n\t"
"mult $ac1, %[diff2], %[k1Res0] \n\t"
"extr.w %[tmp11], $ac0, 16 \n\t"
"extr.w %[tmp12], $ac1, 16 \n\t"
"addu %[tmp11], %[state0], %[tmp11] \n\t"
"addu %[tmp12], %[state4], %[tmp12] \n\t"
"addiu %[state0], %[in321], 0 \n\t"
"addiu %[state4], %[in322], 0 \n\t"
"subu %[diff1], %[tmp11], %[state2] \n\t"
"subu %[diff2], %[tmp12], %[state6] \n\t"
"mult $ac0, %[diff1], %[k2Res1] \n\t"
"mult $ac1, %[diff2], %[k1Res1] \n\t"
"extr.w %[tmp21], $ac0, 16 \n\t"
"extr.w %[tmp22], $ac1, 16 \n\t"
"addu %[tmp21], %[state1], %[tmp21] \n\t"
"addu %[tmp22], %[state5], %[tmp22] \n\t"
"addiu %[state1], %[tmp11], 0 \n\t"
"addiu %[state5], %[tmp12], 0 \n\t"
: [tmp22] "=r" (tmp22), [tmp21] "=&r" (tmp21),
[tmp11] "=&r" (tmp11), [state0] "+r" (state0),
[state1] "+r" (state1),
[state2] "+r" (state2),
[state4] "+r" (state4), [tmp12] "=&r" (tmp12),
[state6] "+r" (state6), [state5] "+r" (state5)
: [k1Res1] "r" (k1Res1), [k2Res1] "r" (k2Res1), [k2Res0] "r" (k2Res0),
[diff2] "r" (diff2), [diff1] "r" (diff1), [in322] "r" (in322),
[in321] "r" (in321), [k1Res0] "r" (k1Res0)
: "hi", "lo", "$ac1hi", "$ac1lo"
);
// upper allpass filter
__asm__ volatile (
"subu %[diff1], %[tmp21], %[state3] \n\t"
"subu %[diff2], %[tmp22], %[state7] \n\t"
"mult $ac0, %[diff1], %[k2Res2] \n\t"
"mult $ac1, %[diff2], %[k1Res2] \n\t"
"extr.w %[state3], $ac0, 16 \n\t"
"extr.w %[state7], $ac1, 16 \n\t"
"addu %[state3], %[state2], %[state3] \n\t"
"addu %[state7], %[state6], %[state7] \n\t"
"addiu %[state2], %[tmp21], 0 \n\t"
"addiu %[state6], %[tmp22], 0 \n\t"
// add two allpass outputs, divide by two and round
"addu %[out32], %[state3], %[state7] \n\t"
"addiu %[out32], %[out32], 1024 \n\t"
"sra %[out32], %[out32], 11 \n\t"
: [state3] "+r" (state3), [state6] "+r" (state6),
[state2] "+r" (state2), [diff2] "=&r" (diff2),
[out32] "=r" (out32), [diff1] "=&r" (diff1), [state7] "+r" (state7)
: [tmp22] "r" (tmp22), [tmp21] "r" (tmp21),
[k1Res2] "r" (k1Res2), [k2Res2] "r" (k2Res2)
: "hi", "lo", "$ac1hi", "$ac1lo"
);
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
}
#else // #if defined(MIPS_DSP_R2_LE)
int32_t tmp1, tmp2, diff;
int32_t in32;
len1 = (len >> 1)/4;
for (i = len1; i > 0; i--) {
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
// lower allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state1;
tmp1 = MUL_ACCUM_1(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = MUL_ACCUM_2(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = MUL_ACCUM_2(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (int32_t)(*in++) << 10;
diff = in32 - state5;
tmp1 = MUL_ACCUM_1(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = MUL_ACCUM_1(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = MUL_ACCUM_2(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
*out++ = WebRtcSpl_SatW32ToW16(out32);
}
#endif // #if defined(MIPS_DSP_R2_LE)
__asm__ volatile (
"sw %[state0], 0(%[filtState]) \n\t"
"sw %[state1], 4(%[filtState]) \n\t"
"sw %[state2], 8(%[filtState]) \n\t"
"sw %[state3], 12(%[filtState]) \n\t"
"sw %[state4], 16(%[filtState]) \n\t"
"sw %[state5], 20(%[filtState]) \n\t"
"sw %[state6], 24(%[filtState]) \n\t"
"sw %[state7], 28(%[filtState]) \n\t"
:
: [state0] "r" (state0), [state1] "r" (state1), [state2] "r" (state2),
[state3] "r" (state3), [state4] "r" (state4), [state5] "r" (state5),
[state6] "r" (state6), [state7] "r" (state7), [filtState] "r" (filtState)
: "memory"
);
}
#endif // #if defined(MIPS32_LE)

View File

@@ -0,0 +1,242 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling functions between 48, 44, 32 and 24 kHz.
* The description headers can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
// interpolation coefficients
static const int16_t kCoefficients48To32[2][8] = {
{778, -2050, 1087, 23285, 12903, -3783, 441, 222},
{222, 441, -3783, 12903, 23285, 1087, -2050, 778}
};
static const int16_t kCoefficients32To24[3][8] = {
{767, -2362, 2434, 24406, 10620, -3838, 721, 90},
{386, -381, -2646, 19062, 19062, -2646, -381, 386},
{90, 721, -3838, 10620, 24406, 2434, -2362, 767}
};
static const int16_t kCoefficients44To32[4][9] = {
{117, -669, 2245, -6183, 26267, 13529, -3245, 845, -138},
{-101, 612, -2283, 8532, 29790, -5138, 1789, -524, 91},
{50, -292, 1016, -3064, 32010, 3933, -1147, 315, -53},
{-156, 974, -3863, 18603, 21691, -6246, 2353, -712, 126}
};
// Resampling ratio: 2/3
// input: int32_t (normalized, not saturated) :: size 3 * K
// output: int32_t (shifted 15 positions to the left, + offset 16384) :: size 2 * K
// K: number of blocks
void WebRtcSpl_Resample48khzTo32khz(const int32_t *In, int32_t *Out,
int32_t K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (3 input samples -> 2 output samples);
// process in sub blocks of size 3 samples.
int32_t tmp;
int32_t m;
for (m = 0; m < K; m++)
{
tmp = 1 << 14;
tmp += kCoefficients48To32[0][0] * In[0];
tmp += kCoefficients48To32[0][1] * In[1];
tmp += kCoefficients48To32[0][2] * In[2];
tmp += kCoefficients48To32[0][3] * In[3];
tmp += kCoefficients48To32[0][4] * In[4];
tmp += kCoefficients48To32[0][5] * In[5];
tmp += kCoefficients48To32[0][6] * In[6];
tmp += kCoefficients48To32[0][7] * In[7];
Out[0] = tmp;
tmp = 1 << 14;
tmp += kCoefficients48To32[1][0] * In[1];
tmp += kCoefficients48To32[1][1] * In[2];
tmp += kCoefficients48To32[1][2] * In[3];
tmp += kCoefficients48To32[1][3] * In[4];
tmp += kCoefficients48To32[1][4] * In[5];
tmp += kCoefficients48To32[1][5] * In[6];
tmp += kCoefficients48To32[1][6] * In[7];
tmp += kCoefficients48To32[1][7] * In[8];
Out[1] = tmp;
// update pointers
In += 3;
Out += 2;
}
}
// Resampling ratio: 3/4
// input: int32_t (normalized, not saturated) :: size 4 * K
// output: int32_t (shifted 15 positions to the left, + offset 16384) :: size 3 * K
// K: number of blocks
void WebRtcSpl_Resample32khzTo24khz(const int32_t *In, int32_t *Out,
int32_t K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (4 input samples -> 3 output samples);
// process in sub blocks of size 4 samples.
int32_t m;
int32_t tmp;
for (m = 0; m < K; m++)
{
tmp = 1 << 14;
tmp += kCoefficients32To24[0][0] * In[0];
tmp += kCoefficients32To24[0][1] * In[1];
tmp += kCoefficients32To24[0][2] * In[2];
tmp += kCoefficients32To24[0][3] * In[3];
tmp += kCoefficients32To24[0][4] * In[4];
tmp += kCoefficients32To24[0][5] * In[5];
tmp += kCoefficients32To24[0][6] * In[6];
tmp += kCoefficients32To24[0][7] * In[7];
Out[0] = tmp;
tmp = 1 << 14;
tmp += kCoefficients32To24[1][0] * In[1];
tmp += kCoefficients32To24[1][1] * In[2];
tmp += kCoefficients32To24[1][2] * In[3];
tmp += kCoefficients32To24[1][3] * In[4];
tmp += kCoefficients32To24[1][4] * In[5];
tmp += kCoefficients32To24[1][5] * In[6];
tmp += kCoefficients32To24[1][6] * In[7];
tmp += kCoefficients32To24[1][7] * In[8];
Out[1] = tmp;
tmp = 1 << 14;
tmp += kCoefficients32To24[2][0] * In[2];
tmp += kCoefficients32To24[2][1] * In[3];
tmp += kCoefficients32To24[2][2] * In[4];
tmp += kCoefficients32To24[2][3] * In[5];
tmp += kCoefficients32To24[2][4] * In[6];
tmp += kCoefficients32To24[2][5] * In[7];
tmp += kCoefficients32To24[2][6] * In[8];
tmp += kCoefficients32To24[2][7] * In[9];
Out[2] = tmp;
// update pointers
In += 4;
Out += 3;
}
}
//
// fractional resampling filters
// Fout = 11/16 * Fin
// Fout = 8/11 * Fin
//
// compute two inner-products and store them to output array
static void WebRtcSpl_ResampDotProduct(const int32_t *in1, const int32_t *in2,
const int16_t *coef_ptr, int32_t *out1,
int32_t *out2)
{
int32_t tmp1 = 16384;
int32_t tmp2 = 16384;
int16_t coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
*out1 = tmp1 + coef * in1[8];
*out2 = tmp2 + coef * in2[-8];
}
// Resampling ratio: 8/11
// input: int32_t (normalized, not saturated) :: size 11 * K
// output: int32_t (shifted 15 positions to the left, + offset 16384) :: size 8 * K
// K: number of blocks
void WebRtcSpl_Resample44khzTo32khz(const int32_t *In, int32_t *Out,
int32_t K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (11 input samples -> 8 output samples);
// process in sub blocks of size 11 samples.
int32_t tmp;
int32_t m;
for (m = 0; m < K; m++)
{
tmp = 1 << 14;
// first output sample
Out[0] = ((int32_t)In[3] << 15) + tmp;
// sum and accumulate filter coefficients and input samples
tmp += kCoefficients44To32[3][0] * In[5];
tmp += kCoefficients44To32[3][1] * In[6];
tmp += kCoefficients44To32[3][2] * In[7];
tmp += kCoefficients44To32[3][3] * In[8];
tmp += kCoefficients44To32[3][4] * In[9];
tmp += kCoefficients44To32[3][5] * In[10];
tmp += kCoefficients44To32[3][6] * In[11];
tmp += kCoefficients44To32[3][7] * In[12];
tmp += kCoefficients44To32[3][8] * In[13];
Out[4] = tmp;
// sum and accumulate filter coefficients and input samples
WebRtcSpl_ResampDotProduct(&In[0], &In[17], kCoefficients44To32[0], &Out[1], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_ResampDotProduct(&In[2], &In[15], kCoefficients44To32[1], &Out[2], &Out[6]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_ResampDotProduct(&In[3], &In[14], kCoefficients44To32[2], &Out[3], &Out[5]);
// update pointers
In += 11;
Out += 8;
}
}

View File

@@ -0,0 +1,620 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
static const int kVector16Size = 9;
static const int16_t vector16[kVector16Size] = {1, -15511, 4323, 1963,
WEBRTC_SPL_WORD16_MAX, 0, WEBRTC_SPL_WORD16_MIN + 5, -3333, 345};
class SplTest : public testing::Test {
protected:
SplTest() {
WebRtcSpl_Init();
}
virtual ~SplTest() {
}
};
TEST_F(SplTest, MacroTest) {
// Macros with inputs.
int A = 10;
int B = 21;
int a = -3;
int b = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(10, WEBRTC_SPL_MIN(A, B));
EXPECT_EQ(21, WEBRTC_SPL_MAX(A, B));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W16(a));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W32(a));
EXPECT_EQ(-63, WEBRTC_SPL_MUL(a, B));
EXPECT_EQ(-2147483645, WEBRTC_SPL_MUL(a, b));
EXPECT_EQ(2147483651u, WEBRTC_SPL_UMUL(a, b));
b = WEBRTC_SPL_WORD16_MAX >> 1;
EXPECT_EQ(1073627139u, WEBRTC_SPL_UMUL_16_16(a, b));
EXPECT_EQ(4294918147u, WEBRTC_SPL_UMUL_32_16(a, b));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_U16(a, b));
a = b;
b = -3;
EXPECT_EQ(-5461, WEBRTC_SPL_DIV(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT16(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT15(a, b));
EXPECT_EQ(-3, WEBRTC_SPL_MUL_16_32_RSFT14(a, b));
EXPECT_EQ(-24, WEBRTC_SPL_MUL_16_32_RSFT11(a, b));
EXPECT_EQ(-12288, WEBRTC_SPL_MUL_16_16_RSFT(a, b, 2));
EXPECT_EQ(-12287, WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, 2));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, A, B));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, B, A));
// Shifting with negative numbers allowed
int shift_amount = 1; // Workaround compiler warning using variable here.
// Positive means left shift
EXPECT_EQ(32766, WEBRTC_SPL_SHIFT_W32(a, shift_amount));
// Shifting with negative numbers not allowed
// We cannot do casting here due to signed/unsigned problem
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_W16(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W16(a, 1));
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_W32(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W32(a, 1));
EXPECT_EQ(8191u, WEBRTC_SPL_RSHIFT_U32(a, 1));
EXPECT_EQ(32766u, WEBRTC_SPL_LSHIFT_U32(a, 1));
EXPECT_EQ(1470, WEBRTC_SPL_RAND(A));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_16(a, b));
EXPECT_EQ(1073676289, WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX,
WEBRTC_SPL_WORD16_MAX));
EXPECT_EQ(1073709055, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MAX,
WEBRTC_SPL_WORD32_MAX));
EXPECT_EQ(1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MIN));
#ifdef WEBRTC_ARCH_ARM_V7
EXPECT_EQ(-1073741824,
WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#else
EXPECT_EQ(-1073741823,
WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#endif
}
TEST_F(SplTest, InlineTest) {
int16_t a16 = 121;
int16_t b16 = -17;
int32_t a32 = 111121;
int32_t b32 = -1711;
char bVersion[8];
EXPECT_EQ(17, WebRtcSpl_GetSizeInBits(a32));
EXPECT_EQ(0, WebRtcSpl_NormW32(0));
EXPECT_EQ(31, WebRtcSpl_NormW32(-1));
EXPECT_EQ(0, WebRtcSpl_NormW32(WEBRTC_SPL_WORD32_MIN));
EXPECT_EQ(14, WebRtcSpl_NormW32(a32));
EXPECT_EQ(0, WebRtcSpl_NormW16(0));
EXPECT_EQ(15, WebRtcSpl_NormW16(-1));
EXPECT_EQ(0, WebRtcSpl_NormW16(WEBRTC_SPL_WORD16_MIN));
EXPECT_EQ(4, WebRtcSpl_NormW16(b32));
EXPECT_EQ(0, WebRtcSpl_NormU32(0u));
EXPECT_EQ(0, WebRtcSpl_NormU32(0xffffffff));
EXPECT_EQ(15, WebRtcSpl_NormU32(static_cast<uint32_t>(a32)));
EXPECT_EQ(104, WebRtcSpl_AddSatW16(a16, b16));
EXPECT_EQ(138, WebRtcSpl_SubSatW16(a16, b16));
EXPECT_EQ(109410, WebRtcSpl_AddSatW32(a32, b32));
EXPECT_EQ(112832, WebRtcSpl_SubSatW32(a32, b32));
a32 = 0x80000000;
b32 = 0x80000000;
// Cast to signed int to avoid compiler complaint on gtest.h.
EXPECT_EQ(static_cast<int>(0x80000000), WebRtcSpl_AddSatW32(a32, b32));
a32 = 0x7fffffff;
b32 = 0x7fffffff;
EXPECT_EQ(0x7fffffff, WebRtcSpl_AddSatW32(a32, b32));
a32 = 0;
b32 = 0x80000000;
EXPECT_EQ(0x7fffffff, WebRtcSpl_SubSatW32(a32, b32));
a32 = 0x7fffffff;
b32 = 0x80000000;
EXPECT_EQ(0x7fffffff, WebRtcSpl_SubSatW32(a32, b32));
a32 = 0x80000000;
b32 = 0x7fffffff;
EXPECT_EQ(static_cast<int>(0x80000000), WebRtcSpl_SubSatW32(a32, b32));
EXPECT_EQ(0, WebRtcSpl_get_version(bVersion, 8));
}
TEST_F(SplTest, MathOperationsTest) {
int A = 1134567892;
int32_t num = 117;
int32_t den = -5;
uint16_t denU = 5;
EXPECT_EQ(33700, WebRtcSpl_Sqrt(A));
EXPECT_EQ(33683, WebRtcSpl_SqrtFloor(A));
EXPECT_EQ(-91772805, WebRtcSpl_DivResultInQ31(den, num));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16ResW16(num, (int16_t)den));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16(num, (int16_t)den));
EXPECT_EQ(23u, WebRtcSpl_DivU32U16(num, denU));
EXPECT_EQ(0, WebRtcSpl_DivW32HiLow(128, 0, 256));
}
TEST_F(SplTest, BasicArrayOperationsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t b16[kVectorSize];
int32_t b32[kVectorSize];
int16_t bTmp16[kVectorSize];
int32_t bTmp32[kVectorSize];
WebRtcSpl_MemSetW16(b16, 3, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b16[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_ZerosArrayW16(b16, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b16[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_OnesArrayW16(b16, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(1, b16[kk]);
}
WebRtcSpl_MemSetW32(b32, 3, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b32[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_ZerosArrayW32(b32, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b32[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_OnesArrayW32(b32, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(1, b32[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
bTmp16[kk] = (int16_t)kk;
bTmp32[kk] = (int32_t)kk;
}
WEBRTC_SPL_MEMCPY_W16(b16, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[kk], bTmp16[kk]);
}
// WEBRTC_SPL_MEMCPY_W32(b32, bTmp32, kVectorSize);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(b32[kk], bTmp32[kk]);
// }
EXPECT_EQ(2, WebRtcSpl_CopyFromEndW16(b16, kVectorSize, 2, bTmp16));
for (int kk = 0; kk < 2; ++kk) {
EXPECT_EQ(kk+2, bTmp16[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
b32[kk] = B[kk];
b16[kk] = (int16_t)B[kk];
}
WebRtcSpl_VectorBitShiftW32ToW16(bTmp16, kVectorSize, b32, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW16(bTmp16, kVectorSize, b16, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW32(bTmp32, kVectorSize, b32, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp32[kk]);
}
WebRtcSpl_MemCpyReversedOrder(&bTmp16[3], b16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[3-kk], bTmp16[kk]);
}
}
TEST_F(SplTest, ExeptionsHandlingMinMaxOperationsTest) {
// Test how the functions handle exceptional cases.
const int kVectorSize = 2;
int16_t vector16[kVectorSize] = {0};
int32_t vector32[kVectorSize] = {0};
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW16(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, WebRtcSpl_MaxValueW16(vector16, 0));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, WebRtcSpl_MaxValueW16(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MinValueW16(vector16, 0));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, WebRtcSpl_MinValueW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW32(vector32, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsValueW32(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN, WebRtcSpl_MaxValueW32(vector32, 0));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN, WebRtcSpl_MaxValueW32(NULL, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MinValueW32(vector32, 0));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX, WebRtcSpl_MinValueW32(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsIndexW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxAbsIndexW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW32(vector32, 0));
EXPECT_EQ(-1, WebRtcSpl_MaxIndexW32(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW16(vector16, 0));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW16(NULL, kVectorSize));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW32(vector32, 0));
EXPECT_EQ(-1, WebRtcSpl_MinIndexW32(NULL, kVectorSize));
}
TEST_F(SplTest, MinMaxOperationsTest) {
const int kVectorSize = 17;
// Vectors to test the cases where minimum values have to be caught
// outside of the unrolled loops in ARM-Neon.
int16_t vector16[kVectorSize] = {-1, 7485, 0, 3333,
-18283, 0, 12334, -29871, 988, -3333,
345, -456, 222, 999, 888, 8774, WEBRTC_SPL_WORD16_MIN};
int32_t vector32[kVectorSize] = {-1, 0, 283211, 3333,
8712345, 0, -3333, 89345, -374585456, 222, 999, 122345334,
-12389756, -987329871, 888, -2, WEBRTC_SPL_WORD32_MIN};
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
// Test the cases where maximum values have to be caught
// outside of the unrolled loops in ARM-Neon.
vector16[kVectorSize - 1] = WEBRTC_SPL_WORD16_MAX;
vector32[kVectorSize - 1] = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
// Test the cases where multiple maximum and minimum values are present.
vector16[1] = WEBRTC_SPL_WORD16_MAX;
vector16[6] = WEBRTC_SPL_WORD16_MIN;
vector16[11] = WEBRTC_SPL_WORD16_MIN;
vector32[1] = WEBRTC_SPL_WORD32_MAX;
vector32[6] = WEBRTC_SPL_WORD32_MIN;
vector32[11] = WEBRTC_SPL_WORD32_MIN;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(6, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(1, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(1, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
EXPECT_EQ(6, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(6, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
}
TEST_F(SplTest, VectorOperationsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t a16[kVectorSize];
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
for (int kk = 0; kk < kVectorSize; ++kk) {
a16[kk] = B[kk];
b16[kk] = B[kk];
}
WebRtcSpl_AffineTransformVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]*3+7)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectorsWithRound(b16, 3, b16, 2, 2, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]*3+B[kk]*2+2)>>2, bTmp16[kk]);
}
WebRtcSpl_AddAffineVectorToVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((B[kk]*3+B[kk]*2+2)>>2)+((b16[kk]*3+7)>>2), bTmp16[kk]);
}
WebRtcSpl_ScaleVector(b16, bTmp16, 13, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleVectorWithSat(b16, bTmp16, 13, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectors(a16, 13, 2, b16, 7, 2, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((a16[kk]*13)>>2)+((b16[kk]*7)>>2), bTmp16[kk]);
}
WebRtcSpl_AddVectorsAndShift(bTmp16, a16, b16, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(B[kk] >> 1, bTmp16[kk]);
}
WebRtcSpl_ReverseOrderMultArrayElements(bTmp16, a16, &b16[3], kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk]*b16[3-kk])>>2, bTmp16[kk]);
}
WebRtcSpl_ElementwiseVectorMult(bTmp16, a16, b16, kVectorSize, 6);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk]*b16[kk])>>6, bTmp16[kk]);
}
WebRtcSpl_SqrtOfOneMinusXSquared(b16, kVectorSize, bTmp16);
for (int kk = 0; kk < kVectorSize - 1; ++kk) {
EXPECT_EQ(32767, bTmp16[kk]);
}
EXPECT_EQ(32749, bTmp16[kVectorSize - 1]);
EXPECT_EQ(0, WebRtcSpl_GetScalingSquare(b16, kVectorSize, 1));
}
TEST_F(SplTest, EstimatorsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t b16[kVectorSize];
int32_t b32[kVectorSize];
int16_t bTmp16[kVectorSize];
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = B[kk];
b32[kk] = B[kk];
}
EXPECT_EQ(0, WebRtcSpl_LevinsonDurbin(b32, b16, bTmp16, 2));
}
TEST_F(SplTest, FilterTest) {
const int kVectorSize = 4;
const int kFilterOrder = 3;
int16_t A[] = {1, 2, 33, 100};
int16_t A5[] = {1, 2, 33, 100, -5};
int16_t B[] = {4, 12, 133, 110};
int16_t data_in[kVectorSize];
int16_t data_out[kVectorSize];
int16_t bTmp16Low[kVectorSize];
int16_t bState[kVectorSize];
int16_t bStateLow[kVectorSize];
WebRtcSpl_ZerosArrayW16(bState, kVectorSize);
WebRtcSpl_ZerosArrayW16(bStateLow, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
data_in[kk] = A[kk];
data_out[kk] = 0;
}
// MA filters.
// Note that the input data has |kFilterOrder| states before the actual
// data (one sample).
WebRtcSpl_FilterMAFastQ12(&data_in[kFilterOrder], data_out, B,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[0]);
// AR filters.
// Note that the output data has |kFilterOrder| states before the actual
// data (one sample).
WebRtcSpl_FilterARFastQ12(data_in, &data_out[kFilterOrder], A,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[kFilterOrder]);
EXPECT_EQ(kVectorSize, WebRtcSpl_FilterAR(A5,
5,
data_in,
kVectorSize,
bState,
kVectorSize,
bStateLow,
kVectorSize,
data_out,
bTmp16Low,
kVectorSize));
}
TEST_F(SplTest, RandTest) {
const int kVectorSize = 4;
int16_t BU[] = {3653, 12446, 8525, 30691};
int16_t b16[kVectorSize];
uint32_t bSeed = 100000;
EXPECT_EQ(7086, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(31565, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(-9786, WebRtcSpl_RandN(&bSeed));
EXPECT_EQ(kVectorSize, WebRtcSpl_RandUArray(b16, kVectorSize, &bSeed));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(BU[kk], b16[kk]);
}
}
TEST_F(SplTest, DotProductWithScaleTest) {
EXPECT_EQ(605362796, WebRtcSpl_DotProductWithScale(vector16,
vector16, kVector16Size, 2));
}
TEST_F(SplTest, CrossCorrelationTest) {
// Note the function arguments relation specificed by API.
const int kCrossCorrelationDimension = 3;
const int kShift = 2;
const int kStep = 1;
const int kSeqDimension = 6;
const int16_t kVector16[kVector16Size] = {1, 4323, 1963,
WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MIN + 5, -3333, -876, 8483, 142};
int32_t vector32[kCrossCorrelationDimension] = {0};
WebRtcSpl_CrossCorrelation(vector32, vector16, kVector16, kSeqDimension,
kCrossCorrelationDimension, kShift, kStep);
// WebRtcSpl_CrossCorrelationC() and WebRtcSpl_CrossCorrelationNeon()
// are not bit-exact.
const int32_t kExpected[kCrossCorrelationDimension] =
{-266947903, -15579555, -171282001};
const int32_t* expected = kExpected;
#if !defined(MIPS32_LE)
const int32_t kExpectedNeon[kCrossCorrelationDimension] =
{-266947901, -15579553, -171281999};
if (WebRtcSpl_CrossCorrelation != WebRtcSpl_CrossCorrelationC) {
expected = kExpectedNeon;
}
#endif
for (int i = 0; i < kCrossCorrelationDimension; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST_F(SplTest, AutoCorrelationTest) {
int scale = 0;
int32_t vector32[kVector16Size];
const int32_t expected[kVector16Size] = {302681398, 14223410, -121705063,
-85221647, -17104971, 61806945, 6644603, -669329, 43};
EXPECT_EQ(-1, WebRtcSpl_AutoCorrelation(vector16,
kVector16Size, kVector16Size + 1, vector32, &scale));
EXPECT_EQ(kVector16Size, WebRtcSpl_AutoCorrelation(vector16,
kVector16Size, kVector16Size - 1, vector32, &scale));
EXPECT_EQ(3, scale);
for (int i = 0; i < kVector16Size; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST_F(SplTest, SignalProcessingTest) {
const int kVectorSize = 4;
int A[] = {1, 2, 33, 100};
const int16_t kHanning[4] = { 2399, 8192, 13985, 16384 };
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
int bScale = 0;
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
// TODO(bjornv): Activate the Reflection Coefficient tests when refactoring.
// WebRtcSpl_ReflCoefToLpc(b16, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
// WebRtcSpl_LpcToReflCoef(bTmp16, kVectorSize, b16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(a16[kk], b16[kk]);
//// }
// WebRtcSpl_AutoCorrToReflCoef(b32, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
WebRtcSpl_GetHanningWindow(bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(kHanning[kk], bTmp16[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
EXPECT_EQ(11094 , WebRtcSpl_Energy(b16, kVectorSize, &bScale));
EXPECT_EQ(0, bScale);
}
TEST_F(SplTest, FFTTest) {
int16_t B[] = {1, 2, 33, 100,
2, 3, 34, 101,
3, 4, 35, 102,
4, 5, 36, 103};
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
EXPECT_EQ(0, WebRtcSpl_ComplexIFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
WebRtcSpl_ComplexBitReverse(B, 3);
for (int kk = 0; kk < 16; ++kk) {
//EXPECT_EQ(A[kk], B[kk]);
}
}
TEST_F(SplTest, Resample48WithSaturationTest) {
// The test resamples 3*kBlockSize number of samples to 2*kBlockSize number
// of samples.
const int kBlockSize = 16;
// Saturated input vector of 48 samples.
const int32_t kVectorSaturated[3 * kBlockSize + 7] = {
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767
};
// All values in |out_vector| should be |kRefValue32kHz|.
const int32_t kRefValue32kHz1 = -1077493760;
const int32_t kRefValue32kHz2 = 1077493645;
// After bit shift with saturation, |out_vector_w16| is saturated.
const int16_t kRefValue16kHz1 = -32768;
const int16_t kRefValue16kHz2 = 32767;
// Vector for storing output.
int32_t out_vector[2 * kBlockSize];
int16_t out_vector_w16[2 * kBlockSize];
WebRtcSpl_Resample48khzTo32khz(kVectorSaturated, out_vector, kBlockSize);
WebRtcSpl_VectorBitShiftW32ToW16(out_vector_w16, 2 * kBlockSize, out_vector,
15);
// Comparing output values against references. The values at position
// 12-15 are skipped to account for the filter lag.
for (int i = 0; i < 12; ++i) {
EXPECT_EQ(kRefValue32kHz1, out_vector[i]);
EXPECT_EQ(kRefValue16kHz1, out_vector_w16[i]);
}
for (int i = 16; i < 2 * kBlockSize; ++i) {
EXPECT_EQ(kRefValue32kHz2, out_vector[i]);
EXPECT_EQ(kRefValue16kHz2, out_vector_w16[i]);
}
}

View File

@@ -0,0 +1,159 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* The global function contained in this file initializes SPL function
* pointers, currently only for ARM platforms.
*
* Some code came from common/rtcd.c in the WebM project.
*/
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/system_wrappers/interface/cpu_features_wrapper.h"
/* Declare function pointers. */
MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16;
MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32;
MaxValueW16 WebRtcSpl_MaxValueW16;
MaxValueW32 WebRtcSpl_MaxValueW32;
MinValueW16 WebRtcSpl_MinValueW16;
MinValueW32 WebRtcSpl_MinValueW32;
CrossCorrelation WebRtcSpl_CrossCorrelation;
DownsampleFast WebRtcSpl_DownsampleFast;
ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound;
CreateRealFFT WebRtcSpl_CreateRealFFT;
FreeRealFFT WebRtcSpl_FreeRealFFT;
RealForwardFFT WebRtcSpl_RealForwardFFT;
RealInverseFFT WebRtcSpl_RealInverseFFT;
#if (defined(WEBRTC_DETECT_ARM_NEON) || !defined(WEBRTC_ARCH_ARM_NEON)) && \
!defined(MIPS32_LE)
/* Initialize function pointers to the generic C version. */
static void InitPointersToC() {
WebRtcSpl_MaxAbsValueW16 = WebRtcSpl_MaxAbsValueW16C;
WebRtcSpl_MaxAbsValueW32 = WebRtcSpl_MaxAbsValueW32C;
WebRtcSpl_MaxValueW16 = WebRtcSpl_MaxValueW16C;
WebRtcSpl_MaxValueW32 = WebRtcSpl_MaxValueW32C;
WebRtcSpl_MinValueW16 = WebRtcSpl_MinValueW16C;
WebRtcSpl_MinValueW32 = WebRtcSpl_MinValueW32C;
WebRtcSpl_CrossCorrelation = WebRtcSpl_CrossCorrelationC;
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastC;
WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundC;
WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTC;
WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTC;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC;
}
#endif
#if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON)
/* Initialize function pointers to the Neon version. */
static void InitPointersToNeon() {
WebRtcSpl_MaxAbsValueW16 = WebRtcSpl_MaxAbsValueW16Neon;
WebRtcSpl_MaxAbsValueW32 = WebRtcSpl_MaxAbsValueW32Neon;
WebRtcSpl_MaxValueW16 = WebRtcSpl_MaxValueW16Neon;
WebRtcSpl_MaxValueW32 = WebRtcSpl_MaxValueW32Neon;
WebRtcSpl_MinValueW16 = WebRtcSpl_MinValueW16Neon;
WebRtcSpl_MinValueW32 = WebRtcSpl_MinValueW32Neon;
WebRtcSpl_CrossCorrelation = WebRtcSpl_CrossCorrelationNeon;
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFastNeon;
/* TODO(henrik.lundin): re-enable NEON when the crash from bug 3243 is
understood. */
WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundC;
WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTNeon;
WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTNeon;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTNeon;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTNeon;
}
#endif
#if defined(MIPS32_LE)
/* Initialize function pointers to the MIPS version. */
static void InitPointersToMIPS() {
WebRtcSpl_MaxAbsValueW16 = WebRtcSpl_MaxAbsValueW16_mips;
WebRtcSpl_MaxValueW16 = WebRtcSpl_MaxValueW16_mips;
WebRtcSpl_MaxValueW32 = WebRtcSpl_MaxValueW32_mips;
WebRtcSpl_MinValueW16 = WebRtcSpl_MinValueW16_mips;
WebRtcSpl_MinValueW32 = WebRtcSpl_MinValueW32_mips;
WebRtcSpl_CrossCorrelation = WebRtcSpl_CrossCorrelation_mips;
WebRtcSpl_DownsampleFast = WebRtcSpl_DownsampleFast_mips;
WebRtcSpl_CreateRealFFT = WebRtcSpl_CreateRealFFTC;
WebRtcSpl_FreeRealFFT = WebRtcSpl_FreeRealFFTC;
WebRtcSpl_RealForwardFFT = WebRtcSpl_RealForwardFFTC;
WebRtcSpl_RealInverseFFT = WebRtcSpl_RealInverseFFTC;
#if defined(MIPS_DSP_R1_LE)
WebRtcSpl_MaxAbsValueW32 = WebRtcSpl_MaxAbsValueW32_mips;
WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRound_mips;
#else
WebRtcSpl_MaxAbsValueW32 = WebRtcSpl_MaxAbsValueW32C;
WebRtcSpl_ScaleAndAddVectorsWithRound =
WebRtcSpl_ScaleAndAddVectorsWithRoundC;
#endif
}
#endif
static void InitFunctionPointers(void) {
#if defined(WEBRTC_DETECT_ARM_NEON)
if ((WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON) != 0) {
InitPointersToNeon();
} else {
InitPointersToC();
}
#elif defined(WEBRTC_ARCH_ARM_NEON)
InitPointersToNeon();
#elif defined(MIPS32_LE)
InitPointersToMIPS();
#else
InitPointersToC();
#endif /* WEBRTC_DETECT_ARM_NEON */
}
#if defined(WEBRTC_POSIX)
#include <pthread.h>
static void once(void (*func)(void)) {
static pthread_once_t lock = PTHREAD_ONCE_INIT;
pthread_once(&lock, func);
}
#elif defined(_WIN32)
#include <windows.h>
static void once(void (*func)(void)) {
/* Didn't use InitializeCriticalSection() since there's no race-free context
* in which to execute it.
*
* TODO(kma): Change to different implementation (e.g.
* InterlockedCompareExchangePointer) to avoid issues similar to
* http://code.google.com/p/webm/issues/detail?id=467.
*/
static CRITICAL_SECTION lock = {(void *)((size_t)-1), -1, 0, 0, 0, 0};
static int done = 0;
EnterCriticalSection(&lock);
if (!done) {
func();
done = 1;
}
LeaveCriticalSection(&lock);
}
/* There's no fallback version as an #else block here to ensure thread safety.
* In case of neither pthread for WEBRTC_POSIX nor _WIN32 is present, build
* system should pick it up.
*/
#endif /* WEBRTC_POSIX */
void WebRtcSpl_Init() {
once(InitFunctionPointers);
}

View File

@@ -0,0 +1,184 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_Sqrt().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int32_t WebRtcSpl_SqrtLocal(int32_t in);
int32_t WebRtcSpl_SqrtLocal(int32_t in)
{
int16_t x_half, t16;
int32_t A, B, x2;
/* The following block performs:
y=in/2
x=y-2^30
x_half=x/2^31
t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
+ 0.875*((x_half)^5)
*/
B = in;
B = WEBRTC_SPL_RSHIFT_W32(B, 1); // B = in/2
B = B - ((int32_t)0x40000000); // B = in/2 - 1/2
x_half = (int16_t)WEBRTC_SPL_RSHIFT_W32(B, 16);// x_half = x/2 = (in-1)/2
B = B + ((int32_t)0x40000000); // B = 1 + x/2
B = B + ((int32_t)0x40000000); // Add 0.5 twice (since 1.0 does not exist in Q31)
x2 = ((int32_t)x_half) * ((int32_t)x_half) * 2; // A = (x/2)^2
A = -x2; // A = -(x/2)^2
B = B + (A >> 1); // B = 1 + x/2 - 0.5*(x/2)^2
A = WEBRTC_SPL_RSHIFT_W32(A, 16);
A = A * A * 2; // A = (x/2)^4
t16 = (int16_t)WEBRTC_SPL_RSHIFT_W32(A, 16);
B = B + WEBRTC_SPL_MUL_16_16(-20480, t16) * 2; // B = B - 0.625*A
// After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4
t16 = (int16_t)WEBRTC_SPL_RSHIFT_W32(A, 16);
A = WEBRTC_SPL_MUL_16_16(x_half, t16) * 2; // A = (x/2)^5
t16 = (int16_t)WEBRTC_SPL_RSHIFT_W32(A, 16);
B = B + WEBRTC_SPL_MUL_16_16(28672, t16) * 2; // B = B + 0.875*A
// After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4 + 0.875*(x/2)^5
t16 = (int16_t)WEBRTC_SPL_RSHIFT_W32(x2, 16);
A = WEBRTC_SPL_MUL_16_16(x_half, t16) * 2; // A = x/2^3
B = B + (A >> 1); // B = B + 0.5*A
// After this, B = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 - 0.625*(x/2)^4 + 0.875*(x/2)^5
B = B + ((int32_t)32768); // Round off bit
return B;
}
int32_t WebRtcSpl_Sqrt(int32_t value)
{
/*
Algorithm:
Six term Taylor Series is used here to compute the square root of a number
y^0.5 = (1+x)^0.5 where x = y-1
= 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5)
0.5 <= x < 1
Example of how the algorithm works, with ut=sqrt(in), and
with in=73632 and ut=271 (even shift value case):
in=73632
y= in/131072
x=y-1
t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
ut=t*(1/sqrt(2))*512
or:
in=73632
in2=73632*2^14
y= in2/2^31
x=y-1
t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
ut=t*(1/sqrt(2))
ut2=ut*2^9
which gives:
in = 73632
in2 = 1206386688
y = 0.56176757812500
x = -0.43823242187500
t = 0.74973506527313
ut = 0.53014274874797
ut2 = 2.714330873589594e+002
or:
in=73632
in2=73632*2^14
y=in2/2
x=y-2^30
x_half=x/2^31
t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
+ 0.875*((x_half)^5)
ut=t*(1/sqrt(2))
ut2=ut*2^9
which gives:
in = 73632
in2 = 1206386688
y = 603193344
x = -470548480
x_half = -0.21911621093750
t = 0.74973506527313
ut = 0.53014274874797
ut2 = 2.714330873589594e+002
*/
int16_t x_norm, nshift, t16, sh;
int32_t A;
int16_t k_sqrt_2 = 23170; // 1/sqrt2 (==5a82)
A = value;
if (A == 0)
return (int32_t)0; // sqrt(0) = 0
sh = WebRtcSpl_NormW32(A); // # shifts to normalize A
A = WEBRTC_SPL_LSHIFT_W32(A, sh); // Normalize A
if (A < (WEBRTC_SPL_WORD32_MAX - 32767))
{
A = A + ((int32_t)32768); // Round off bit
} else
{
A = WEBRTC_SPL_WORD32_MAX;
}
x_norm = (int16_t)WEBRTC_SPL_RSHIFT_W32(A, 16); // x_norm = AH
nshift = WEBRTC_SPL_RSHIFT_W16(sh, 1); // nshift = sh>>1
nshift = -nshift; // Negate the power for later de-normalization
A = (int32_t)WEBRTC_SPL_LSHIFT_W32((int32_t)x_norm, 16);
A = WEBRTC_SPL_ABS_W32(A); // A = abs(x_norm<<16)
A = WebRtcSpl_SqrtLocal(A); // A = sqrt(A)
if ((-2 * nshift) == sh)
{ // Even shift value case
t16 = (int16_t)WEBRTC_SPL_RSHIFT_W32(A, 16); // t16 = AH
A = WEBRTC_SPL_MUL_16_16(k_sqrt_2, t16) * 2; // A = 1/sqrt(2)*t16
A = A + ((int32_t)32768); // Round off
A = A & ((int32_t)0x7fff0000); // Round off
A = WEBRTC_SPL_RSHIFT_W32(A, 15); // A = A>>16
} else
{
A = WEBRTC_SPL_RSHIFT_W32(A, 16); // A = A>>16
}
A = A & ((int32_t)0x0000ffff);
A = (int32_t)WEBRTC_SPL_SHIFT_W32(A, nshift); // De-normalize the result
return A;
}

View File

@@ -0,0 +1,77 @@
/*
* Written by Wilco Dijkstra, 1996. The following email exchange establishes the
* license.
*
* From: Wilco Dijkstra <Wilco.Dijkstra@ntlworld.com>
* Date: Fri, Jun 24, 2011 at 3:20 AM
* Subject: Re: sqrt routine
* To: Kevin Ma <kma@google.com>
* Hi Kevin,
* Thanks for asking. Those routines are public domain (originally posted to
* comp.sys.arm a long time ago), so you can use them freely for any purpose.
* Cheers,
* Wilco
*
* ----- Original Message -----
* From: "Kevin Ma" <kma@google.com>
* To: <Wilco.Dijkstra@ntlworld.com>
* Sent: Thursday, June 23, 2011 11:44 PM
* Subject: Fwd: sqrt routine
* Hi Wilco,
* I saw your sqrt routine from several web sites, including
* http://www.finesse.demon.co.uk/steven/sqrt.html.
* Just wonder if there's any copyright information with your Successive
* approximation routines, or if I can freely use it for any purpose.
* Thanks.
* Kevin
*/
// Minor modifications in code style for WebRTC, 2012.
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
/*
* Algorithm:
* Successive approximation of the equation (root + delta) ^ 2 = N
* until delta < 1. If delta < 1 we have the integer part of SQRT (N).
* Use delta = 2^i for i = 15 .. 0.
*
* Output precision is 16 bits. Note for large input values (close to
* 0x7FFFFFFF), bit 15 (the highest bit of the low 16-bit half word)
* contains the MSB information (a non-sign value). Do with caution
* if you need to cast the output to int16_t type.
*
* If the input value is negative, it returns 0.
*/
#define WEBRTC_SPL_SQRT_ITER(N) \
try1 = root + (1 << (N)); \
if (value >= try1 << (N)) \
{ \
value -= try1 << (N); \
root |= 2 << (N); \
}
int32_t WebRtcSpl_SqrtFloor(int32_t value)
{
int32_t root = 0, try1;
WEBRTC_SPL_SQRT_ITER (15);
WEBRTC_SPL_SQRT_ITER (14);
WEBRTC_SPL_SQRT_ITER (13);
WEBRTC_SPL_SQRT_ITER (12);
WEBRTC_SPL_SQRT_ITER (11);
WEBRTC_SPL_SQRT_ITER (10);
WEBRTC_SPL_SQRT_ITER ( 9);
WEBRTC_SPL_SQRT_ITER ( 8);
WEBRTC_SPL_SQRT_ITER ( 7);
WEBRTC_SPL_SQRT_ITER ( 6);
WEBRTC_SPL_SQRT_ITER ( 5);
WEBRTC_SPL_SQRT_ITER ( 4);
WEBRTC_SPL_SQRT_ITER ( 3);
WEBRTC_SPL_SQRT_ITER ( 2);
WEBRTC_SPL_SQRT_ITER ( 1);
WEBRTC_SPL_SQRT_ITER ( 0);
return root >> 1;
}

View File

@@ -0,0 +1,110 @@
@
@ Written by Wilco Dijkstra, 1996. The following email exchange establishes the
@ license.
@
@ From: Wilco Dijkstra <Wilco.Dijkstra@ntlworld.com>
@ Date: Fri, Jun 24, 2011 at 3:20 AM
@ Subject: Re: sqrt routine
@ To: Kevin Ma <kma@google.com>
@ Hi Kevin,
@ Thanks for asking. Those routines are public domain (originally posted to
@ comp.sys.arm a long time ago), so you can use them freely for any purpose.
@ Cheers,
@ Wilco
@
@ ----- Original Message -----
@ From: "Kevin Ma" <kma@google.com>
@ To: <Wilco.Dijkstra@ntlworld.com>
@ Sent: Thursday, June 23, 2011 11:44 PM
@ Subject: Fwd: sqrt routine
@ Hi Wilco,
@ I saw your sqrt routine from several web sites, including
@ http://www.finesse.demon.co.uk/steven/sqrt.html.
@ Just wonder if there's any copyright information with your Successive
@ approximation routines, or if I can freely use it for any purpose.
@ Thanks.
@ Kevin
@ Minor modifications in code style for WebRTC, 2012.
@ Output is bit-exact with the reference C code in spl_sqrt_floor.c.
@ Input : r0 32 bit unsigned integer
@ Output: r0 = INT (SQRT (r0)), precision is 16 bits
@ Registers touched: r1, r2
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_FUNCTION WebRtcSpl_SqrtFloor
.align 2
DEFINE_FUNCTION WebRtcSpl_SqrtFloor
mov r1, #3 << 30
mov r2, #1 << 30
@ unroll for i = 0 .. 15
cmp r0, r2, ror #2 * 0
subhs r0, r0, r2, ror #2 * 0
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 1
subhs r0, r0, r2, ror #2 * 1
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 2
subhs r0, r0, r2, ror #2 * 2
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 3
subhs r0, r0, r2, ror #2 * 3
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 4
subhs r0, r0, r2, ror #2 * 4
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 5
subhs r0, r0, r2, ror #2 * 5
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 6
subhs r0, r0, r2, ror #2 * 6
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 7
subhs r0, r0, r2, ror #2 * 7
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 8
subhs r0, r0, r2, ror #2 * 8
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 9
subhs r0, r0, r2, ror #2 * 9
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 10
subhs r0, r0, r2, ror #2 * 10
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 11
subhs r0, r0, r2, ror #2 * 11
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 12
subhs r0, r0, r2, ror #2 * 12
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 13
subhs r0, r0, r2, ror #2 * 13
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 14
subhs r0, r0, r2, ror #2 * 14
adc r2, r1, r2, lsl #1
cmp r0, r2, ror #2 * 15
subhs r0, r0, r2, ror #2 * 15
adc r2, r1, r2, lsl #1
bic r0, r2, #3 << 30 @ for rounding add: cmp r0, r2 adc r2, #1
bx lr

View File

@@ -0,0 +1,207 @@
/*
* Written by Wilco Dijkstra, 1996. The following email exchange establishes the
* license.
*
* From: Wilco Dijkstra <Wilco.Dijkstra@ntlworld.com>
* Date: Fri, Jun 24, 2011 at 3:20 AM
* Subject: Re: sqrt routine
* To: Kevin Ma <kma@google.com>
* Hi Kevin,
* Thanks for asking. Those routines are public domain (originally posted to
* comp.sys.arm a long time ago), so you can use them freely for any purpose.
* Cheers,
* Wilco
*
* ----- Original Message -----
* From: "Kevin Ma" <kma@google.com>
* To: <Wilco.Dijkstra@ntlworld.com>
* Sent: Thursday, June 23, 2011 11:44 PM
* Subject: Fwd: sqrt routine
* Hi Wilco,
* I saw your sqrt routine from several web sites, including
* http://www.finesse.demon.co.uk/steven/sqrt.html.
* Just wonder if there's any copyright information with your Successive
* approximation routines, or if I can freely use it for any purpose.
* Thanks.
* Kevin
*/
// Minor modifications in code style for WebRTC, 2012.
// Code optimizations for MIPS, 2013.
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
/*
* Algorithm:
* Successive approximation of the equation (root + delta) ^ 2 = N
* until delta < 1. If delta < 1 we have the integer part of SQRT (N).
* Use delta = 2^i for i = 15 .. 0.
*
* Output precision is 16 bits. Note for large input values (close to
* 0x7FFFFFFF), bit 15 (the highest bit of the low 16-bit half word)
* contains the MSB information (a non-sign value). Do with caution
* if you need to cast the output to int16_t type.
*
* If the input value is negative, it returns 0.
*/
int32_t WebRtcSpl_SqrtFloor(int32_t value)
{
int32_t root = 0, tmp1, tmp2, tmp3, tmp4;
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"lui %[tmp1], 0x4000 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"sub %[tmp3], %[value], %[tmp1] \n\t"
"lui %[tmp1], 0x1 \n\t"
"or %[tmp4], %[root], %[tmp1] \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x4000 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 14 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x8000 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x2000 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 13 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x4000 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x1000 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 12 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x2000 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x800 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 11 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x1000 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x400 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 10 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x800 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x200 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 9 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x400 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x100 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 8 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x200 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x80 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 7 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x100 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x40 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 6 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x80 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x20 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 5 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x40 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x10 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 4 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x20 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x8 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 3 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x10 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x4 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 2 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x8 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x2 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"sll %[tmp1], 1 \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"subu %[tmp3], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x4 \n\t"
"movz %[value], %[tmp3], %[tmp2] \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
"addiu %[tmp1], $0, 0x1 \n\t"
"addu %[tmp1], %[tmp1], %[root] \n\t"
"slt %[tmp2], %[value], %[tmp1] \n\t"
"ori %[tmp4], %[root], 0x2 \n\t"
"movz %[root], %[tmp4], %[tmp2] \n\t"
".set pop \n\t"
: [root] "+r" (root), [value] "+r" (value),
[tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2),
[tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4)
:
);
return root >> 1;
}

View File

@@ -0,0 +1,25 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_get_version().
* The description header can be found in signal_processing_library.h
*
*/
#include <string.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int16_t WebRtcSpl_get_version(char* version, int16_t length_in_bytes)
{
strncpy(version, "1.2.0", length_in_bytes);
return 0;
}

View File

@@ -0,0 +1,210 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the splitting filter functions.
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include <assert.h>
// Maximum number of samples in a low/high-band frame.
enum
{
kMaxBandFrameLength = 240 // 10 ms at 48 kHz.
};
// QMF filter coefficients in Q16.
static const uint16_t WebRtcSpl_kAllPassFilter1[3] = {6418, 36982, 57261};
static const uint16_t WebRtcSpl_kAllPassFilter2[3] = {21333, 49062, 63010};
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcSpl_AllPassQMF(...)
//
// Allpass filter used by the analysis and synthesis parts of the QMF filter.
//
// Input:
// - in_data : Input data sequence (Q10)
// - data_length : Length of data sequence (>2)
// - filter_coefficients : Filter coefficients (length 3, Q16)
//
// Input & Output:
// - filter_state : Filter state (length 6, Q10).
//
// Output:
// - out_data : Output data sequence (Q10), length equal to
// |data_length|
//
void WebRtcSpl_AllPassQMF(int32_t* in_data, int16_t data_length,
int32_t* out_data, const uint16_t* filter_coefficients,
int32_t* filter_state)
{
// The procedure is to filter the input with three first order all pass filters
// (cascade operations).
//
// a_3 + q^-1 a_2 + q^-1 a_1 + q^-1
// y[n] = ----------- ----------- ----------- x[n]
// 1 + a_3q^-1 1 + a_2q^-1 1 + a_1q^-1
//
// The input vector |filter_coefficients| includes these three filter coefficients.
// The filter state contains the in_data state, in_data[-1], followed by
// the out_data state, out_data[-1]. This is repeated for each cascade.
// The first cascade filter will filter the |in_data| and store the output in
// |out_data|. The second will the take the |out_data| as input and make an
// intermediate storage in |in_data|, to save memory. The third, and final, cascade
// filter operation takes the |in_data| (which is the output from the previous cascade
// filter) and store the output in |out_data|.
// Note that the input vector values are changed during the process.
int16_t k;
int32_t diff;
// First all-pass cascade; filter from in_data to out_data.
// Let y_i[n] indicate the output of cascade filter i (with filter coefficient a_i) at
// vector position n. Then the final output will be y[n] = y_3[n]
// First loop, use the states stored in memory.
// "diff" should be safe from wrap around since max values are 2^25
// diff = (x[0] - y_1[-1])
diff = WebRtcSpl_SubSatW32(in_data[0], filter_state[1]);
// y_1[0] = x[-1] + a_1 * (x[0] - y_1[-1])
out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, filter_state[0]);
// For the remaining loops, use previous values.
for (k = 1; k < data_length; k++)
{
// diff = (x[n] - y_1[n-1])
diff = WebRtcSpl_SubSatW32(in_data[k], out_data[k - 1]);
// y_1[n] = x[n-1] + a_1 * (x[n] - y_1[n-1])
out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, in_data[k - 1]);
}
// Update states.
filter_state[0] = in_data[data_length - 1]; // x[N-1], becomes x[-1] next time
filter_state[1] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
// Second all-pass cascade; filter from out_data to in_data.
// diff = (y_1[0] - y_2[-1])
diff = WebRtcSpl_SubSatW32(out_data[0], filter_state[3]);
// y_2[0] = y_1[-1] + a_2 * (y_1[0] - y_2[-1])
in_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, filter_state[2]);
for (k = 1; k < data_length; k++)
{
// diff = (y_1[n] - y_2[n-1])
diff = WebRtcSpl_SubSatW32(out_data[k], in_data[k - 1]);
// y_2[0] = y_1[-1] + a_2 * (y_1[0] - y_2[-1])
in_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, out_data[k-1]);
}
filter_state[2] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
filter_state[3] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
// Third all-pass cascade; filter from in_data to out_data.
// diff = (y_2[0] - y[-1])
diff = WebRtcSpl_SubSatW32(in_data[0], filter_state[5]);
// y[0] = y_2[-1] + a_3 * (y_2[0] - y[-1])
out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, filter_state[4]);
for (k = 1; k < data_length; k++)
{
// diff = (y_2[n] - y[n-1])
diff = WebRtcSpl_SubSatW32(in_data[k], out_data[k - 1]);
// y[n] = y_2[n-1] + a_3 * (y_2[n] - y[n-1])
out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, in_data[k-1]);
}
filter_state[4] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
filter_state[5] = out_data[data_length - 1]; // y[N-1], becomes y[-1] next time
}
void WebRtcSpl_AnalysisQMF(const int16_t* in_data, int in_data_length,
int16_t* low_band, int16_t* high_band,
int32_t* filter_state1, int32_t* filter_state2)
{
int16_t i;
int16_t k;
int32_t tmp;
int32_t half_in1[kMaxBandFrameLength];
int32_t half_in2[kMaxBandFrameLength];
int32_t filter1[kMaxBandFrameLength];
int32_t filter2[kMaxBandFrameLength];
const int band_length = in_data_length / 2;
assert(in_data_length % 2 == 0);
assert(band_length <= kMaxBandFrameLength);
// Split even and odd samples. Also shift them to Q10.
for (i = 0, k = 0; i < band_length; i++, k += 2)
{
half_in2[i] = WEBRTC_SPL_LSHIFT_W32((int32_t)in_data[k], 10);
half_in1[i] = WEBRTC_SPL_LSHIFT_W32((int32_t)in_data[k + 1], 10);
}
// All pass filter even and odd samples, independently.
WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
WebRtcSpl_kAllPassFilter1, filter_state1);
WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
WebRtcSpl_kAllPassFilter2, filter_state2);
// Take the sum and difference of filtered version of odd and even
// branches to get upper & lower band.
for (i = 0; i < band_length; i++)
{
tmp = filter1[i] + filter2[i] + 1024;
tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
low_band[i] = WebRtcSpl_SatW32ToW16(tmp);
tmp = filter1[i] - filter2[i] + 1024;
tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
high_band[i] = WebRtcSpl_SatW32ToW16(tmp);
}
}
void WebRtcSpl_SynthesisQMF(const int16_t* low_band, const int16_t* high_band,
int band_length, int16_t* out_data,
int32_t* filter_state1, int32_t* filter_state2)
{
int32_t tmp;
int32_t half_in1[kMaxBandFrameLength];
int32_t half_in2[kMaxBandFrameLength];
int32_t filter1[kMaxBandFrameLength];
int32_t filter2[kMaxBandFrameLength];
int16_t i;
int16_t k;
assert(band_length <= kMaxBandFrameLength);
// Obtain the sum and difference channels out of upper and lower-band channels.
// Also shift to Q10 domain.
for (i = 0; i < band_length; i++)
{
tmp = (int32_t)low_band[i] + (int32_t)high_band[i];
half_in1[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
tmp = (int32_t)low_band[i] - (int32_t)high_band[i];
half_in2[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
}
// all-pass filter the sum and difference channels
WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
WebRtcSpl_kAllPassFilter2, filter_state1);
WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
WebRtcSpl_kAllPassFilter1, filter_state2);
// The filtered signals are even and odd samples of the output. Combine
// them. The signals are Q10 should shift them back to Q0 and take care of
// saturation.
for (i = 0, k = 0; i < band_length; i++)
{
tmp = WEBRTC_SPL_RSHIFT_W32(filter2[i] + 512, 10);
out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
tmp = WEBRTC_SPL_RSHIFT_W32(filter1[i] + 512, 10);
out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
}
}

View File

@@ -0,0 +1,35 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_SqrtOfOneMinusXSquared().
* The description header can be found in signal_processing_library.h
*
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_SqrtOfOneMinusXSquared(int16_t *xQ15, int vector_length,
int16_t *yQ15)
{
int32_t sq;
int m;
int16_t tmp;
for (m = 0; m < vector_length; m++)
{
tmp = xQ15[m];
sq = WEBRTC_SPL_MUL_16_16(tmp, tmp); // x^2 in Q30
sq = 1073741823 - sq; // 1-x^2, where 1 ~= 0.99999999906 is 1073741823 in Q30
sq = WebRtcSpl_Sqrt(sq); // sqrt(1-x^2) in Q15
yQ15[m] = (int16_t)sq;
}
}

View File

@@ -0,0 +1,169 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the functions
* WebRtcSpl_VectorBitShiftW16()
* WebRtcSpl_VectorBitShiftW32()
* WebRtcSpl_VectorBitShiftW32ToW16()
* WebRtcSpl_ScaleVector()
* WebRtcSpl_ScaleVectorWithSat()
* WebRtcSpl_ScaleAndAddVectors()
* WebRtcSpl_ScaleAndAddVectorsWithRoundC()
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
void WebRtcSpl_VectorBitShiftW16(int16_t *res, int16_t length,
const int16_t *in, int16_t right_shifts)
{
int i;
if (right_shifts > 0)
{
for (i = length; i > 0; i--)
{
(*res++) = ((*in++) >> right_shifts);
}
} else
{
for (i = length; i > 0; i--)
{
(*res++) = ((*in++) << (-right_shifts));
}
}
}
void WebRtcSpl_VectorBitShiftW32(int32_t *out_vector,
int16_t vector_length,
const int32_t *in_vector,
int16_t right_shifts)
{
int i;
if (right_shifts > 0)
{
for (i = vector_length; i > 0; i--)
{
(*out_vector++) = ((*in_vector++) >> right_shifts);
}
} else
{
for (i = vector_length; i > 0; i--)
{
(*out_vector++) = ((*in_vector++) << (-right_shifts));
}
}
}
void WebRtcSpl_VectorBitShiftW32ToW16(int16_t* out, int length,
const int32_t* in, int right_shifts) {
int i;
int32_t tmp_w32;
if (right_shifts >= 0) {
for (i = length; i > 0; i--) {
tmp_w32 = (*in++) >> right_shifts;
(*out++) = WebRtcSpl_SatW32ToW16(tmp_w32);
}
} else {
int16_t left_shifts = -right_shifts;
for (i = length; i > 0; i--) {
tmp_w32 = (*in++) << left_shifts;
(*out++) = WebRtcSpl_SatW32ToW16(tmp_w32);
}
}
}
void WebRtcSpl_ScaleVector(const int16_t *in_vector, int16_t *out_vector,
int16_t gain, int16_t in_vector_length,
int16_t right_shifts)
{
// Performs vector operation: out_vector = (gain*in_vector)>>right_shifts
int i;
const int16_t *inptr;
int16_t *outptr;
inptr = in_vector;
outptr = out_vector;
for (i = 0; i < in_vector_length; i++)
{
(*outptr++) = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(*inptr++, gain, right_shifts);
}
}
void WebRtcSpl_ScaleVectorWithSat(const int16_t *in_vector, int16_t *out_vector,
int16_t gain, int16_t in_vector_length,
int16_t right_shifts)
{
// Performs vector operation: out_vector = (gain*in_vector)>>right_shifts
int i;
int32_t tmpW32;
const int16_t *inptr;
int16_t *outptr;
inptr = in_vector;
outptr = out_vector;
for (i = 0; i < in_vector_length; i++)
{
tmpW32 = WEBRTC_SPL_MUL_16_16_RSFT(*inptr++, gain, right_shifts);
(*outptr++) = WebRtcSpl_SatW32ToW16(tmpW32);
}
}
void WebRtcSpl_ScaleAndAddVectors(const int16_t *in1, int16_t gain1, int shift1,
const int16_t *in2, int16_t gain2, int shift2,
int16_t *out, int vector_length)
{
// Performs vector operation: out = (gain1*in1)>>shift1 + (gain2*in2)>>shift2
int i;
const int16_t *in1ptr;
const int16_t *in2ptr;
int16_t *outptr;
in1ptr = in1;
in2ptr = in2;
outptr = out;
for (i = 0; i < vector_length; i++)
{
(*outptr++) = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(gain1, *in1ptr++, shift1)
+ (int16_t)WEBRTC_SPL_MUL_16_16_RSFT(gain2, *in2ptr++, shift2);
}
}
// C version of WebRtcSpl_ScaleAndAddVectorsWithRound() for generic platforms.
int WebRtcSpl_ScaleAndAddVectorsWithRoundC(const int16_t* in_vector1,
int16_t in_vector1_scale,
const int16_t* in_vector2,
int16_t in_vector2_scale,
int right_shifts,
int16_t* out_vector,
int length) {
int i = 0;
int round_value = (1 << right_shifts) >> 1;
if (in_vector1 == NULL || in_vector2 == NULL || out_vector == NULL ||
length <= 0 || right_shifts < 0) {
return -1;
}
for (i = 0; i < length; i++) {
out_vector[i] = (int16_t)((
WEBRTC_SPL_MUL_16_16(in_vector1[i], in_vector1_scale)
+ WEBRTC_SPL_MUL_16_16(in_vector2[i], in_vector2_scale)
+ round_value) >> right_shifts);
}
return 0;
}

View File

@@ -0,0 +1,56 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the functions
* WebRtcSpl_ScaleAndAddVectorsWithRound_mips()
*/
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
int WebRtcSpl_ScaleAndAddVectorsWithRound_mips(const int16_t* in_vector1,
int16_t in_vector1_scale,
const int16_t* in_vector2,
int16_t in_vector2_scale,
int right_shifts,
int16_t* out_vector,
int length) {
int16_t r0 = 0, r1 = 0;
int16_t *in1 = (int16_t*)in_vector1;
int16_t *in2 = (int16_t*)in_vector2;
int16_t *out = out_vector;
int i = 0, value32 = 0;
if (in_vector1 == NULL || in_vector2 == NULL || out_vector == NULL ||
length <= 0 || right_shifts < 0) {
return -1;
}
for (i = 0; i < length; i++) {
__asm __volatile (
"lh %[r0], 0(%[in1]) \n\t"
"lh %[r1], 0(%[in2]) \n\t"
"mult %[r0], %[in_vector1_scale] \n\t"
"madd %[r1], %[in_vector2_scale] \n\t"
"extrv_r.w %[value32], $ac0, %[right_shifts] \n\t"
"addiu %[in1], %[in1], 2 \n\t"
"addiu %[in2], %[in2], 2 \n\t"
"sh %[value32], 0(%[out]) \n\t"
"addiu %[out], %[out], 2 \n\t"
: [value32] "=&r" (value32), [out] "+r" (out), [in1] "+r" (in1),
[in2] "+r" (in2), [r0] "=&r" (r0), [r1] "=&r" (r1)
: [in_vector1_scale] "r" (in_vector1_scale),
[in_vector2_scale] "r" (in_vector2_scale),
[right_shifts] "r" (right_shifts)
: "hi", "lo", "memory"
);
}
return 0;
}

View File

@@ -0,0 +1,82 @@
@
@ Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
@
@ Use of this source code is governed by a BSD-style license
@ that can be found in the LICENSE file in the root of the source
@ tree. An additional intellectual property rights grant can be found
@ in the file PATENTS. All contributing project authors may
@ be found in the AUTHORS file in the root of the source tree.
@
@ vector_scaling_operations_neon.s
@ This file contains the function WebRtcSpl_ScaleAndAddVectorsWithRoundNeon(),
@ optimized for ARM Neon platform. Output is bit-exact with the reference
@ C code in vector_scaling_operations.c.
#include "webrtc/system_wrappers/interface/asm_defines.h"
GLOBAL_FUNCTION WebRtcSpl_ScaleAndAddVectorsWithRoundNeon
.align 2
DEFINE_FUNCTION WebRtcSpl_ScaleAndAddVectorsWithRoundNeon
push {r4-r9}
ldr r4, [sp, #32] @ length
ldr r5, [sp, #28] @ out_vector
ldrsh r6, [sp, #24] @ right_shifts
cmp r4, #0
ble END @ Return if length <= 0.
cmp r4, #8
blt SET_ROUND_VALUE
vdup.16 d26, r1 @ in_vector1_scale
vdup.16 d27, r3 @ in_vector2_scale
@ Neon instructions can only right shift by an immediate value. To shift right
@ by a register value, we have to do a left shift left by the negative value.
rsb r7, r6, #0
vdup.16 q12, r7 @ -right_shifts
bic r7, r4, #7 @ Counter for LOOP_UNROLLED_BY_8: length / 8 * 8.
LOOP_UNROLLED_BY_8:
vld1.16 {d28, d29}, [r0]! @ in_vector1[]
vld1.16 {d30, d31}, [r2]! @ in_vector2[]
vmull.s16 q0, d28, d26
vmull.s16 q1, d29, d26
vmull.s16 q2, d30, d27
vmull.s16 q3, d31, d27
vadd.s32 q0, q2
vadd.s32 q1, q3
vrshl.s32 q0, q12 @ Round shift right by right_shifts.
vrshl.s32 q1, q12
vmovn.i32 d0, q0 @ Cast to 16 bit values.
vmovn.i32 d1, q1
subs r7, #8
vst1.16 {d0, d1}, [r5]!
bgt LOOP_UNROLLED_BY_8
ands r4, #0xFF @ Counter for LOOP_NO_UNROLLING: length % 8.
beq END
SET_ROUND_VALUE:
mov r9, #1
lsl r9, r6
lsr r9, #1
LOOP_NO_UNROLLING:
ldrh r7, [r0], #2
ldrh r8, [r2], #2
smulbb r7, r7, r1
smulbb r8, r8, r3
subs r4, #1
add r7, r9
add r7, r8
asr r7, r6
strh r7, [r5], #2
bne LOOP_NO_UNROLLING
END:
pop {r4-r9}
bx lr

View File

@@ -0,0 +1,46 @@
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
include $(LOCAL_PATH)/../../../android-webrtc.mk
LOCAL_ARM_MODE := arm
LOCAL_MODULE_CLASS := STATIC_LIBRARIES
LOCAL_MODULE := libwebrtc_vad
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := \
webrtc_vad.c \
vad_core.c \
vad_filterbank.c \
vad_gmm.c \
vad_sp.c
# Flags passed to both C and C++ files.
LOCAL_CFLAGS := \
$(MY_WEBRTC_COMMON_DEFS)
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/../.. \
$(LOCAL_PATH)/../../../ \
$(LOCAL_PATH)/../signal_processing/include
LOCAL_SHARED_LIBRARIES := \
libdl \
libstlport \
libwebrtc_spl
ifeq ($(TARGET_OS)-$(TARGET_SIMULATOR),linux-true)
LOCAL_LDLIBS += -ldl -lpthread
endif
ifneq ($(TARGET_SIMULATOR),true)
LOCAL_SHARED_LIBRARIES += libdl
endif
ifndef NDK_ROOT
include external/stlport/libstlport.mk
endif
include $(BUILD_STATIC_LIBRARY)

View File

@@ -0,0 +1,88 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the VAD API calls. Specific function calls are given below.
*/
#ifndef WEBRTC_COMMON_AUDIO_VAD_INCLUDE_WEBRTC_VAD_H_ // NOLINT
#define WEBRTC_COMMON_AUDIO_VAD_INCLUDE_WEBRTC_VAD_H_
#include "webrtc/typedefs.h"
typedef struct WebRtcVadInst VadInst;
#ifdef __cplusplus
extern "C" {
#endif
// Creates an instance to the VAD structure.
//
// - handle [o] : Pointer to the VAD instance that should be created.
//
// returns : 0 - (OK), -1 - (Error)
int WebRtcVad_Create(VadInst** handle);
// Frees the dynamic memory of a specified VAD instance.
//
// - handle [i] : Pointer to VAD instance that should be freed.
void WebRtcVad_Free(VadInst* handle);
// Initializes a VAD instance.
//
// - handle [i/o] : Instance that should be initialized.
//
// returns : 0 - (OK),
// -1 - (NULL pointer or Default mode could not be set).
int WebRtcVad_Init(VadInst* handle);
// Sets the VAD operating mode. A more aggressive (higher mode) VAD is more
// restrictive in reporting speech. Put in other words the probability of being
// speech when the VAD returns 1 is increased with increasing mode. As a
// consequence also the missed detection rate goes up.
//
// - handle [i/o] : VAD instance.
// - mode [i] : Aggressiveness mode (0, 1, 2, or 3).
//
// returns : 0 - (OK),
// -1 - (NULL pointer, mode could not be set or the VAD instance
// has not been initialized).
int WebRtcVad_set_mode(VadInst* handle, int mode);
// Calculates a VAD decision for the |audio_frame|. For valid sampling rates
// frame lengths, see the description of WebRtcVad_ValidRatesAndFrameLengths().
//
// - handle [i/o] : VAD Instance. Needs to be initialized by
// WebRtcVad_Init() before call.
// - fs [i] : Sampling frequency (Hz): 8000, 16000, or 32000
// - audio_frame [i] : Audio frame buffer.
// - frame_length [i] : Length of audio frame buffer in number of samples.
//
// returns : 1 - (Active Voice),
// 0 - (Non-active Voice),
// -1 - (Error)
int WebRtcVad_Process(VadInst* handle, int fs, const int16_t* audio_frame,
int frame_length);
// Checks for valid combinations of |rate| and |frame_length|. We support 10,
// 20 and 30 ms frames and the rates 8000, 16000 and 32000 Hz.
//
// - rate [i] : Sampling frequency (Hz).
// - frame_length [i] : Speech frame buffer length in number of samples.
//
// returns : 0 - (valid combination), -1 - (invalid combination)
int WebRtcVad_ValidRateAndFrameLength(int rate, int frame_length);
#ifdef __cplusplus
}
#endif
#endif // WEBRTC_COMMON_AUDIO_VAD_INCLUDE_WEBRTC_VAD_H_ // NOLINT

View File

@@ -0,0 +1,682 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/vad/vad_core.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_audio/vad/vad_filterbank.h"
#include "webrtc/common_audio/vad/vad_gmm.h"
#include "webrtc/common_audio/vad/vad_sp.h"
#include "webrtc/typedefs.h"
// Spectrum Weighting
static const int16_t kSpectrumWeight[kNumChannels] = { 6, 8, 10, 12, 14, 16 };
static const int16_t kNoiseUpdateConst = 655; // Q15
static const int16_t kSpeechUpdateConst = 6554; // Q15
static const int16_t kBackEta = 154; // Q8
// Minimum difference between the two models, Q5
static const int16_t kMinimumDifference[kNumChannels] = {
544, 544, 576, 576, 576, 576 };
// Upper limit of mean value for speech model, Q7
static const int16_t kMaximumSpeech[kNumChannels] = {
11392, 11392, 11520, 11520, 11520, 11520 };
// Minimum value for mean value
static const int16_t kMinimumMean[kNumGaussians] = { 640, 768 };
// Upper limit of mean value for noise model, Q7
static const int16_t kMaximumNoise[kNumChannels] = {
9216, 9088, 8960, 8832, 8704, 8576 };
// Start values for the Gaussian models, Q7
// Weights for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataWeights[kTableSize] = {
34, 62, 72, 66, 53, 25, 94, 66, 56, 62, 75, 103 };
// Weights for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataWeights[kTableSize] = {
48, 82, 45, 87, 50, 47, 80, 46, 83, 41, 78, 81 };
// Means for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataMeans[kTableSize] = {
6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362 };
// Means for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataMeans[kTableSize] = {
8306, 10085, 10078, 11823, 11843, 6309, 9473, 9571, 10879, 7581, 8180, 7483
};
// Stds for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataStds[kTableSize] = {
378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455 };
// Stds for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataStds[kTableSize] = {
555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850 };
// Constants used in GmmProbability().
//
// Maximum number of counted speech (VAD = 1) frames in a row.
static const int16_t kMaxSpeechFrames = 6;
// Minimum standard deviation for both speech and noise.
static const int16_t kMinStd = 384;
// Constants in WebRtcVad_InitCore().
// Default aggressiveness mode.
static const short kDefaultMode = 0;
static const int kInitCheck = 42;
// Constants used in WebRtcVad_set_mode_core().
//
// Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
//
// Mode 0, Quality.
static const int16_t kOverHangMax1Q[3] = { 8, 4, 3 };
static const int16_t kOverHangMax2Q[3] = { 14, 7, 5 };
static const int16_t kLocalThresholdQ[3] = { 24, 21, 24 };
static const int16_t kGlobalThresholdQ[3] = { 57, 48, 57 };
// Mode 1, Low bitrate.
static const int16_t kOverHangMax1LBR[3] = { 8, 4, 3 };
static const int16_t kOverHangMax2LBR[3] = { 14, 7, 5 };
static const int16_t kLocalThresholdLBR[3] = { 37, 32, 37 };
static const int16_t kGlobalThresholdLBR[3] = { 100, 80, 100 };
// Mode 2, Aggressive.
static const int16_t kOverHangMax1AGG[3] = { 6, 3, 2 };
static const int16_t kOverHangMax2AGG[3] = { 9, 5, 3 };
static const int16_t kLocalThresholdAGG[3] = { 82, 78, 82 };
static const int16_t kGlobalThresholdAGG[3] = { 285, 260, 285 };
// Mode 3, Very aggressive.
static const int16_t kOverHangMax1VAG[3] = { 6, 3, 2 };
static const int16_t kOverHangMax2VAG[3] = { 9, 5, 3 };
static const int16_t kLocalThresholdVAG[3] = { 94, 94, 94 };
static const int16_t kGlobalThresholdVAG[3] = { 1100, 1050, 1100 };
// Calculates the weighted average w.r.t. number of Gaussians. The |data| are
// updated with an |offset| before averaging.
//
// - data [i/o] : Data to average.
// - offset [i] : An offset added to |data|.
// - weights [i] : Weights used for averaging.
//
// returns : The weighted average.
static int32_t WeightedAverage(int16_t* data, int16_t offset,
const int16_t* weights) {
int k;
int32_t weighted_average = 0;
for (k = 0; k < kNumGaussians; k++) {
data[k * kNumChannels] += offset;
weighted_average += data[k * kNumChannels] * weights[k * kNumChannels];
}
return weighted_average;
}
// Calculates the probabilities for both speech and background noise using
// Gaussian Mixture Models (GMM). A hypothesis-test is performed to decide which
// type of signal is most probable.
//
// - self [i/o] : Pointer to VAD instance
// - features [i] : Feature vector of length |kNumChannels|
// = log10(energy in frequency band)
// - total_power [i] : Total power in audio frame.
// - frame_length [i] : Number of input samples
//
// - returns : the VAD decision (0 - noise, 1 - speech).
static int16_t GmmProbability(VadInstT* self, int16_t* features,
int16_t total_power, int frame_length) {
int channel, k;
int16_t feature_minimum;
int16_t h0, h1;
int16_t log_likelihood_ratio;
int16_t vadflag = 0;
int16_t shifts_h0, shifts_h1;
int16_t tmp_s16, tmp1_s16, tmp2_s16;
int16_t diff;
int gaussian;
int16_t nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
int16_t delt, ndelt;
int16_t maxspe, maxmu;
int16_t deltaN[kTableSize], deltaS[kTableSize];
int16_t ngprvec[kTableSize] = { 0 }; // Conditional probability = 0.
int16_t sgprvec[kTableSize] = { 0 }; // Conditional probability = 0.
int32_t h0_test, h1_test;
int32_t tmp1_s32, tmp2_s32;
int32_t sum_log_likelihood_ratios = 0;
int32_t noise_global_mean, speech_global_mean;
int32_t noise_probability[kNumGaussians], speech_probability[kNumGaussians];
int16_t overhead1, overhead2, individualTest, totalTest;
// Set various thresholds based on frame lengths (80, 160 or 240 samples).
if (frame_length == 80) {
overhead1 = self->over_hang_max_1[0];
overhead2 = self->over_hang_max_2[0];
individualTest = self->individual[0];
totalTest = self->total[0];
} else if (frame_length == 160) {
overhead1 = self->over_hang_max_1[1];
overhead2 = self->over_hang_max_2[1];
individualTest = self->individual[1];
totalTest = self->total[1];
} else {
overhead1 = self->over_hang_max_1[2];
overhead2 = self->over_hang_max_2[2];
individualTest = self->individual[2];
totalTest = self->total[2];
}
if (total_power > kMinEnergy) {
// The signal power of current frame is large enough for processing. The
// processing consists of two parts:
// 1) Calculating the likelihood of speech and thereby a VAD decision.
// 2) Updating the underlying model, w.r.t., the decision made.
// The detection scheme is an LRT with hypothesis
// H0: Noise
// H1: Speech
//
// We combine a global LRT with local tests, for each frequency sub-band,
// here defined as |channel|.
for (channel = 0; channel < kNumChannels; channel++) {
// For each channel we model the probability with a GMM consisting of
// |kNumGaussians|, with different means and standard deviations depending
// on H0 or H1.
h0_test = 0;
h1_test = 0;
for (k = 0; k < kNumGaussians; k++) {
gaussian = channel + k * kNumChannels;
// Probability under H0, that is, probability of frame being noise.
// Value given in Q27 = Q7 * Q20.
tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
self->noise_means[gaussian],
self->noise_stds[gaussian],
&deltaN[gaussian]);
noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
h0_test += noise_probability[k]; // Q27
// Probability under H1, that is, probability of frame being speech.
// Value given in Q27 = Q7 * Q20.
tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
self->speech_means[gaussian],
self->speech_stds[gaussian],
&deltaS[gaussian]);
speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
h1_test += speech_probability[k]; // Q27
}
// Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
// Approximation:
// log2(Pr{X|H1} / Pr{X|H1}) = log2(Pr{X|H1}*2^Q) - log2(Pr{X|H1}*2^Q)
// = log2(h1_test) - log2(h0_test)
// = log2(2^(31-shifts_h1)*(1+b1))
// - log2(2^(31-shifts_h0)*(1+b0))
// = shifts_h0 - shifts_h1
// + log2(1+b1) - log2(1+b0)
// ~= shifts_h0 - shifts_h1
//
// Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
// Further, b0 and b1 are independent and on the average the two terms
// cancel.
shifts_h0 = WebRtcSpl_NormW32(h0_test);
shifts_h1 = WebRtcSpl_NormW32(h1_test);
if (h0_test == 0) {
shifts_h0 = 31;
}
if (h1_test == 0) {
shifts_h1 = 31;
}
log_likelihood_ratio = shifts_h0 - shifts_h1;
// Update |sum_log_likelihood_ratios| with spectrum weighting. This is
// used for the global VAD decision.
sum_log_likelihood_ratios +=
(int32_t) (log_likelihood_ratio * kSpectrumWeight[channel]);
// Local VAD decision.
if ((log_likelihood_ratio << 2) > individualTest) {
vadflag = 1;
}
// TODO(bjornv): The conditional probabilities below are applied on the
// hard coded number of Gaussians set to two. Find a way to generalize.
// Calculate local noise probabilities used later when updating the GMM.
h0 = (int16_t) (h0_test >> 12); // Q15
if (h0 > 0) {
// High probability of noise. Assign conditional probabilities for each
// Gaussian in the GMM.
tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2; // Q29
ngprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h0); // Q14
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
} else {
// Low noise probability. Assign conditional probability 1 to the first
// Gaussian and 0 to the rest (which is already set at initialization).
ngprvec[channel] = 16384;
}
// Calculate local speech probabilities used later when updating the GMM.
h1 = (int16_t) (h1_test >> 12); // Q15
if (h1 > 0) {
// High probability of speech. Assign conditional probabilities for each
// Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2; // Q29
sgprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h1); // Q14
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
}
}
// Make a global VAD decision.
vadflag |= (sum_log_likelihood_ratios >= totalTest);
// Update the model parameters.
maxspe = 12800;
for (channel = 0; channel < kNumChannels; channel++) {
// Get minimum value in past which is used for long term correction in Q4.
feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);
// Compute the "global" mean, that is the sum of the two means weighted.
noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
&kNoiseDataWeights[channel]);
tmp1_s16 = (int16_t) (noise_global_mean >> 6); // Q8
for (k = 0; k < kNumGaussians; k++) {
gaussian = channel + k * kNumChannels;
nmk = self->noise_means[gaussian];
smk = self->speech_means[gaussian];
nsk = self->noise_stds[gaussian];
ssk = self->speech_stds[gaussian];
// Update noise mean vector if the frame consists of noise only.
nmk2 = nmk;
if (!vadflag) {
// deltaN = (x-mu)/sigma^2
// ngprvec[k] = |noise_probability[k]| /
// (|noise_probability[0]| + |noise_probability[1]|)
// (Q14 * Q11 >> 11) = Q14.
delt = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(ngprvec[gaussian],
deltaN[gaussian],
11);
// Q7 + (Q14 * Q15 >> 22) = Q7.
nmk2 = nmk + (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(delt,
kNoiseUpdateConst,
22);
}
// Long term correction of the noise mean.
// Q8 - Q8 = Q8.
ndelt = (feature_minimum << 4) - tmp1_s16;
// Q7 + (Q8 * Q8) >> 9 = Q7.
nmk3 = nmk2 + (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(ndelt, kBackEta, 9);
// Control that the noise mean does not drift to much.
tmp_s16 = (int16_t) ((k + 5) << 7);
if (nmk3 < tmp_s16) {
nmk3 = tmp_s16;
}
tmp_s16 = (int16_t) ((72 + k - channel) << 7);
if (nmk3 > tmp_s16) {
nmk3 = tmp_s16;
}
self->noise_means[gaussian] = nmk3;
if (vadflag) {
// Update speech mean vector:
// |deltaS| = (x-mu)/sigma^2
// sgprvec[k] = |speech_probability[k]| /
// (|speech_probability[0]| + |speech_probability[1]|)
// (Q14 * Q11) >> 11 = Q14.
delt = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(sgprvec[gaussian],
deltaS[gaussian],
11);
// Q14 * Q15 >> 21 = Q8.
tmp_s16 = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(delt,
kSpeechUpdateConst,
21);
// Q7 + (Q8 >> 1) = Q7. With rounding.
smk2 = smk + ((tmp_s16 + 1) >> 1);
// Control that the speech mean does not drift to much.
maxmu = maxspe + 640;
if (smk2 < kMinimumMean[k]) {
smk2 = kMinimumMean[k];
}
if (smk2 > maxmu) {
smk2 = maxmu;
}
self->speech_means[gaussian] = smk2; // Q7.
// (Q7 >> 3) = Q4. With rounding.
tmp_s16 = ((smk + 4) >> 3);
tmp_s16 = features[channel] - tmp_s16; // Q4
// (Q11 * Q4 >> 3) = Q12.
tmp1_s32 = WEBRTC_SPL_MUL_16_16_RSFT(deltaS[gaussian], tmp_s16, 3);
tmp2_s32 = tmp1_s32 - 4096;
tmp_s16 = sgprvec[gaussian] >> 2;
// (Q14 >> 2) * Q12 = Q24.
tmp1_s32 = tmp_s16 * tmp2_s32;
tmp2_s32 = tmp1_s32 >> 4; // Q20
// 0.1 * Q20 / Q7 = Q13.
if (tmp2_s32 > 0) {
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
} else {
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
tmp_s16 = -tmp_s16;
}
// Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
// Note that division by 4 equals shift by 2, hence,
// (Q13 >> 8) = (Q13 >> 6) / 4 = Q7.
tmp_s16 += 128; // Rounding.
ssk += (tmp_s16 >> 8);
if (ssk < kMinStd) {
ssk = kMinStd;
}
self->speech_stds[gaussian] = ssk;
} else {
// Update GMM variance vectors.
// deltaN * (features[channel] - nmk) - 1
// Q4 - (Q7 >> 3) = Q4.
tmp_s16 = features[channel] - (nmk >> 3);
// (Q11 * Q4 >> 3) = Q12.
tmp1_s32 = WEBRTC_SPL_MUL_16_16_RSFT(deltaN[gaussian], tmp_s16, 3);
tmp1_s32 -= 4096;
// (Q14 >> 2) * Q12 = Q24.
tmp_s16 = (ngprvec[gaussian] + 2) >> 2;
tmp2_s32 = tmp_s16 * tmp1_s32;
// Q20 * approx 0.001 (2^-10=0.0009766), hence,
// (Q24 >> 14) = (Q24 >> 4) / 2^10 = Q20.
tmp1_s32 = tmp2_s32 >> 14;
// Q20 / Q7 = Q13.
if (tmp1_s32 > 0) {
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, nsk);
} else {
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
tmp_s16 = -tmp_s16;
}
tmp_s16 += 32; // Rounding
nsk += tmp_s16 >> 6; // Q13 >> 6 = Q7.
if (nsk < kMinStd) {
nsk = kMinStd;
}
self->noise_stds[gaussian] = nsk;
}
}
// Separate models if they are too close.
// |noise_global_mean| in Q14 (= Q7 * Q7).
noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
&kNoiseDataWeights[channel]);
// |speech_global_mean| in Q14 (= Q7 * Q7).
speech_global_mean = WeightedAverage(&self->speech_means[channel], 0,
&kSpeechDataWeights[channel]);
// |diff| = "global" speech mean - "global" noise mean.
// (Q14 >> 9) - (Q14 >> 9) = Q5.
diff = (int16_t) (speech_global_mean >> 9) -
(int16_t) (noise_global_mean >> 9);
if (diff < kMinimumDifference[channel]) {
tmp_s16 = kMinimumDifference[channel] - diff;
// |tmp1_s16| = ~0.8 * (kMinimumDifference - diff) in Q7.
// |tmp2_s16| = ~0.2 * (kMinimumDifference - diff) in Q7.
tmp1_s16 = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(13, tmp_s16, 2);
tmp2_s16 = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(3, tmp_s16, 2);
// Move Gaussian means for speech model by |tmp1_s16| and update
// |speech_global_mean|. Note that |self->speech_means[channel]| is
// changed after the call.
speech_global_mean = WeightedAverage(&self->speech_means[channel],
tmp1_s16,
&kSpeechDataWeights[channel]);
// Move Gaussian means for noise model by -|tmp2_s16| and update
// |noise_global_mean|. Note that |self->noise_means[channel]| is
// changed after the call.
noise_global_mean = WeightedAverage(&self->noise_means[channel],
-tmp2_s16,
&kNoiseDataWeights[channel]);
}
// Control that the speech & noise means do not drift to much.
maxspe = kMaximumSpeech[channel];
tmp2_s16 = (int16_t) (speech_global_mean >> 7);
if (tmp2_s16 > maxspe) {
// Upper limit of speech model.
tmp2_s16 -= maxspe;
for (k = 0; k < kNumGaussians; k++) {
self->speech_means[channel + k * kNumChannels] -= tmp2_s16;
}
}
tmp2_s16 = (int16_t) (noise_global_mean >> 7);
if (tmp2_s16 > kMaximumNoise[channel]) {
tmp2_s16 -= kMaximumNoise[channel];
for (k = 0; k < kNumGaussians; k++) {
self->noise_means[channel + k * kNumChannels] -= tmp2_s16;
}
}
}
self->frame_counter++;
}
// Smooth with respect to transition hysteresis.
if (!vadflag) {
if (self->over_hang > 0) {
vadflag = 2 + self->over_hang;
self->over_hang--;
}
self->num_of_speech = 0;
} else {
self->num_of_speech++;
if (self->num_of_speech > kMaxSpeechFrames) {
self->num_of_speech = kMaxSpeechFrames;
self->over_hang = overhead2;
} else {
self->over_hang = overhead1;
}
}
return vadflag;
}
// Initialize the VAD. Set aggressiveness mode to default value.
int WebRtcVad_InitCore(VadInstT* self) {
int i;
if (self == NULL) {
return -1;
}
// Initialization of general struct variables.
self->vad = 1; // Speech active (=1).
self->frame_counter = 0;
self->over_hang = 0;
self->num_of_speech = 0;
// Initialization of downsampling filter state.
memset(self->downsampling_filter_states, 0,
sizeof(self->downsampling_filter_states));
// Initialization of 48 to 8 kHz downsampling.
WebRtcSpl_ResetResample48khzTo8khz(&self->state_48_to_8);
// Read initial PDF parameters.
for (i = 0; i < kTableSize; i++) {
self->noise_means[i] = kNoiseDataMeans[i];
self->speech_means[i] = kSpeechDataMeans[i];
self->noise_stds[i] = kNoiseDataStds[i];
self->speech_stds[i] = kSpeechDataStds[i];
}
// Initialize Index and Minimum value vectors.
for (i = 0; i < 16 * kNumChannels; i++) {
self->low_value_vector[i] = 10000;
self->index_vector[i] = 0;
}
// Initialize splitting filter states.
memset(self->upper_state, 0, sizeof(self->upper_state));
memset(self->lower_state, 0, sizeof(self->lower_state));
// Initialize high pass filter states.
memset(self->hp_filter_state, 0, sizeof(self->hp_filter_state));
// Initialize mean value memory, for WebRtcVad_FindMinimum().
for (i = 0; i < kNumChannels; i++) {
self->mean_value[i] = 1600;
}
// Set aggressiveness mode to default (=|kDefaultMode|).
if (WebRtcVad_set_mode_core(self, kDefaultMode) != 0) {
return -1;
}
self->init_flag = kInitCheck;
return 0;
}
// Set aggressiveness mode
int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
int return_value = 0;
switch (mode) {
case 0:
// Quality mode.
memcpy(self->over_hang_max_1, kOverHangMax1Q,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2Q,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdQ,
sizeof(self->individual));
memcpy(self->total, kGlobalThresholdQ,
sizeof(self->total));
break;
case 1:
// Low bitrate mode.
memcpy(self->over_hang_max_1, kOverHangMax1LBR,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2LBR,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdLBR,
sizeof(self->individual));
memcpy(self->total, kGlobalThresholdLBR,
sizeof(self->total));
break;
case 2:
// Aggressive mode.
memcpy(self->over_hang_max_1, kOverHangMax1AGG,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2AGG,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdAGG,
sizeof(self->individual));
memcpy(self->total, kGlobalThresholdAGG,
sizeof(self->total));
break;
case 3:
// Very aggressive mode.
memcpy(self->over_hang_max_1, kOverHangMax1VAG,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2VAG,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdVAG,
sizeof(self->individual));
memcpy(self->total, kGlobalThresholdVAG,
sizeof(self->total));
break;
default:
return_value = -1;
break;
}
return return_value;
}
// Calculate VAD decision by first extracting feature values and then calculate
// probability for both speech and background noise.
int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length) {
int vad;
int i;
int16_t speech_nb[240]; // 30 ms in 8 kHz.
// |tmp_mem| is a temporary memory used by resample function, length is
// frame length in 10 ms (480 samples) + 256 extra.
int32_t tmp_mem[480 + 256] = { 0 };
const int kFrameLen10ms48khz = 480;
const int kFrameLen10ms8khz = 80;
int num_10ms_frames = frame_length / kFrameLen10ms48khz;
for (i = 0; i < num_10ms_frames; i++) {
WebRtcSpl_Resample48khzTo8khz(speech_frame,
&speech_nb[i * kFrameLen10ms8khz],
&inst->state_48_to_8,
tmp_mem);
}
// Do VAD on an 8 kHz signal
vad = WebRtcVad_CalcVad8khz(inst, speech_nb, frame_length / 6);
return vad;
}
int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length)
{
int len, vad;
int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
// Downsample signal 32->16->8 before doing VAD
WebRtcVad_Downsampling(speech_frame, speechWB, &(inst->downsampling_filter_states[2]),
frame_length);
len = WEBRTC_SPL_RSHIFT_W16(frame_length, 1);
WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states, len);
len = WEBRTC_SPL_RSHIFT_W16(len, 1);
// Do VAD on an 8 kHz signal
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
return vad;
}
int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length)
{
int len, vad;
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
// Wideband: Downsample signal before doing VAD
WebRtcVad_Downsampling(speech_frame, speechNB, inst->downsampling_filter_states,
frame_length);
len = WEBRTC_SPL_RSHIFT_W16(frame_length, 1);
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
return vad;
}
int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length)
{
int16_t feature_vector[kNumChannels], total_power;
// Get power in the bands
total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
feature_vector);
// Make a VAD
inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
return inst->vad;
}

View File

@@ -0,0 +1,115 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the descriptions of the core VAD calls.
*/
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_CORE_H_
#define WEBRTC_COMMON_AUDIO_VAD_VAD_CORE_H_
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/typedefs.h"
enum { kNumChannels = 6 }; // Number of frequency bands (named channels).
enum { kNumGaussians = 2 }; // Number of Gaussians per channel in the GMM.
enum { kTableSize = kNumChannels * kNumGaussians };
enum { kMinEnergy = 10 }; // Minimum energy required to trigger audio signal.
typedef struct VadInstT_
{
int vad;
int32_t downsampling_filter_states[4];
WebRtcSpl_State48khzTo8khz state_48_to_8;
int16_t noise_means[kTableSize];
int16_t speech_means[kTableSize];
int16_t noise_stds[kTableSize];
int16_t speech_stds[kTableSize];
// TODO(bjornv): Change to |frame_count|.
int32_t frame_counter;
int16_t over_hang; // Over Hang
int16_t num_of_speech;
// TODO(bjornv): Change to |age_vector|.
int16_t index_vector[16 * kNumChannels];
int16_t low_value_vector[16 * kNumChannels];
// TODO(bjornv): Change to |median|.
int16_t mean_value[kNumChannels];
int16_t upper_state[5];
int16_t lower_state[5];
int16_t hp_filter_state[4];
int16_t over_hang_max_1[3];
int16_t over_hang_max_2[3];
int16_t individual[3];
int16_t total[3];
int init_flag;
} VadInstT;
// Initializes the core VAD component. The default aggressiveness mode is
// controlled by |kDefaultMode| in vad_core.c.
//
// - self [i/o] : Instance that should be initialized
//
// returns : 0 (OK), -1 (NULL pointer in or if the default mode can't be
// set)
int WebRtcVad_InitCore(VadInstT* self);
/****************************************************************************
* WebRtcVad_set_mode_core(...)
*
* This function changes the VAD settings
*
* Input:
* - inst : VAD instance
* - mode : Aggressiveness degree
* 0 (High quality) - 3 (Highly aggressive)
*
* Output:
* - inst : Changed instance
*
* Return value : 0 - Ok
* -1 - Error
*/
int WebRtcVad_set_mode_core(VadInstT* self, int mode);
/****************************************************************************
* WebRtcVad_CalcVad48khz(...)
* WebRtcVad_CalcVad32khz(...)
* WebRtcVad_CalcVad16khz(...)
* WebRtcVad_CalcVad8khz(...)
*
* Calculate probability for active speech and make VAD decision.
*
* Input:
* - inst : Instance that should be initialized
* - speech_frame : Input speech frame
* - frame_length : Number of input samples
*
* Output:
* - inst : Updated filter states etc.
*
* Return value : VAD decision
* 0 - No active speech
* 1-6 - Active speech
*/
int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length);
int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length);
int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length);
int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
int frame_length);
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_CORE_H_

View File

@@ -0,0 +1,105 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/vad/vad_unittest.h"
#include "webrtc/typedefs.h"
extern "C" {
#include "webrtc/common_audio/vad/vad_core.h"
}
namespace {
TEST_F(VadTest, InitCore) {
// Test WebRtcVad_InitCore().
VadInstT* self = reinterpret_cast<VadInstT*>(malloc(sizeof(VadInstT)));
// NULL pointer test.
EXPECT_EQ(-1, WebRtcVad_InitCore(NULL));
// Verify return = 0 for non-NULL pointer.
EXPECT_EQ(0, WebRtcVad_InitCore(self));
// Verify init_flag is set.
EXPECT_EQ(42, self->init_flag);
free(self);
}
TEST_F(VadTest, set_mode_core) {
VadInstT* self = reinterpret_cast<VadInstT*>(malloc(sizeof(VadInstT)));
// TODO(bjornv): Add NULL pointer check if we take care of it in
// vad_core.c
ASSERT_EQ(0, WebRtcVad_InitCore(self));
// Test WebRtcVad_set_mode_core().
// Invalid modes should return -1.
EXPECT_EQ(-1, WebRtcVad_set_mode_core(self, -1));
EXPECT_EQ(-1, WebRtcVad_set_mode_core(self, 1000));
// Valid modes should return 0.
for (size_t j = 0; j < kModesSize; ++j) {
EXPECT_EQ(0, WebRtcVad_set_mode_core(self, kModes[j]));
}
free(self);
}
TEST_F(VadTest, CalcVad) {
VadInstT* self = reinterpret_cast<VadInstT*>(malloc(sizeof(VadInstT)));
int16_t speech[kMaxFrameLength];
// TODO(bjornv): Add NULL pointer check if we take care of it in
// vad_core.c
// Test WebRtcVad_CalcVadXXkhz()
// Verify that all zeros in gives VAD = 0 out.
memset(speech, 0, sizeof(speech));
ASSERT_EQ(0, WebRtcVad_InitCore(self));
for (size_t j = 0; j < kFrameLengthsSize; ++j) {
if (ValidRatesAndFrameLengths(8000, kFrameLengths[j])) {
EXPECT_EQ(0, WebRtcVad_CalcVad8khz(self, speech, kFrameLengths[j]));
}
if (ValidRatesAndFrameLengths(16000, kFrameLengths[j])) {
EXPECT_EQ(0, WebRtcVad_CalcVad16khz(self, speech, kFrameLengths[j]));
}
if (ValidRatesAndFrameLengths(32000, kFrameLengths[j])) {
EXPECT_EQ(0, WebRtcVad_CalcVad32khz(self, speech, kFrameLengths[j]));
}
if (ValidRatesAndFrameLengths(48000, kFrameLengths[j])) {
EXPECT_EQ(0, WebRtcVad_CalcVad48khz(self, speech, kFrameLengths[j]));
}
}
// Construct a speech signal that will trigger the VAD in all modes. It is
// known that (i * i) will wrap around, but that doesn't matter in this case.
for (int16_t i = 0; i < kMaxFrameLength; ++i) {
speech[i] = (i * i);
}
for (size_t j = 0; j < kFrameLengthsSize; ++j) {
if (ValidRatesAndFrameLengths(8000, kFrameLengths[j])) {
EXPECT_EQ(1, WebRtcVad_CalcVad8khz(self, speech, kFrameLengths[j]));
}
if (ValidRatesAndFrameLengths(16000, kFrameLengths[j])) {
EXPECT_EQ(1, WebRtcVad_CalcVad16khz(self, speech, kFrameLengths[j]));
}
if (ValidRatesAndFrameLengths(32000, kFrameLengths[j])) {
EXPECT_EQ(1, WebRtcVad_CalcVad32khz(self, speech, kFrameLengths[j]));
}
if (ValidRatesAndFrameLengths(48000, kFrameLengths[j])) {
EXPECT_EQ(1, WebRtcVad_CalcVad48khz(self, speech, kFrameLengths[j]));
}
}
free(self);
}
} // namespace

View File

@@ -0,0 +1,334 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/vad/vad_filterbank.h"
#include <assert.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/typedefs.h"
// Constants used in LogOfEnergy().
static const int16_t kLogConst = 24660; // 160*log10(2) in Q9.
static const int16_t kLogEnergyIntPart = 14336; // 14 in Q10
// Coefficients used by HighPassFilter, Q14.
static const int16_t kHpZeroCoefs[3] = { 6631, -13262, 6631 };
static const int16_t kHpPoleCoefs[3] = { 16384, -7756, 5620 };
// Allpass filter coefficients, upper and lower, in Q15.
// Upper: 0.64, Lower: 0.17
static const int16_t kAllPassCoefsQ15[2] = { 20972, 5571 };
// Adjustment for division with two in SplitFilter.
static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 };
// High pass filtering, with a cut-off frequency at 80 Hz, if the |data_in| is
// sampled at 500 Hz.
//
// - data_in [i] : Input audio data sampled at 500 Hz.
// - data_length [i] : Length of input and output data.
// - filter_state [i/o] : State of the filter.
// - data_out [o] : Output audio data in the frequency interval
// 80 - 250 Hz.
static void HighPassFilter(const int16_t* data_in, int data_length,
int16_t* filter_state, int16_t* data_out) {
int i;
const int16_t* in_ptr = data_in;
int16_t* out_ptr = data_out;
int32_t tmp32 = 0;
// The sum of the absolute values of the impulse response:
// The zero/pole-filter has a max amplification of a single sample of: 1.4546
// Impulse response: 0.4047 -0.6179 -0.0266 0.1993 0.1035 -0.0194
// The all-zero section has a max amplification of a single sample of: 1.6189
// Impulse response: 0.4047 -0.8094 0.4047 0 0 0
// The all-pole section has a max amplification of a single sample of: 1.9931
// Impulse response: 1.0000 0.4734 -0.1189 -0.2187 -0.0627 0.04532
for (i = 0; i < data_length; i++) {
// All-zero section (filter coefficients in Q14).
tmp32 = WEBRTC_SPL_MUL_16_16(kHpZeroCoefs[0], *in_ptr);
tmp32 += WEBRTC_SPL_MUL_16_16(kHpZeroCoefs[1], filter_state[0]);
tmp32 += WEBRTC_SPL_MUL_16_16(kHpZeroCoefs[2], filter_state[1]);
filter_state[1] = filter_state[0];
filter_state[0] = *in_ptr++;
// All-pole section (filter coefficients in Q14).
tmp32 -= WEBRTC_SPL_MUL_16_16(kHpPoleCoefs[1], filter_state[2]);
tmp32 -= WEBRTC_SPL_MUL_16_16(kHpPoleCoefs[2], filter_state[3]);
filter_state[3] = filter_state[2];
filter_state[2] = (int16_t) (tmp32 >> 14);
*out_ptr++ = filter_state[2];
}
}
// All pass filtering of |data_in|, used before splitting the signal into two
// frequency bands (low pass vs high pass).
// Note that |data_in| and |data_out| can NOT correspond to the same address.
//
// - data_in [i] : Input audio signal given in Q0.
// - data_length [i] : Length of input and output data.
// - filter_coefficient [i] : Given in Q15.
// - filter_state [i/o] : State of the filter given in Q(-1).
// - data_out [o] : Output audio signal given in Q(-1).
static void AllPassFilter(const int16_t* data_in, int data_length,
int16_t filter_coefficient, int16_t* filter_state,
int16_t* data_out) {
// The filter can only cause overflow (in the w16 output variable)
// if more than 4 consecutive input numbers are of maximum value and
// has the the same sign as the impulse responses first taps.
// First 6 taps of the impulse response:
// 0.6399 0.5905 -0.3779 0.2418 -0.1547 0.0990
int i;
int16_t tmp16 = 0;
int32_t tmp32 = 0;
int32_t state32 = ((int32_t) (*filter_state) << 16); // Q15
for (i = 0; i < data_length; i++) {
tmp32 = state32 + WEBRTC_SPL_MUL_16_16(filter_coefficient, *data_in);
tmp16 = (int16_t) (tmp32 >> 16); // Q(-1)
*data_out++ = tmp16;
state32 = (((int32_t) (*data_in)) << 14); // Q14
state32 -= WEBRTC_SPL_MUL_16_16(filter_coefficient, tmp16); // Q14
state32 <<= 1; // Q15.
data_in += 2;
}
*filter_state = (int16_t) (state32 >> 16); // Q(-1)
}
// Splits |data_in| into |hp_data_out| and |lp_data_out| corresponding to
// an upper (high pass) part and a lower (low pass) part respectively.
//
// - data_in [i] : Input audio data to be split into two frequency bands.
// - data_length [i] : Length of |data_in|.
// - upper_state [i/o] : State of the upper filter, given in Q(-1).
// - lower_state [i/o] : State of the lower filter, given in Q(-1).
// - hp_data_out [o] : Output audio data of the upper half of the spectrum.
// The length is |data_length| / 2.
// - lp_data_out [o] : Output audio data of the lower half of the spectrum.
// The length is |data_length| / 2.
static void SplitFilter(const int16_t* data_in, int data_length,
int16_t* upper_state, int16_t* lower_state,
int16_t* hp_data_out, int16_t* lp_data_out) {
int i;
int half_length = data_length >> 1; // Downsampling by 2.
int16_t tmp_out;
// All-pass filtering upper branch.
AllPassFilter(&data_in[0], half_length, kAllPassCoefsQ15[0], upper_state,
hp_data_out);
// All-pass filtering lower branch.
AllPassFilter(&data_in[1], half_length, kAllPassCoefsQ15[1], lower_state,
lp_data_out);
// Make LP and HP signals.
for (i = 0; i < half_length; i++) {
tmp_out = *hp_data_out;
*hp_data_out++ -= *lp_data_out;
*lp_data_out++ += tmp_out;
}
}
// Calculates the energy of |data_in| in dB, and also updates an overall
// |total_energy| if necessary.
//
// - data_in [i] : Input audio data for energy calculation.
// - data_length [i] : Length of input data.
// - offset [i] : Offset value added to |log_energy|.
// - total_energy [i/o] : An external energy updated with the energy of
// |data_in|.
// NOTE: |total_energy| is only updated if
// |total_energy| <= |kMinEnergy|.
// - log_energy [o] : 10 * log10("energy of |data_in|") given in Q4.
static void LogOfEnergy(const int16_t* data_in, int data_length,
int16_t offset, int16_t* total_energy,
int16_t* log_energy) {
// |tot_rshifts| accumulates the number of right shifts performed on |energy|.
int tot_rshifts = 0;
// The |energy| will be normalized to 15 bits. We use unsigned integer because
// we eventually will mask out the fractional part.
uint32_t energy = 0;
assert(data_in != NULL);
assert(data_length > 0);
energy = (uint32_t) WebRtcSpl_Energy((int16_t*) data_in, data_length,
&tot_rshifts);
if (energy != 0) {
// By construction, normalizing to 15 bits is equivalent with 17 leading
// zeros of an unsigned 32 bit value.
int normalizing_rshifts = 17 - WebRtcSpl_NormU32(energy);
// In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
// (14 << 10), which is what we initialize |log2_energy| with. For a more
// detailed derivations, see below.
int16_t log2_energy = kLogEnergyIntPart;
tot_rshifts += normalizing_rshifts;
// Normalize |energy| to 15 bits.
// |tot_rshifts| is now the total number of right shifts performed on
// |energy| after normalization. This means that |energy| is in
// Q(-tot_rshifts).
if (normalizing_rshifts < 0) {
energy <<= -normalizing_rshifts;
} else {
energy >>= normalizing_rshifts;
}
// Calculate the energy of |data_in| in dB, in Q4.
//
// 10 * log10("true energy") in Q4 = 2^4 * 10 * log10("true energy") =
// 160 * log10(|energy| * 2^|tot_rshifts|) =
// 160 * log10(2) * log2(|energy| * 2^|tot_rshifts|) =
// 160 * log10(2) * (log2(|energy|) + log2(2^|tot_rshifts|)) =
// (160 * log10(2)) * (log2(|energy|) + |tot_rshifts|) =
// |kLogConst| * (|log2_energy| + |tot_rshifts|)
//
// We know by construction that |energy| is normalized to 15 bits. Hence,
// |energy| = 2^14 + frac_Q15, where frac_Q15 is a fractional part in Q15.
// Further, we'd like |log2_energy| in Q10
// log2(|energy|) in Q10 = 2^10 * log2(2^14 + frac_Q15) =
// 2^10 * log2(2^14 * (1 + frac_Q15 * 2^-14)) =
// 2^10 * (14 + log2(1 + frac_Q15 * 2^-14)) ~=
// (14 << 10) + 2^10 * (frac_Q15 * 2^-14) =
// (14 << 10) + (frac_Q15 * 2^-4) = (14 << 10) + (frac_Q15 >> 4)
//
// Note that frac_Q15 = (|energy| & 0x00003FFF)
// Calculate and add the fractional part to |log2_energy|.
log2_energy += (int16_t) ((energy & 0x00003FFF) >> 4);
// |kLogConst| is in Q9, |log2_energy| in Q10 and |tot_rshifts| in Q0.
// Note that we in our derivation above have accounted for an output in Q4.
*log_energy = (int16_t) (WEBRTC_SPL_MUL_16_16_RSFT(
kLogConst, log2_energy, 19) +
WEBRTC_SPL_MUL_16_16_RSFT(tot_rshifts, kLogConst, 9));
if (*log_energy < 0) {
*log_energy = 0;
}
} else {
*log_energy = offset;
return;
}
*log_energy += offset;
// Update the approximate |total_energy| with the energy of |data_in|, if
// |total_energy| has not exceeded |kMinEnergy|. |total_energy| is used as an
// energy indicator in WebRtcVad_GmmProbability() in vad_core.c.
if (*total_energy <= kMinEnergy) {
if (tot_rshifts >= 0) {
// We know by construction that the |energy| > |kMinEnergy| in Q0, so add
// an arbitrary value such that |total_energy| exceeds |kMinEnergy|.
*total_energy += kMinEnergy + 1;
} else {
// By construction |energy| is represented by 15 bits, hence any number of
// right shifted |energy| will fit in an int16_t. In addition, adding the
// value to |total_energy| is wrap around safe as long as
// |kMinEnergy| < 8192.
*total_energy += (int16_t) (energy >> -tot_rshifts); // Q0.
}
}
}
int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
int data_length, int16_t* features) {
int16_t total_energy = 0;
// We expect |data_length| to be 80, 160 or 240 samples, which corresponds to
// 10, 20 or 30 ms in 8 kHz. Therefore, the intermediate downsampled data will
// have at most 120 samples after the first split and at most 60 samples after
// the second split.
int16_t hp_120[120], lp_120[120];
int16_t hp_60[60], lp_60[60];
const int half_data_length = data_length >> 1;
int length = half_data_length; // |data_length| / 2, corresponds to
// bandwidth = 2000 Hz after downsampling.
// Initialize variables for the first SplitFilter().
int frequency_band = 0;
const int16_t* in_ptr = data_in; // [0 - 4000] Hz.
int16_t* hp_out_ptr = hp_120; // [2000 - 4000] Hz.
int16_t* lp_out_ptr = lp_120; // [0 - 2000] Hz.
assert(data_length >= 0);
assert(data_length <= 240);
assert(4 < kNumChannels - 1); // Checking maximum |frequency_band|.
// Split at 2000 Hz and downsample.
SplitFilter(in_ptr, data_length, &self->upper_state[frequency_band],
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
// For the upper band (2000 Hz - 4000 Hz) split at 3000 Hz and downsample.
frequency_band = 1;
in_ptr = hp_120; // [2000 - 4000] Hz.
hp_out_ptr = hp_60; // [3000 - 4000] Hz.
lp_out_ptr = lp_60; // [2000 - 3000] Hz.
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
// Energy in 3000 Hz - 4000 Hz.
length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz.
LogOfEnergy(hp_60, length, kOffsetVector[5], &total_energy, &features[5]);
// Energy in 2000 Hz - 3000 Hz.
LogOfEnergy(lp_60, length, kOffsetVector[4], &total_energy, &features[4]);
// For the lower band (0 Hz - 2000 Hz) split at 1000 Hz and downsample.
frequency_band = 2;
in_ptr = lp_120; // [0 - 2000] Hz.
hp_out_ptr = hp_60; // [1000 - 2000] Hz.
lp_out_ptr = lp_60; // [0 - 1000] Hz.
length = half_data_length; // |data_length| / 2 <=> bandwidth = 2000 Hz.
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
// Energy in 1000 Hz - 2000 Hz.
length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz.
LogOfEnergy(hp_60, length, kOffsetVector[3], &total_energy, &features[3]);
// For the lower band (0 Hz - 1000 Hz) split at 500 Hz and downsample.
frequency_band = 3;
in_ptr = lp_60; // [0 - 1000] Hz.
hp_out_ptr = hp_120; // [500 - 1000] Hz.
lp_out_ptr = lp_120; // [0 - 500] Hz.
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
// Energy in 500 Hz - 1000 Hz.
length >>= 1; // |data_length| / 8 <=> bandwidth = 500 Hz.
LogOfEnergy(hp_120, length, kOffsetVector[2], &total_energy, &features[2]);
// For the lower band (0 Hz - 500 Hz) split at 250 Hz and downsample.
frequency_band = 4;
in_ptr = lp_120; // [0 - 500] Hz.
hp_out_ptr = hp_60; // [250 - 500] Hz.
lp_out_ptr = lp_60; // [0 - 250] Hz.
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
// Energy in 250 Hz - 500 Hz.
length >>= 1; // |data_length| / 16 <=> bandwidth = 250 Hz.
LogOfEnergy(hp_60, length, kOffsetVector[1], &total_energy, &features[1]);
// Remove 0 Hz - 80 Hz, by high pass filtering the lower band.
HighPassFilter(lp_60, length, self->hp_filter_state, hp_120);
// Energy in 80 Hz - 250 Hz.
LogOfEnergy(hp_120, length, kOffsetVector[0], &total_energy, &features[0]);
return total_energy;
}

View File

@@ -0,0 +1,44 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes feature calculating functionality used in vad_core.c.
*/
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_FILTERBANK_H_
#define WEBRTC_COMMON_AUDIO_VAD_VAD_FILTERBANK_H_
#include "webrtc/common_audio/vad/vad_core.h"
#include "webrtc/typedefs.h"
// Takes |data_length| samples of |data_in| and calculates the logarithm of the
// energy of each of the |kNumChannels| = 6 frequency bands used by the VAD:
// 80 Hz - 250 Hz
// 250 Hz - 500 Hz
// 500 Hz - 1000 Hz
// 1000 Hz - 2000 Hz
// 2000 Hz - 3000 Hz
// 3000 Hz - 4000 Hz
//
// The values are given in Q4 and written to |features|. Further, an approximate
// overall energy is returned. The return value is used in
// WebRtcVad_GmmProbability() as a signal indicator, hence it is arbitrary above
// the threshold |kMinEnergy|.
//
// - self [i/o] : State information of the VAD.
// - data_in [i] : Input audio data, for feature extraction.
// - data_length [i] : Audio data size, in number of samples.
// - features [o] : 10 * log10(energy in each frequency band), Q4.
// - returns : Total energy of the signal (NOTE! This value is not
// exact. It is only used in a comparison.)
int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
int data_length, int16_t* features);
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_FILTERBANK_H_

View File

@@ -0,0 +1,92 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/vad/vad_unittest.h"
#include "webrtc/typedefs.h"
extern "C" {
#include "webrtc/common_audio/vad/vad_core.h"
#include "webrtc/common_audio/vad/vad_filterbank.h"
}
namespace {
const int kNumValidFrameLengths = 3;
TEST_F(VadTest, vad_filterbank) {
VadInstT* self = reinterpret_cast<VadInstT*>(malloc(sizeof(VadInstT)));
static const int16_t kReference[kNumValidFrameLengths] = { 48, 11, 11 };
static const int16_t kFeatures[kNumValidFrameLengths * kNumChannels] = {
1213, 759, 587, 462, 434, 272,
1479, 1385, 1291, 1200, 1103, 1099,
1732, 1692, 1681, 1629, 1436, 1436
};
static const int16_t kOffsetVector[kNumChannels] = {
368, 368, 272, 176, 176, 176 };
int16_t features[kNumChannels];
// Construct a speech signal that will trigger the VAD in all modes. It is
// known that (i * i) will wrap around, but that doesn't matter in this case.
int16_t speech[kMaxFrameLength];
for (int16_t i = 0; i < kMaxFrameLength; ++i) {
speech[i] = (i * i);
}
int frame_length_index = 0;
ASSERT_EQ(0, WebRtcVad_InitCore(self));
for (size_t j = 0; j < kFrameLengthsSize; ++j) {
if (ValidRatesAndFrameLengths(8000, kFrameLengths[j])) {
EXPECT_EQ(kReference[frame_length_index],
WebRtcVad_CalculateFeatures(self, speech, kFrameLengths[j],
features));
for (int k = 0; k < kNumChannels; ++k) {
EXPECT_EQ(kFeatures[k + frame_length_index * kNumChannels],
features[k]);
}
frame_length_index++;
}
}
EXPECT_EQ(kNumValidFrameLengths, frame_length_index);
// Verify that all zeros in gives kOffsetVector out.
memset(speech, 0, sizeof(speech));
ASSERT_EQ(0, WebRtcVad_InitCore(self));
for (size_t j = 0; j < kFrameLengthsSize; ++j) {
if (ValidRatesAndFrameLengths(8000, kFrameLengths[j])) {
EXPECT_EQ(0, WebRtcVad_CalculateFeatures(self, speech, kFrameLengths[j],
features));
for (int k = 0; k < kNumChannels; ++k) {
EXPECT_EQ(kOffsetVector[k], features[k]);
}
}
}
// Verify that all ones in gives kOffsetVector out. Any other constant input
// will have a small impact in the sub bands.
for (int16_t i = 0; i < kMaxFrameLength; ++i) {
speech[i] = 1;
}
for (size_t j = 0; j < kFrameLengthsSize; ++j) {
if (ValidRatesAndFrameLengths(8000, kFrameLengths[j])) {
ASSERT_EQ(0, WebRtcVad_InitCore(self));
EXPECT_EQ(0, WebRtcVad_CalculateFeatures(self, speech, kFrameLengths[j],
features));
for (int k = 0; k < kNumChannels; ++k) {
EXPECT_EQ(kOffsetVector[k], features[k]);
}
}
}
free(self);
}
} // namespace

View File

@@ -0,0 +1,83 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/vad/vad_gmm.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/typedefs.h"
static const int32_t kCompVar = 22005;
static const int16_t kLog2Exp = 5909; // log2(exp(1)) in Q12.
// For a normal distribution, the probability of |input| is calculated and
// returned (in Q20). The formula for normal distributed probability is
//
// 1 / s * exp(-(x - m)^2 / (2 * s^2))
//
// where the parameters are given in the following Q domains:
// m = |mean| (Q7)
// s = |std| (Q7)
// x = |input| (Q4)
// in addition to the probability we output |delta| (in Q11) used when updating
// the noise/speech model.
int32_t WebRtcVad_GaussianProbability(int16_t input,
int16_t mean,
int16_t std,
int16_t* delta) {
int16_t tmp16, inv_std, inv_std2, exp_value = 0;
int32_t tmp32;
// Calculate |inv_std| = 1 / s, in Q10.
// 131072 = 1 in Q17, and (|std| >> 1) is for rounding instead of truncation.
// Q-domain: Q17 / Q7 = Q10.
tmp32 = (int32_t) 131072 + (int32_t) (std >> 1);
inv_std = (int16_t) WebRtcSpl_DivW32W16(tmp32, std);
// Calculate |inv_std2| = 1 / s^2, in Q14.
tmp16 = (inv_std >> 2); // Q10 -> Q8.
// Q-domain: (Q8 * Q8) >> 2 = Q14.
inv_std2 = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(tmp16, tmp16, 2);
// TODO(bjornv): Investigate if changing to
// |inv_std2| = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(|inv_std|, |inv_std|, 6);
// gives better accuracy.
tmp16 = (input << 3); // Q4 -> Q7
tmp16 = tmp16 - mean; // Q7 - Q7 = Q7
// To be used later, when updating noise/speech model.
// |delta| = (x - m) / s^2, in Q11.
// Q-domain: (Q14 * Q7) >> 10 = Q11.
*delta = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(inv_std2, tmp16, 10);
// Calculate the exponent |tmp32| = (x - m)^2 / (2 * s^2), in Q10. Replacing
// division by two with one shift.
// Q-domain: (Q11 * Q7) >> 8 = Q10.
tmp32 = WEBRTC_SPL_MUL_16_16_RSFT(*delta, tmp16, 9);
// If the exponent is small enough to give a non-zero probability we calculate
// |exp_value| ~= exp(-(x - m)^2 / (2 * s^2))
// ~= exp2(-log2(exp(1)) * |tmp32|).
if (tmp32 < kCompVar) {
// Calculate |tmp16| = log2(exp(1)) * |tmp32|, in Q10.
// Q-domain: (Q12 * Q10) >> 12 = Q10.
tmp16 = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(kLog2Exp, (int16_t) tmp32, 12);
tmp16 = -tmp16;
exp_value = (0x0400 | (tmp16 & 0x03FF));
tmp16 ^= 0xFFFF;
tmp16 >>= 10;
tmp16 += 1;
// Get |exp_value| = exp(-|tmp32|) in Q10.
exp_value >>= tmp16;
}
// Calculate and return (1 / s) * exp(-(x - m)^2 / (2 * s^2)), in Q20.
// Q-domain: Q10 * Q10 = Q20.
return WEBRTC_SPL_MUL_16_16(inv_std, exp_value);
}

View File

@@ -0,0 +1,39 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Gaussian probability calculations internally used in vad_core.c.
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_GMM_H_
#define WEBRTC_COMMON_AUDIO_VAD_VAD_GMM_H_
#include "webrtc/typedefs.h"
// Calculates the probability for |input|, given that |input| comes from a
// normal distribution with mean and standard deviation (|mean|, |std|).
//
// Inputs:
// - input : input sample in Q4.
// - mean : mean input in the statistical model, Q7.
// - std : standard deviation, Q7.
//
// Output:
//
// - delta : input used when updating the model, Q11.
// |delta| = (|input| - |mean|) / |std|^2.
//
// Return:
// (probability for |input|) =
// 1 / |std| * exp(-(|input| - |mean|)^2 / (2 * |std|^2));
int32_t WebRtcVad_GaussianProbability(int16_t input,
int16_t mean,
int16_t std,
int16_t* delta);
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_GMM_H_

View File

@@ -0,0 +1,43 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/vad/vad_unittest.h"
#include "webrtc/typedefs.h"
extern "C" {
#include "webrtc/common_audio/vad/vad_gmm.h"
}
namespace {
TEST_F(VadTest, vad_gmm) {
int16_t delta = 0;
// Input value at mean.
EXPECT_EQ(1048576, WebRtcVad_GaussianProbability(0, 0, 128, &delta));
EXPECT_EQ(0, delta);
EXPECT_EQ(1048576, WebRtcVad_GaussianProbability(16, 128, 128, &delta));
EXPECT_EQ(0, delta);
EXPECT_EQ(1048576, WebRtcVad_GaussianProbability(-16, -128, 128, &delta));
EXPECT_EQ(0, delta);
// Largest possible input to give non-zero probability.
EXPECT_EQ(1024, WebRtcVad_GaussianProbability(59, 0, 128, &delta));
EXPECT_EQ(7552, delta);
EXPECT_EQ(1024, WebRtcVad_GaussianProbability(75, 128, 128, &delta));
EXPECT_EQ(7552, delta);
EXPECT_EQ(1024, WebRtcVad_GaussianProbability(-75, -128, 128, &delta));
EXPECT_EQ(-7552, delta);
// Too large input, should give zero probability.
EXPECT_EQ(0, WebRtcVad_GaussianProbability(105, 0, 128, &delta));
EXPECT_EQ(13440, delta);
}
} // namespace

View File

@@ -0,0 +1,179 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/vad/vad_sp.h"
#include <assert.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_audio/vad/vad_core.h"
#include "webrtc/typedefs.h"
// Allpass filter coefficients, upper and lower, in Q13.
// Upper: 0.64, Lower: 0.17.
static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 }; // Q13.
static const int16_t kSmoothingDown = 6553; // 0.2 in Q15.
static const int16_t kSmoothingUp = 32439; // 0.99 in Q15.
// TODO(bjornv): Move this function to vad_filterbank.c.
// Downsampling filter based on splitting filter and allpass functions.
void WebRtcVad_Downsampling(const int16_t* signal_in,
int16_t* signal_out,
int32_t* filter_state,
int in_length) {
int16_t tmp16_1 = 0, tmp16_2 = 0;
int32_t tmp32_1 = filter_state[0];
int32_t tmp32_2 = filter_state[1];
int n = 0;
int half_length = (in_length >> 1); // Downsampling by 2 gives half length.
// Filter coefficients in Q13, filter state in Q0.
for (n = 0; n < half_length; n++) {
// All-pass filtering upper branch.
tmp16_1 = (int16_t) ((tmp32_1 >> 1) +
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], *signal_in, 14));
*signal_out = tmp16_1;
tmp32_1 = (int32_t) (*signal_in++) -
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], tmp16_1, 12);
// All-pass filtering lower branch.
tmp16_2 = (int16_t) ((tmp32_2 >> 1) +
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], *signal_in, 14));
*signal_out++ += tmp16_2;
tmp32_2 = (int32_t) (*signal_in++) -
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], tmp16_2, 12);
}
// Store the filter states.
filter_state[0] = tmp32_1;
filter_state[1] = tmp32_2;
}
// Inserts |feature_value| into |low_value_vector|, if it is one of the 16
// smallest values the last 100 frames. Then calculates and returns the median
// of the five smallest values.
int16_t WebRtcVad_FindMinimum(VadInstT* self,
int16_t feature_value,
int channel) {
int i = 0, j = 0;
int position = -1;
// Offset to beginning of the 16 minimum values in memory.
const int offset = (channel << 4);
int16_t current_median = 1600;
int16_t alpha = 0;
int32_t tmp32 = 0;
// Pointer to memory for the 16 minimum values and the age of each value of
// the |channel|.
int16_t* age = &self->index_vector[offset];
int16_t* smallest_values = &self->low_value_vector[offset];
assert(channel < kNumChannels);
// Each value in |smallest_values| is getting 1 loop older. Update |age|, and
// remove old values.
for (i = 0; i < 16; i++) {
if (age[i] != 100) {
age[i]++;
} else {
// Too old value. Remove from memory and shift larger values downwards.
for (j = i; j < 16; j++) {
smallest_values[j] = smallest_values[j + 1];
age[j] = age[j + 1];
}
age[15] = 101;
smallest_values[15] = 10000;
}
}
// Check if |feature_value| is smaller than any of the values in
// |smallest_values|. If so, find the |position| where to insert the new value
// (|feature_value|).
if (feature_value < smallest_values[7]) {
if (feature_value < smallest_values[3]) {
if (feature_value < smallest_values[1]) {
if (feature_value < smallest_values[0]) {
position = 0;
} else {
position = 1;
}
} else if (feature_value < smallest_values[2]) {
position = 2;
} else {
position = 3;
}
} else if (feature_value < smallest_values[5]) {
if (feature_value < smallest_values[4]) {
position = 4;
} else {
position = 5;
}
} else if (feature_value < smallest_values[6]) {
position = 6;
} else {
position = 7;
}
} else if (feature_value < smallest_values[15]) {
if (feature_value < smallest_values[11]) {
if (feature_value < smallest_values[9]) {
if (feature_value < smallest_values[8]) {
position = 8;
} else {
position = 9;
}
} else if (feature_value < smallest_values[10]) {
position = 10;
} else {
position = 11;
}
} else if (feature_value < smallest_values[13]) {
if (feature_value < smallest_values[12]) {
position = 12;
} else {
position = 13;
}
} else if (feature_value < smallest_values[14]) {
position = 14;
} else {
position = 15;
}
}
// If we have detected a new small value, insert it at the correct position
// and shift larger values up.
if (position > -1) {
for (i = 15; i > position; i--) {
smallest_values[i] = smallest_values[i - 1];
age[i] = age[i - 1];
}
smallest_values[position] = feature_value;
age[position] = 1;
}
// Get |current_median|.
if (self->frame_counter > 2) {
current_median = smallest_values[2];
} else if (self->frame_counter > 0) {
current_median = smallest_values[0];
}
// Smooth the median value.
if (self->frame_counter > 0) {
if (current_median < self->mean_value[channel]) {
alpha = kSmoothingDown; // 0.2 in Q15.
} else {
alpha = kSmoothingUp; // 0.99 in Q15.
}
}
tmp32 = WEBRTC_SPL_MUL_16_16(alpha + 1, self->mean_value[channel]);
tmp32 += WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX - alpha, current_median);
tmp32 += 16384;
self->mean_value[channel] = (int16_t) (tmp32 >> 15);
return self->mean_value[channel];
}

View File

@@ -0,0 +1,56 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This file includes specific signal processing tools used in vad_core.c.
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_SP_H_
#define WEBRTC_COMMON_AUDIO_VAD_VAD_SP_H_
#include "webrtc/common_audio/vad/vad_core.h"
#include "webrtc/typedefs.h"
// Downsamples the signal by a factor 2, eg. 32->16 or 16->8.
//
// Inputs:
// - signal_in : Input signal.
// - in_length : Length of input signal in samples.
//
// Input & Output:
// - filter_state : Current filter states of the two all-pass filters. The
// |filter_state| is updated after all samples have been
// processed.
//
// Output:
// - signal_out : Downsampled signal (of length |in_length| / 2).
void WebRtcVad_Downsampling(const int16_t* signal_in,
int16_t* signal_out,
int32_t* filter_state,
int in_length);
// Updates and returns the smoothed feature minimum. As minimum we use the
// median of the five smallest feature values in a 100 frames long window.
// As long as |handle->frame_counter| is zero, that is, we haven't received any
// "valid" data, FindMinimum() outputs the default value of 1600.
//
// Inputs:
// - feature_value : New feature value to update with.
// - channel : Channel number.
//
// Input & Output:
// - handle : State information of the VAD.
//
// Returns:
// : Smoothed minimum value for a moving window.
int16_t WebRtcVad_FindMinimum(VadInstT* handle,
int16_t feature_value,
int channel);
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_SP_H_

View File

@@ -0,0 +1,74 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/vad/vad_unittest.h"
#include "webrtc/typedefs.h"
extern "C" {
#include "webrtc/common_audio/vad/vad_core.h"
#include "webrtc/common_audio/vad/vad_sp.h"
}
namespace {
TEST_F(VadTest, vad_sp) {
VadInstT* self = reinterpret_cast<VadInstT*>(malloc(sizeof(VadInstT)));
const int kMaxFrameLenSp = 960; // Maximum frame length in this unittest.
int16_t zeros[kMaxFrameLenSp] = { 0 };
int32_t state[2] = { 0 };
int16_t data_in[kMaxFrameLenSp];
int16_t data_out[kMaxFrameLenSp];
// We expect the first value to be 1600 as long as |frame_counter| is zero,
// which is true for the first iteration.
static const int16_t kReferenceMin[32] = {
1600, 720, 509, 512, 532, 552, 570, 588,
606, 624, 642, 659, 675, 691, 707, 723,
1600, 544, 502, 522, 542, 561, 579, 597,
615, 633, 651, 667, 683, 699, 715, 731
};
// Construct a speech signal that will trigger the VAD in all modes. It is
// known that (i * i) will wrap around, but that doesn't matter in this case.
for (int16_t i = 0; i < kMaxFrameLenSp; ++i) {
data_in[i] = (i * i);
}
// Input values all zeros, expect all zeros out.
WebRtcVad_Downsampling(zeros, data_out, state, kMaxFrameLenSp);
EXPECT_EQ(0, state[0]);
EXPECT_EQ(0, state[1]);
for (int16_t i = 0; i < kMaxFrameLenSp / 2; ++i) {
EXPECT_EQ(0, data_out[i]);
}
// Make a simple non-zero data test.
WebRtcVad_Downsampling(data_in, data_out, state, kMaxFrameLenSp);
EXPECT_EQ(207, state[0]);
EXPECT_EQ(2270, state[1]);
ASSERT_EQ(0, WebRtcVad_InitCore(self));
// TODO(bjornv): Replace this part of the test with taking values from an
// array and calculate the reference value here. Make sure the values are not
// ordered.
for (int16_t i = 0; i < 16; ++i) {
int16_t value = 500 * (i + 1);
for (int j = 0; j < kNumChannels; ++j) {
// Use values both above and below initialized value.
EXPECT_EQ(kReferenceMin[i], WebRtcVad_FindMinimum(self, value, j));
EXPECT_EQ(kReferenceMin[i + 16], WebRtcVad_FindMinimum(self, 12000, j));
}
self->frame_counter++;
}
free(self);
}
} // namespace

View File

@@ -0,0 +1,155 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/vad/vad_unittest.h"
#include <stdlib.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_audio/vad/include/webrtc_vad.h"
#include "webrtc/typedefs.h"
VadTest::VadTest() {}
void VadTest::SetUp() {}
void VadTest::TearDown() {}
// Returns true if the rate and frame length combination is valid.
bool VadTest::ValidRatesAndFrameLengths(int rate, int frame_length) {
if (rate == 8000) {
if (frame_length == 80 || frame_length == 160 || frame_length == 240) {
return true;
}
return false;
} else if (rate == 16000) {
if (frame_length == 160 || frame_length == 320 || frame_length == 480) {
return true;
}
return false;
} else if (rate == 32000) {
if (frame_length == 320 || frame_length == 640 || frame_length == 960) {
return true;
}
return false;
} else if (rate == 48000) {
if (frame_length == 480 || frame_length == 960 || frame_length == 1440) {
return true;
}
return false;
}
return false;
}
namespace {
TEST_F(VadTest, ApiTest) {
// This API test runs through the APIs for all possible valid and invalid
// combinations.
VadInst* handle = NULL;
int16_t zeros[kMaxFrameLength] = { 0 };
// Construct a speech signal that will trigger the VAD in all modes. It is
// known that (i * i) will wrap around, but that doesn't matter in this case.
int16_t speech[kMaxFrameLength];
for (int16_t i = 0; i < kMaxFrameLength; i++) {
speech[i] = (i * i);
}
// NULL instance tests
EXPECT_EQ(-1, WebRtcVad_Create(NULL));
EXPECT_EQ(-1, WebRtcVad_Init(NULL));
EXPECT_EQ(-1, WebRtcVad_set_mode(NULL, kModes[0]));
EXPECT_EQ(-1, WebRtcVad_Process(NULL, kRates[0], speech, kFrameLengths[0]));
// WebRtcVad_Create()
ASSERT_EQ(0, WebRtcVad_Create(&handle));
// Not initialized tests
EXPECT_EQ(-1, WebRtcVad_Process(handle, kRates[0], speech, kFrameLengths[0]));
EXPECT_EQ(-1, WebRtcVad_set_mode(handle, kModes[0]));
// WebRtcVad_Init() test
ASSERT_EQ(0, WebRtcVad_Init(handle));
// WebRtcVad_set_mode() invalid modes tests. Tries smallest supported value
// minus one and largest supported value plus one.
EXPECT_EQ(-1, WebRtcVad_set_mode(handle,
WebRtcSpl_MinValueW32(kModes,
kModesSize) - 1));
EXPECT_EQ(-1, WebRtcVad_set_mode(handle,
WebRtcSpl_MaxValueW32(kModes,
kModesSize) + 1));
// WebRtcVad_Process() tests
// NULL speech pointer
EXPECT_EQ(-1, WebRtcVad_Process(handle, kRates[0], NULL, kFrameLengths[0]));
// Invalid sampling rate
EXPECT_EQ(-1, WebRtcVad_Process(handle, 9999, speech, kFrameLengths[0]));
// All zeros as input should work
EXPECT_EQ(0, WebRtcVad_Process(handle, kRates[0], zeros, kFrameLengths[0]));
for (size_t k = 0; k < kModesSize; k++) {
// Test valid modes
EXPECT_EQ(0, WebRtcVad_set_mode(handle, kModes[k]));
// Loop through sampling rate and frame length combinations
for (size_t i = 0; i < kRatesSize; i++) {
for (size_t j = 0; j < kFrameLengthsSize; j++) {
if (ValidRatesAndFrameLengths(kRates[i], kFrameLengths[j])) {
EXPECT_EQ(1, WebRtcVad_Process(handle,
kRates[i],
speech,
kFrameLengths[j]));
} else {
EXPECT_EQ(-1, WebRtcVad_Process(handle,
kRates[i],
speech,
kFrameLengths[j]));
}
}
}
}
WebRtcVad_Free(handle);
}
TEST_F(VadTest, ValidRatesFrameLengths) {
// This test verifies valid and invalid rate/frame_length combinations. We
// loop through some sampling rates and frame lengths from negative values to
// values larger than possible.
const int kNumRates = 12;
const int kRates[kNumRates] = {
-8000, -4000, 0, 4000, 8000, 8001, 15999, 16000, 32000, 48000, 48001, 96000
};
const int kNumFrameLengths = 13;
const int kFrameLengths[kNumFrameLengths] = {
-10, 0, 80, 81, 159, 160, 240, 320, 480, 640, 960, 1440, 2000
};
for (int i = 0; i < kNumRates; i++) {
for (int j = 0; j < kNumFrameLengths; j++) {
if (ValidRatesAndFrameLengths(kRates[i], kFrameLengths[j])) {
EXPECT_EQ(0, WebRtcVad_ValidRateAndFrameLength(kRates[i],
kFrameLengths[j]));
} else {
EXPECT_EQ(-1, WebRtcVad_ValidRateAndFrameLength(kRates[i],
kFrameLengths[j]));
}
}
}
}
// TODO(bjornv): Add a process test, run on file.
} // namespace

View File

@@ -0,0 +1,48 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_UNITTEST_H
#define WEBRTC_COMMON_AUDIO_VAD_VAD_UNITTEST_H
#include <stddef.h> // size_t
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/typedefs.h"
namespace {
// Modes we support
const int kModes[] = { 0, 1, 2, 3 };
const size_t kModesSize = sizeof(kModes) / sizeof(*kModes);
// Rates we support.
const int kRates[] = { 8000, 12000, 16000, 24000, 32000, 48000 };
const size_t kRatesSize = sizeof(kRates) / sizeof(*kRates);
// Frame lengths we support.
const int kMaxFrameLength = 1440;
const int kFrameLengths[] = { 80, 120, 160, 240, 320, 480, 640, 960,
kMaxFrameLength };
const size_t kFrameLengthsSize = sizeof(kFrameLengths) / sizeof(*kFrameLengths);
} // namespace
class VadTest : public ::testing::Test {
protected:
VadTest();
virtual void SetUp();
virtual void TearDown();
// Returns true if the rate and frame length combination is valid.
bool ValidRatesAndFrameLengths(int rate, int frame_length);
};
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_UNITTEST_H

View File

@@ -0,0 +1,129 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/vad/include/webrtc_vad.h"
#include <stdlib.h>
#include <string.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_audio/vad/vad_core.h"
#include "webrtc/typedefs.h"
static const int kInitCheck = 42;
static const int kValidRates[] = { 8000, 16000, 32000, 48000 };
static const size_t kRatesSize = sizeof(kValidRates) / sizeof(*kValidRates);
static const int kMaxFrameLengthMs = 30;
int WebRtcVad_Create(VadInst** handle) {
VadInstT* self = NULL;
if (handle == NULL) {
return -1;
}
*handle = NULL;
self = (VadInstT*) malloc(sizeof(VadInstT));
*handle = (VadInst*) self;
if (self == NULL) {
return -1;
}
WebRtcSpl_Init();
self->init_flag = 0;
return 0;
}
void WebRtcVad_Free(VadInst* handle) {
free(handle);
}
// TODO(bjornv): Move WebRtcVad_InitCore() code here.
int WebRtcVad_Init(VadInst* handle) {
// Initialize the core VAD component.
return WebRtcVad_InitCore((VadInstT*) handle);
}
// TODO(bjornv): Move WebRtcVad_set_mode_core() code here.
int WebRtcVad_set_mode(VadInst* handle, int mode) {
VadInstT* self = (VadInstT*) handle;
if (handle == NULL) {
return -1;
}
if (self->init_flag != kInitCheck) {
return -1;
}
return WebRtcVad_set_mode_core(self, mode);
}
int WebRtcVad_Process(VadInst* handle, int fs, const int16_t* audio_frame,
int frame_length) {
int vad = -1;
VadInstT* self = (VadInstT*) handle;
if (handle == NULL) {
return -1;
}
if (self->init_flag != kInitCheck) {
return -1;
}
if (audio_frame == NULL) {
return -1;
}
if (WebRtcVad_ValidRateAndFrameLength(fs, frame_length) != 0) {
return -1;
}
if (fs == 48000) {
vad = WebRtcVad_CalcVad48khz(self, audio_frame, frame_length);
} else if (fs == 32000) {
vad = WebRtcVad_CalcVad32khz(self, audio_frame, frame_length);
} else if (fs == 16000) {
vad = WebRtcVad_CalcVad16khz(self, audio_frame, frame_length);
} else if (fs == 8000) {
vad = WebRtcVad_CalcVad8khz(self, audio_frame, frame_length);
}
if (vad > 0) {
vad = 1;
}
return vad;
}
int WebRtcVad_ValidRateAndFrameLength(int rate, int frame_length) {
int return_value = -1;
size_t i;
int valid_length_ms;
int valid_length;
// We only allow 10, 20 or 30 ms frames. Loop through valid frame rates and
// see if we have a matching pair.
for (i = 0; i < kRatesSize; i++) {
if (kValidRates[i] == rate) {
for (valid_length_ms = 10; valid_length_ms <= kMaxFrameLengthMs;
valid_length_ms += 10) {
valid_length = (kValidRates[i] / 1000 * valid_length_ms);
if (frame_length == valid_length) {
return_value = 0;
break;
}
}
break;
}
}
return return_value;
}

View File

@@ -0,0 +1,72 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_COMMON_AUDIO_WAV_WRITER_H_
#define WEBRTC_COMMON_AUDIO_WAV_WRITER_H_
#ifdef __cplusplus
#include <stdint.h>
#include <cstddef>
#include <string>
namespace webrtc {
// Simple C++ class for writing 16-bit PCM WAV files. All error handling is
// by calls to FATAL_ERROR(), making it unsuitable for anything but debug code.
class WavFile {
public:
// Open a new WAV file for writing.
WavFile(const std::string& filename, int sample_rate, int num_channels);
// Close the WAV file, after writing its header.
~WavFile();
// Write additional samples to the file. Each sample is in the range
// [-32768,32767], and there must be the previously specified number of
// interleaved channels.
void WriteSamples(const float* samples, size_t num_samples);
int sample_rate() const { return sample_rate_; }
int num_channels() const { return num_channels_; }
uint32_t num_samples() const { return num_samples_; }
private:
void WriteSamples(const int16_t* samples, size_t num_samples);
void Close();
const int sample_rate_;
const int num_channels_;
uint32_t num_samples_; // total number of samples written to file
FILE* file_handle_; // output file, owned by this class
};
} // namespace webrtc
extern "C" {
#endif // __cplusplus
// C wrappers for the WavFile class.
typedef struct rtc_WavFile rtc_WavFile;
rtc_WavFile* rtc_WavOpen(const char* filename,
int sample_rate,
int num_channels);
void rtc_WavClose(rtc_WavFile* wf);
void rtc_WavWriteSamples(rtc_WavFile* wf,
const float* samples,
size_t num_samples);
int rtc_WavSampleRate(const rtc_WavFile* wf);
int rtc_WavNumChannels(const rtc_WavFile* wf);
uint32_t rtc_WavNumSamples(const rtc_WavFile* wf);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // WEBRTC_COMMON_AUDIO_WAV_WRITER_H_

813
jni/webrtc/common_types.h Normal file
View File

@@ -0,0 +1,813 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_COMMON_TYPES_H_
#define WEBRTC_COMMON_TYPES_H_
#include <stddef.h>
#include <string.h>
#include <string>
#include <vector>
#include "webrtc/typedefs.h"
#if defined(_MSC_VER)
// Disable "new behavior: elements of array will be default initialized"
// warning. Affects OverUseDetectorOptions.
#pragma warning(disable:4351)
#endif
#ifdef WEBRTC_EXPORT
#define WEBRTC_DLLEXPORT _declspec(dllexport)
#elif WEBRTC_DLL
#define WEBRTC_DLLEXPORT _declspec(dllimport)
#else
#define WEBRTC_DLLEXPORT
#endif
#ifndef NULL
#define NULL 0
#endif
#define RTP_PAYLOAD_NAME_SIZE 32
#if defined(WEBRTC_WIN) || defined(WIN32)
// Compares two strings without regard to case.
#define STR_CASE_CMP(s1, s2) ::_stricmp(s1, s2)
// Compares characters of two strings without regard to case.
#define STR_NCASE_CMP(s1, s2, n) ::_strnicmp(s1, s2, n)
#else
#define STR_CASE_CMP(s1, s2) ::strcasecmp(s1, s2)
#define STR_NCASE_CMP(s1, s2, n) ::strncasecmp(s1, s2, n)
#endif
namespace webrtc {
class Config;
class InStream
{
public:
virtual int Read(void *buf,int len) = 0;
virtual int Rewind() {return -1;}
virtual ~InStream() {}
protected:
InStream() {}
};
class OutStream
{
public:
virtual bool Write(const void *buf,int len) = 0;
virtual int Rewind() {return -1;}
virtual ~OutStream() {}
protected:
OutStream() {}
};
enum TraceModule
{
kTraceUndefined = 0,
// not a module, triggered from the engine code
kTraceVoice = 0x0001,
// not a module, triggered from the engine code
kTraceVideo = 0x0002,
// not a module, triggered from the utility code
kTraceUtility = 0x0003,
kTraceRtpRtcp = 0x0004,
kTraceTransport = 0x0005,
kTraceSrtp = 0x0006,
kTraceAudioCoding = 0x0007,
kTraceAudioMixerServer = 0x0008,
kTraceAudioMixerClient = 0x0009,
kTraceFile = 0x000a,
kTraceAudioProcessing = 0x000b,
kTraceVideoCoding = 0x0010,
kTraceVideoMixer = 0x0011,
kTraceAudioDevice = 0x0012,
kTraceVideoRenderer = 0x0014,
kTraceVideoCapture = 0x0015,
kTraceRemoteBitrateEstimator = 0x0017,
};
enum TraceLevel
{
kTraceNone = 0x0000, // no trace
kTraceStateInfo = 0x0001,
kTraceWarning = 0x0002,
kTraceError = 0x0004,
kTraceCritical = 0x0008,
kTraceApiCall = 0x0010,
kTraceDefault = 0x00ff,
kTraceModuleCall = 0x0020,
kTraceMemory = 0x0100, // memory info
kTraceTimer = 0x0200, // timing info
kTraceStream = 0x0400, // "continuous" stream of data
// used for debug purposes
kTraceDebug = 0x0800, // debug
kTraceInfo = 0x1000, // debug info
// Non-verbose level used by LS_INFO of logging.h. Do not use directly.
kTraceTerseInfo = 0x2000,
kTraceAll = 0xffff
};
// External Trace API
class TraceCallback {
public:
virtual void Print(TraceLevel level, const char* message, int length) = 0;
protected:
virtual ~TraceCallback() {}
TraceCallback() {}
};
enum FileFormats
{
kFileFormatWavFile = 1,
kFileFormatCompressedFile = 2,
kFileFormatAviFile = 3,
kFileFormatPreencodedFile = 4,
kFileFormatPcm16kHzFile = 7,
kFileFormatPcm8kHzFile = 8,
kFileFormatPcm32kHzFile = 9
};
enum ProcessingTypes
{
kPlaybackPerChannel = 0,
kPlaybackAllChannelsMixed,
kRecordingPerChannel,
kRecordingAllChannelsMixed,
kRecordingPreprocessing
};
enum FrameType
{
kFrameEmpty = 0,
kAudioFrameSpeech = 1,
kAudioFrameCN = 2,
kVideoFrameKey = 3, // independent frame
kVideoFrameDelta = 4, // depends on the previus frame
};
// External transport callback interface
class Transport
{
public:
virtual int SendPacket(int channel, const void *data, int len) = 0;
virtual int SendRTCPPacket(int channel, const void *data, int len) = 0;
protected:
virtual ~Transport() {}
Transport() {}
};
// Statistics for an RTCP channel
struct RtcpStatistics {
RtcpStatistics()
: fraction_lost(0),
cumulative_lost(0),
extended_max_sequence_number(0),
jitter(0) {}
uint8_t fraction_lost;
uint32_t cumulative_lost;
uint32_t extended_max_sequence_number;
uint32_t jitter;
};
// Callback, called whenever a new rtcp report block is transmitted.
class RtcpStatisticsCallback {
public:
virtual ~RtcpStatisticsCallback() {}
virtual void StatisticsUpdated(const RtcpStatistics& statistics,
uint32_t ssrc) = 0;
};
// Statistics for RTCP packet types.
struct RtcpPacketTypeCounter {
RtcpPacketTypeCounter()
: nack_packets(0),
fir_packets(0),
pli_packets(0) {}
void Add(const RtcpPacketTypeCounter& other) {
nack_packets += other.nack_packets;
fir_packets += other.fir_packets;
pli_packets += other.pli_packets;
}
uint32_t nack_packets;
uint32_t fir_packets;
uint32_t pli_packets;
};
// Data usage statistics for a (rtp) stream
struct StreamDataCounters {
StreamDataCounters()
: bytes(0),
header_bytes(0),
padding_bytes(0),
packets(0),
retransmitted_packets(0),
fec_packets(0) {}
// TODO(pbos): Rename bytes -> media_bytes.
uint32_t bytes; // Payload bytes, excluding RTP headers and padding.
uint32_t header_bytes; // Number of bytes used by RTP headers.
uint32_t padding_bytes; // Number of padding bytes.
uint32_t packets; // Number of packets.
uint32_t retransmitted_packets; // Number of retransmitted packets.
uint32_t fec_packets; // Number of redundancy packets.
};
// Callback, called whenever byte/packet counts have been updated.
class StreamDataCountersCallback {
public:
virtual ~StreamDataCountersCallback() {}
virtual void DataCountersUpdated(const StreamDataCounters& counters,
uint32_t ssrc) = 0;
};
// Rate statistics for a stream
struct BitrateStatistics {
BitrateStatistics() : bitrate_bps(0), packet_rate(0), timestamp_ms(0) {}
uint32_t bitrate_bps; // Bitrate in bits per second.
uint32_t packet_rate; // Packet rate in packets per second.
uint64_t timestamp_ms; // Ntp timestamp in ms at time of rate estimation.
};
// Callback, used to notify an observer whenever new rates have been estimated.
class BitrateStatisticsObserver {
public:
virtual ~BitrateStatisticsObserver() {}
virtual void Notify(const BitrateStatistics& stats, uint32_t ssrc) = 0;
};
// Callback, used to notify an observer whenever frame counts have been updated
class FrameCountObserver {
public:
virtual ~FrameCountObserver() {}
virtual void FrameCountUpdated(FrameType frame_type,
uint32_t frame_count,
const unsigned int ssrc) = 0;
};
// Callback, used to notify an observer whenever the send-side delay is updated.
class SendSideDelayObserver {
public:
virtual ~SendSideDelayObserver() {}
virtual void SendSideDelayUpdated(int avg_delay_ms,
int max_delay_ms,
uint32_t ssrc) = 0;
};
// ==================================================================
// Voice specific types
// ==================================================================
// Each codec supported can be described by this structure.
struct CodecInst {
int pltype;
char plname[RTP_PAYLOAD_NAME_SIZE];
int plfreq;
int pacsize;
int channels;
int rate; // bits/sec unlike {start,min,max}Bitrate elsewhere in this file!
bool operator==(const CodecInst& other) const {
return pltype == other.pltype &&
(STR_CASE_CMP(plname, other.plname) == 0) &&
plfreq == other.plfreq &&
pacsize == other.pacsize &&
channels == other.channels &&
rate == other.rate;
}
bool operator!=(const CodecInst& other) const {
return !(*this == other);
}
};
// RTP
enum {kRtpCsrcSize = 15}; // RFC 3550 page 13
enum RTPDirections
{
kRtpIncoming = 0,
kRtpOutgoing
};
enum PayloadFrequencies
{
kFreq8000Hz = 8000,
kFreq16000Hz = 16000,
kFreq32000Hz = 32000
};
enum VadModes // degree of bandwidth reduction
{
kVadConventional = 0, // lowest reduction
kVadAggressiveLow,
kVadAggressiveMid,
kVadAggressiveHigh // highest reduction
};
struct NetworkStatistics // NETEQ statistics
{
// current jitter buffer size in ms
uint16_t currentBufferSize;
// preferred (optimal) buffer size in ms
uint16_t preferredBufferSize;
// adding extra delay due to "peaky jitter"
bool jitterPeaksFound;
// loss rate (network + late) in percent (in Q14)
uint16_t currentPacketLossRate;
// late loss rate in percent (in Q14)
uint16_t currentDiscardRate;
// fraction (of original stream) of synthesized speech inserted through
// expansion (in Q14)
uint16_t currentExpandRate;
// fraction of synthesized speech inserted through pre-emptive expansion
// (in Q14)
uint16_t currentPreemptiveRate;
// fraction of data removed through acceleration (in Q14)
uint16_t currentAccelerateRate;
// clock-drift in parts-per-million (negative or positive)
int32_t clockDriftPPM;
// average packet waiting time in the jitter buffer (ms)
int meanWaitingTimeMs;
// median packet waiting time in the jitter buffer (ms)
int medianWaitingTimeMs;
// min packet waiting time in the jitter buffer (ms)
int minWaitingTimeMs;
// max packet waiting time in the jitter buffer (ms)
int maxWaitingTimeMs;
// added samples in off mode due to packet loss
int addedSamples;
};
// Statistics for calls to AudioCodingModule::PlayoutData10Ms().
struct AudioDecodingCallStats {
AudioDecodingCallStats()
: calls_to_silence_generator(0),
calls_to_neteq(0),
decoded_normal(0),
decoded_plc(0),
decoded_cng(0),
decoded_plc_cng(0) {}
int calls_to_silence_generator; // Number of calls where silence generated,
// and NetEq was disengaged from decoding.
int calls_to_neteq; // Number of calls to NetEq.
int decoded_normal; // Number of calls where audio RTP packet decoded.
int decoded_plc; // Number of calls resulted in PLC.
int decoded_cng; // Number of calls where comfort noise generated due to DTX.
int decoded_plc_cng; // Number of calls resulted where PLC faded to CNG.
};
typedef struct
{
int min; // minumum
int max; // maximum
int average; // average
} StatVal;
typedef struct // All levels are reported in dBm0
{
StatVal speech_rx; // long-term speech levels on receiving side
StatVal speech_tx; // long-term speech levels on transmitting side
StatVal noise_rx; // long-term noise/silence levels on receiving side
StatVal noise_tx; // long-term noise/silence levels on transmitting side
} LevelStatistics;
typedef struct // All levels are reported in dB
{
StatVal erl; // Echo Return Loss
StatVal erle; // Echo Return Loss Enhancement
StatVal rerl; // RERL = ERL + ERLE
// Echo suppression inside EC at the point just before its NLP
StatVal a_nlp;
} EchoStatistics;
enum NsModes // type of Noise Suppression
{
kNsUnchanged = 0, // previously set mode
kNsDefault, // platform default
kNsConference, // conferencing default
kNsLowSuppression, // lowest suppression
kNsModerateSuppression,
kNsHighSuppression,
kNsVeryHighSuppression, // highest suppression
};
enum AgcModes // type of Automatic Gain Control
{
kAgcUnchanged = 0, // previously set mode
kAgcDefault, // platform default
// adaptive mode for use when analog volume control exists (e.g. for
// PC softphone)
kAgcAdaptiveAnalog,
// scaling takes place in the digital domain (e.g. for conference servers
// and embedded devices)
kAgcAdaptiveDigital,
// can be used on embedded devices where the capture signal level
// is predictable
kAgcFixedDigital
};
// EC modes
enum EcModes // type of Echo Control
{
kEcUnchanged = 0, // previously set mode
kEcDefault, // platform default
kEcConference, // conferencing default (aggressive AEC)
kEcAec, // Acoustic Echo Cancellation
kEcAecm, // AEC mobile
};
// AECM modes
enum AecmModes // mode of AECM
{
kAecmQuietEarpieceOrHeadset = 0,
// Quiet earpiece or headset use
kAecmEarpiece, // most earpiece use
kAecmLoudEarpiece, // Loud earpiece or quiet speakerphone use
kAecmSpeakerphone, // most speakerphone use (default)
kAecmLoudSpeakerphone // Loud speakerphone
};
// AGC configuration
typedef struct
{
unsigned short targetLeveldBOv;
unsigned short digitalCompressionGaindB;
bool limiterEnable;
} AgcConfig; // AGC configuration parameters
enum StereoChannel
{
kStereoLeft = 0,
kStereoRight,
kStereoBoth
};
// Audio device layers
enum AudioLayers
{
kAudioPlatformDefault = 0,
kAudioWindowsWave = 1,
kAudioWindowsCore = 2,
kAudioLinuxAlsa = 3,
kAudioLinuxPulse = 4
};
// TODO(henrika): to be removed.
enum NetEqModes // NetEQ playout configurations
{
// Optimized trade-off between low delay and jitter robustness for two-way
// communication.
kNetEqDefault = 0,
// Improved jitter robustness at the cost of increased delay. Can be
// used in one-way communication.
kNetEqStreaming = 1,
// Optimzed for decodability of fax signals rather than for perceived audio
// quality.
kNetEqFax = 2,
// Minimal buffer management. Inserts zeros for lost packets and during
// buffer increases.
kNetEqOff = 3,
};
// TODO(henrika): to be removed.
enum OnHoldModes // On Hold direction
{
kHoldSendAndPlay = 0, // Put both sending and playing in on-hold state.
kHoldSendOnly, // Put only sending in on-hold state.
kHoldPlayOnly // Put only playing in on-hold state.
};
// TODO(henrika): to be removed.
enum AmrMode
{
kRfc3267BwEfficient = 0,
kRfc3267OctetAligned = 1,
kRfc3267FileStorage = 2,
};
// ==================================================================
// Video specific types
// ==================================================================
// Raw video types
enum RawVideoType
{
kVideoI420 = 0,
kVideoYV12 = 1,
kVideoYUY2 = 2,
kVideoUYVY = 3,
kVideoIYUV = 4,
kVideoARGB = 5,
kVideoRGB24 = 6,
kVideoRGB565 = 7,
kVideoARGB4444 = 8,
kVideoARGB1555 = 9,
kVideoMJPEG = 10,
kVideoNV12 = 11,
kVideoNV21 = 12,
kVideoBGRA = 13,
kVideoUnknown = 99
};
// Video codec
enum { kConfigParameterSize = 128};
enum { kPayloadNameSize = 32};
enum { kMaxSimulcastStreams = 4};
enum { kMaxTemporalStreams = 4};
enum VideoCodecComplexity
{
kComplexityNormal = 0,
kComplexityHigh = 1,
kComplexityHigher = 2,
kComplexityMax = 3
};
enum VideoCodecProfile
{
kProfileBase = 0x00,
kProfileMain = 0x01
};
enum VP8ResilienceMode {
kResilienceOff, // The stream produced by the encoder requires a
// recovery frame (typically a key frame) to be
// decodable after a packet loss.
kResilientStream, // A stream produced by the encoder is resilient to
// packet losses, but packets within a frame subsequent
// to a loss can't be decoded.
kResilientFrames // Same as kResilientStream but with added resilience
// within a frame.
};
// VP8 specific
struct VideoCodecVP8 {
bool pictureLossIndicationOn;
bool feedbackModeOn;
VideoCodecComplexity complexity;
VP8ResilienceMode resilience;
unsigned char numberOfTemporalLayers;
bool denoisingOn;
bool errorConcealmentOn;
bool automaticResizeOn;
bool frameDroppingOn;
int keyFrameInterval;
bool operator==(const VideoCodecVP8& other) const {
return pictureLossIndicationOn == other.pictureLossIndicationOn &&
feedbackModeOn == other.feedbackModeOn &&
complexity == other.complexity &&
resilience == other.resilience &&
numberOfTemporalLayers == other.numberOfTemporalLayers &&
denoisingOn == other.denoisingOn &&
errorConcealmentOn == other.errorConcealmentOn &&
automaticResizeOn == other.automaticResizeOn &&
frameDroppingOn == other.frameDroppingOn &&
keyFrameInterval == other.keyFrameInterval;
}
bool operator!=(const VideoCodecVP8& other) const {
return !(*this == other);
}
};
// H264 specific.
struct VideoCodecH264
{
VideoCodecProfile profile;
bool frameDroppingOn;
int keyFrameInterval;
// These are NULL/0 if not externally negotiated.
const uint8_t* spsData;
size_t spsLen;
const uint8_t* ppsData;
size_t ppsLen;
};
// Video codec types
enum VideoCodecType
{
kVideoCodecVP8,
kVideoCodecH264,
kVideoCodecI420,
kVideoCodecRED,
kVideoCodecULPFEC,
kVideoCodecGeneric,
kVideoCodecUnknown
};
union VideoCodecUnion
{
VideoCodecVP8 VP8;
VideoCodecH264 H264;
};
// Simulcast is when the same stream is encoded multiple times with different
// settings such as resolution.
struct SimulcastStream {
unsigned short width;
unsigned short height;
unsigned char numberOfTemporalLayers;
unsigned int maxBitrate; // kilobits/sec.
unsigned int targetBitrate; // kilobits/sec.
unsigned int minBitrate; // kilobits/sec.
unsigned int qpMax; // minimum quality
bool operator==(const SimulcastStream& other) const {
return width == other.width &&
height == other.height &&
numberOfTemporalLayers == other.numberOfTemporalLayers &&
maxBitrate == other.maxBitrate &&
targetBitrate == other.targetBitrate &&
minBitrate == other.minBitrate &&
qpMax == other.qpMax;
}
bool operator!=(const SimulcastStream& other) const {
return !(*this == other);
}
};
enum VideoCodecMode {
kRealtimeVideo,
kScreensharing
};
// Common video codec properties
struct VideoCodec {
VideoCodecType codecType;
char plName[kPayloadNameSize];
unsigned char plType;
unsigned short width;
unsigned short height;
unsigned int startBitrate; // kilobits/sec.
unsigned int maxBitrate; // kilobits/sec.
unsigned int minBitrate; // kilobits/sec.
unsigned int targetBitrate; // kilobits/sec.
unsigned char maxFramerate;
VideoCodecUnion codecSpecific;
unsigned int qpMax;
unsigned char numberOfSimulcastStreams;
SimulcastStream simulcastStream[kMaxSimulcastStreams];
VideoCodecMode mode;
// When using an external encoder/decoder this allows to pass
// extra options without requiring webrtc to be aware of them.
Config* extra_options;
bool operator==(const VideoCodec& other) const {
bool ret = codecType == other.codecType &&
(STR_CASE_CMP(plName, other.plName) == 0) &&
plType == other.plType &&
width == other.width &&
height == other.height &&
startBitrate == other.startBitrate &&
maxBitrate == other.maxBitrate &&
minBitrate == other.minBitrate &&
targetBitrate == other.targetBitrate &&
maxFramerate == other.maxFramerate &&
qpMax == other.qpMax &&
numberOfSimulcastStreams == other.numberOfSimulcastStreams &&
mode == other.mode;
if (ret && codecType == kVideoCodecVP8) {
ret &= (codecSpecific.VP8 == other.codecSpecific.VP8);
}
for (unsigned char i = 0; i < other.numberOfSimulcastStreams && ret; ++i) {
ret &= (simulcastStream[i] == other.simulcastStream[i]);
}
return ret;
}
bool operator!=(const VideoCodec& other) const {
return !(*this == other);
}
};
// Bandwidth over-use detector options. These are used to drive
// experimentation with bandwidth estimation parameters.
// See modules/remote_bitrate_estimator/overuse_detector.h
struct OverUseDetectorOptions {
OverUseDetectorOptions()
: initial_slope(8.0/512.0),
initial_offset(0),
initial_e(),
initial_process_noise(),
initial_avg_noise(0.0),
initial_var_noise(50),
initial_threshold(25.0) {
initial_e[0][0] = 100;
initial_e[1][1] = 1e-1;
initial_e[0][1] = initial_e[1][0] = 0;
initial_process_noise[0] = 1e-10;
initial_process_noise[1] = 1e-2;
}
double initial_slope;
double initial_offset;
double initial_e[2][2];
double initial_process_noise[2];
double initial_avg_noise;
double initial_var_noise;
double initial_threshold;
};
// This structure will have the information about when packet is actually
// received by socket.
struct PacketTime {
PacketTime() : timestamp(-1), not_before(-1) {}
PacketTime(int64_t timestamp, int64_t not_before)
: timestamp(timestamp), not_before(not_before) {
}
int64_t timestamp; // Receive time after socket delivers the data.
int64_t not_before; // Earliest possible time the data could have arrived,
// indicating the potential error in the |timestamp|
// value,in case the system is busy.
// For example, the time of the last select() call.
// If unknown, this value will be set to zero.
};
struct RTPHeaderExtension {
RTPHeaderExtension()
: hasTransmissionTimeOffset(false),
transmissionTimeOffset(0),
hasAbsoluteSendTime(false),
absoluteSendTime(0),
hasAudioLevel(false),
audioLevel(0) {}
bool hasTransmissionTimeOffset;
int32_t transmissionTimeOffset;
bool hasAbsoluteSendTime;
uint32_t absoluteSendTime;
// Audio Level includes both level in dBov and voiced/unvoiced bit. See:
// https://datatracker.ietf.org/doc/draft-lennox-avt-rtp-audio-level-exthdr/
bool hasAudioLevel;
uint8_t audioLevel;
};
struct RTPHeader {
RTPHeader()
: markerBit(false),
payloadType(0),
sequenceNumber(0),
timestamp(0),
ssrc(0),
numCSRCs(0),
paddingLength(0),
headerLength(0),
payload_type_frequency(0),
extension() {
memset(&arrOfCSRCs, 0, sizeof(arrOfCSRCs));
}
bool markerBit;
uint8_t payloadType;
uint16_t sequenceNumber;
uint32_t timestamp;
uint32_t ssrc;
uint8_t numCSRCs;
uint32_t arrOfCSRCs[kRtpCsrcSize];
uint8_t paddingLength;
uint16_t headerLength;
int payload_type_frequency;
RTPHeaderExtension extension;
};
} // namespace webrtc
#endif // WEBRTC_COMMON_TYPES_H_

View File

@@ -0,0 +1,155 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_ENGINE_CONFIGURATIONS_H_
#define WEBRTC_ENGINE_CONFIGURATIONS_H_
#include "webrtc/typedefs.h"
// ============================================================================
// Voice and Video
// ============================================================================
// ----------------------------------------------------------------------------
// [Voice] Codec settings
// ----------------------------------------------------------------------------
// iSAC is not included in the Mozilla build, but in all other builds.
#ifndef WEBRTC_MOZILLA_BUILD
#ifdef WEBRTC_ARCH_ARM
#define WEBRTC_CODEC_ISACFX // Fix-point iSAC implementation.
#else
#define WEBRTC_CODEC_ISAC // Floating-point iSAC implementation (default).
#endif // WEBRTC_ARCH_ARM
#endif // !WEBRTC_MOZILLA_BUILD
// AVT is included in all builds, along with G.711, NetEQ and CNG
// (which are mandatory and don't have any defines).
#define WEBRTC_CODEC_AVT
// PCM16 is useful for testing and incurs only a small binary size cost.
#define WEBRTC_CODEC_PCM16
// iLBC, G.722, and Redundancy coding are excluded from Chromium and Mozilla
// builds to reduce binary size.
#if !defined(WEBRTC_CHROMIUM_BUILD) && !defined(WEBRTC_MOZILLA_BUILD)
#define WEBRTC_CODEC_ILBC
#define WEBRTC_CODEC_G722
#define WEBRTC_CODEC_RED
#endif // !WEBRTC_CHROMIUM_BUILD && !WEBRTC_MOZILLA_BUILD
// ----------------------------------------------------------------------------
// [Video] Codec settings
// ----------------------------------------------------------------------------
#define VIDEOCODEC_I420
#define VIDEOCODEC_VP8
#define VIDEOCODEC_H264
// ============================================================================
// VoiceEngine
// ============================================================================
// ----------------------------------------------------------------------------
// Settings for VoiceEngine
// ----------------------------------------------------------------------------
#define WEBRTC_VOICE_ENGINE_AGC // Near-end AGC
#define WEBRTC_VOICE_ENGINE_ECHO // Near-end AEC
#define WEBRTC_VOICE_ENGINE_NR // Near-end NS
#if !defined(WEBRTC_ANDROID) && !defined(WEBRTC_IOS)
#define WEBRTC_VOICE_ENGINE_TYPING_DETECTION // Typing detection
#endif
// ----------------------------------------------------------------------------
// VoiceEngine sub-APIs
// ----------------------------------------------------------------------------
#define WEBRTC_VOICE_ENGINE_AUDIO_PROCESSING_API
#define WEBRTC_VOICE_ENGINE_CODEC_API
#define WEBRTC_VOICE_ENGINE_DTMF_API
#define WEBRTC_VOICE_ENGINE_EXTERNAL_MEDIA_API
#define WEBRTC_VOICE_ENGINE_FILE_API
#define WEBRTC_VOICE_ENGINE_HARDWARE_API
#define WEBRTC_VOICE_ENGINE_NETEQ_STATS_API
#define WEBRTC_VOICE_ENGINE_RTP_RTCP_API
#define WEBRTC_VOICE_ENGINE_VIDEO_SYNC_API
#define WEBRTC_VOICE_ENGINE_VOLUME_CONTROL_API
// ============================================================================
// VideoEngine
// ============================================================================
// ----------------------------------------------------------------------------
// Settings for special VideoEngine configurations
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// VideoEngine sub-API:s
// ----------------------------------------------------------------------------
#define WEBRTC_VIDEO_ENGINE_CAPTURE_API
#define WEBRTC_VIDEO_ENGINE_CODEC_API
#define WEBRTC_VIDEO_ENGINE_IMAGE_PROCESS_API
#define WEBRTC_VIDEO_ENGINE_RENDER_API
#define WEBRTC_VIDEO_ENGINE_RTP_RTCP_API
#define WEBRTC_VIDEO_ENGINE_EXTERNAL_CODEC_API
// Now handled by gyp:
// WEBRTC_VIDEO_ENGINE_FILE_API
// ============================================================================
// Platform specific configurations
// ============================================================================
// ----------------------------------------------------------------------------
// VideoEngine Windows
// ----------------------------------------------------------------------------
#if defined(_WIN32)
#define DIRECT3D9_RENDERING // Requires DirectX 9.
#endif
// ----------------------------------------------------------------------------
// VideoEngine MAC
// ----------------------------------------------------------------------------
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
// #define CARBON_RENDERING
#define COCOA_RENDERING
#endif
// ----------------------------------------------------------------------------
// VideoEngine Mobile iPhone
// ----------------------------------------------------------------------------
#if defined(WEBRTC_IOS)
#define EAGL_RENDERING
#endif
// ----------------------------------------------------------------------------
// Deprecated
// ----------------------------------------------------------------------------
// #define WEBRTC_CODEC_G729
// #define WEBRTC_DTMF_DETECTION
// For RedPhone
#undef WEBRTC_CODEC_CELT
#undef WEBRTC_CODEC_G722
#undef WEBRTC_CODEC_ILBC
#undef WEBRTC_CODEC_ISACFX
#undef WEBRTC_CODEC_ISAC
#undef WEBRTC_CODEC_OPUS
#undef WEBRTC_CODEC_PCM16
#endif // WEBRTC_ENGINE_CONFIGURATIONS_H_

View File

@@ -0,0 +1,13 @@
# Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
import("../../build/webrtc.gni")
source_set("audio_coding") {
# TODO(andrew): Implement.
}

View File

@@ -0,0 +1 @@
per-file BUILD.gn=kjellander@webrtc.org

View File

@@ -0,0 +1,3 @@
tina.legrand@webrtc.org
turaj@webrtc.org
jan.skoglund@webrtc.org

View File

@@ -0,0 +1,41 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
include $(LOCAL_PATH)/../../../../../android-webrtc.mk
LOCAL_ARM_MODE := arm
LOCAL_MODULE_CLASS := STATIC_LIBRARIES
LOCAL_MODULE := libwebrtc_cng
LOCAL_MODULE_TAGS := optional
LOCAL_GENERATED_SOURCES :=
LOCAL_SRC_FILES := \
webrtc_cng.c \
cng_helpfuns.c
# Flags passed to both C and C++ files.
LOCAL_CFLAGS := \
$(MY_WEBRTC_COMMON_DEFS)
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/../../../.. \
$(LOCAL_PATH)/../../../../../ \
$(LOCAL_PATH)/../../../../common_audio/signal_processing/include
LOCAL_SHARED_LIBRARIES := \
libdl \
libstlport
ifndef NDK_ROOT
include external/stlport/libstlport.mk
endif
include $(BUILD_STATIC_LIBRARY)

View File

@@ -0,0 +1,5 @@
# These are for the common case of adding or renaming files. If you're doing
# structural changes, please get a review from a reviewer in this file.
per-file *.gyp=*
per-file *.gypi=*

View File

@@ -0,0 +1,35 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'CNG',
'type': 'static_library',
'dependencies': [
'<(webrtc_root)/common_audio/common_audio.gyp:common_audio',
],
'include_dirs': [
'include',
'<(webrtc_root)',
],
'direct_dependent_settings': {
'include_dirs': [
'include',
'<(webrtc_root)',
],
},
'sources': [
'include/webrtc_cng.h',
'webrtc_cng.c',
'cng_helpfuns.c',
'cng_helpfuns.h',
],
},
], # targets
}

View File

@@ -0,0 +1,48 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "cng_helpfuns.h"
#include "signal_processing_library.h"
#include "typedefs.h"
#include "webrtc_cng.h"
/* Values in |k| are Q15, and |a| Q12. */
void WebRtcCng_K2a16(int16_t* k, int useOrder, int16_t* a) {
int16_t any[WEBRTC_SPL_MAX_LPC_ORDER + 1];
int16_t *aptr, *aptr2, *anyptr;
const int16_t *kptr;
int m, i;
kptr = k;
*a = 4096; /* i.e., (Word16_MAX >> 3) + 1 */
*any = *a;
a[1] = (*k + 4) >> 3;
for (m = 1; m < useOrder; m++) {
kptr++;
aptr = a;
aptr++;
aptr2 = &a[m];
anyptr = any;
anyptr++;
any[m + 1] = (*kptr + 4) >> 3;
for (i = 0; i < m; i++) {
*anyptr++ = (*aptr++) +
(int16_t)((((int32_t)(*aptr2--) * (int32_t) * kptr) + 16384) >> 15);
}
aptr = a;
anyptr = any;
for (i = 0; i < (m + 2); i++) {
*aptr++ = *anyptr++;
}
}
}

View File

@@ -0,0 +1,25 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_CODING_CODECS_CNG_CNG_HELPFUNS_H_
#define WEBRTC_MODULES_AUDIO_CODING_CODECS_CNG_CNG_HELPFUNS_H_
#include "typedefs.h"
#ifdef __cplusplus
extern "C" {
#endif
void WebRtcCng_K2a16(int16_t* k, int useOrder, int16_t* a);
#ifdef __cplusplus
}
#endif
#endif // WEBRTC_MODULES_AUDIO_CODING_CODECS_CNG_CNG_HELPFUNS_H_

View File

@@ -0,0 +1,348 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string>
#include "gtest/gtest.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc_cng.h"
namespace webrtc {
enum {
kSidShortIntervalUpdate = 1,
kSidNormalIntervalUpdate = 100,
kSidLongIntervalUpdate = 10000
};
enum {
kCNGNumParamsLow = 0,
kCNGNumParamsNormal = 8,
kCNGNumParamsHigh = WEBRTC_CNG_MAX_LPC_ORDER,
kCNGNumParamsTooHigh = WEBRTC_CNG_MAX_LPC_ORDER + 1
};
enum {
kNoSid,
kForceSid
};
class CngTest : public ::testing::Test {
protected:
CngTest();
virtual void SetUp();
CNG_enc_inst* cng_enc_inst_;
CNG_dec_inst* cng_dec_inst_;
int16_t speech_data_[640]; // Max size of CNG internal buffers.
};
CngTest::CngTest()
: cng_enc_inst_(NULL),
cng_dec_inst_(NULL) {
}
void CngTest::SetUp() {
FILE* input_file;
const std::string file_name =
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm");
input_file = fopen(file_name.c_str(), "rb");
ASSERT_TRUE(input_file != NULL);
ASSERT_EQ(640, static_cast<int32_t>(fread(speech_data_, sizeof(int16_t),
640, input_file)));
fclose(input_file);
input_file = NULL;
}
// Test failing Create.
TEST_F(CngTest, CngCreateFail) {
// Test to see that an invalid pointer is caught.
EXPECT_EQ(-1, WebRtcCng_CreateEnc(NULL));
EXPECT_EQ(-1, WebRtcCng_CreateDec(NULL));
}
// Test normal Create.
TEST_F(CngTest, CngCreate) {
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_CreateDec(&cng_dec_inst_));
EXPECT_TRUE(cng_enc_inst_ != NULL);
EXPECT_TRUE(cng_dec_inst_ != NULL);
// Free encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_FreeDec(cng_dec_inst_));
}
// Create CNG encoder, init with faulty values, free CNG encoder.
TEST_F(CngTest, CngInitFail) {
// Create encoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
// Call with too few parameters.
EXPECT_EQ(-1, WebRtcCng_InitEnc(cng_enc_inst_, 8000, kSidNormalIntervalUpdate,
kCNGNumParamsLow));
EXPECT_EQ(6130, WebRtcCng_GetErrorCodeEnc(cng_enc_inst_));
// Call with too many parameters.
EXPECT_EQ(-1, WebRtcCng_InitEnc(cng_enc_inst_, 8000, kSidNormalIntervalUpdate,
kCNGNumParamsTooHigh));
EXPECT_EQ(6130, WebRtcCng_GetErrorCodeEnc(cng_enc_inst_));
// Free encoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
}
TEST_F(CngTest, CngEncode) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t number_bytes;
// Create encoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
// 8 kHz, Normal number of parameters
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 8000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 80, sid_data,
&number_bytes, kNoSid));
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 80, sid_data, &number_bytes, kForceSid));
// 16 kHz, Normal number of parameters
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 16000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 160, sid_data,
&number_bytes, kNoSid));
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 160, sid_data, &number_bytes, kForceSid));
// 32 kHz, Max number of parameters
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 32000, kSidNormalIntervalUpdate,
kCNGNumParamsHigh));
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 320, sid_data,
&number_bytes, kNoSid));
EXPECT_EQ(kCNGNumParamsHigh + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 320, sid_data, &number_bytes, kForceSid));
// 48 kHz, Normal number of parameters
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 48000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 480, sid_data,
&number_bytes, kNoSid));
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 480, sid_data, &number_bytes, kForceSid));
// 64 kHz, Normal number of parameters
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 64000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 640, sid_data,
&number_bytes, kNoSid));
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 640, sid_data, &number_bytes, kForceSid));
// Free encoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
}
// Encode Cng with too long input vector.
TEST_F(CngTest, CngEncodeTooLong) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t number_bytes;
// Create and init encoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 8000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
// Run encoder with too much data.
EXPECT_EQ(-1, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 641, sid_data,
&number_bytes, kNoSid));
EXPECT_EQ(6140, WebRtcCng_GetErrorCodeEnc(cng_enc_inst_));
// Free encoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
}
// Call encode without calling init.
TEST_F(CngTest, CngEncodeNoInit) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t number_bytes;
// Create encoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
// Run encoder without calling init.
EXPECT_EQ(-1, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 640, sid_data,
&number_bytes, kNoSid));
EXPECT_EQ(6120, WebRtcCng_GetErrorCodeEnc(cng_enc_inst_));
// Free encoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
}
// Update SID parameters, for both 9 and 16 parameters.
TEST_F(CngTest, CngUpdateSid) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t number_bytes;
// Create and initialize encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_CreateDec(&cng_dec_inst_));
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 16000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_InitDec(cng_dec_inst_));
// Run normal Encode and UpdateSid.
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 160, sid_data, &number_bytes, kForceSid));
EXPECT_EQ(0, WebRtcCng_UpdateSid(cng_dec_inst_, sid_data,
kCNGNumParamsNormal + 1));
// Reinit with new length.
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 16000, kSidNormalIntervalUpdate,
kCNGNumParamsHigh));
EXPECT_EQ(0, WebRtcCng_InitDec(cng_dec_inst_));
// Expect 0 because of unstable parameters after switching length.
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 160, sid_data,
&number_bytes, kForceSid));
EXPECT_EQ(kCNGNumParamsHigh + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_ + 160, 160, sid_data, &number_bytes,
kForceSid));
EXPECT_EQ(0, WebRtcCng_UpdateSid(cng_dec_inst_, sid_data,
kCNGNumParamsNormal + 1));
// Free encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_FreeDec(cng_dec_inst_));
}
// Update SID parameters, with wrong parameters or without calling decode.
TEST_F(CngTest, CngUpdateSidErroneous) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t number_bytes;
// Create encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_CreateDec(&cng_dec_inst_));
// Encode.
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 16000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 160, sid_data, &number_bytes, kForceSid));
// Update Sid before initializing decoder.
EXPECT_EQ(-1, WebRtcCng_UpdateSid(cng_dec_inst_, sid_data,
kCNGNumParamsNormal + 1));
EXPECT_EQ(6220, WebRtcCng_GetErrorCodeDec(cng_dec_inst_));
// Initialize decoder.
EXPECT_EQ(0, WebRtcCng_InitDec(cng_dec_inst_));
// First run with valid parameters, then with too many CNG parameters.
// The function will operate correctly by only reading the maximum number of
// parameters, skipping the extra.
EXPECT_EQ(0, WebRtcCng_UpdateSid(cng_dec_inst_, sid_data,
kCNGNumParamsNormal + 1));
EXPECT_EQ(0, WebRtcCng_UpdateSid(cng_dec_inst_, sid_data,
kCNGNumParamsTooHigh + 1));
// Free encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_FreeDec(cng_dec_inst_));
}
// Test to generate cng data, by forcing SID. Both normal and faulty condition.
TEST_F(CngTest, CngGenerate) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t out_data[640];
int16_t number_bytes;
// Create and initialize encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_CreateDec(&cng_dec_inst_));
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 16000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_InitDec(cng_dec_inst_));
// Normal Encode.
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 160, sid_data, &number_bytes, kForceSid));
// Normal UpdateSid.
EXPECT_EQ(0, WebRtcCng_UpdateSid(cng_dec_inst_, sid_data,
kCNGNumParamsNormal + 1));
// Two normal Generate, one with new_period.
EXPECT_EQ(0, WebRtcCng_Generate(cng_dec_inst_, out_data, 640, 1));
EXPECT_EQ(0, WebRtcCng_Generate(cng_dec_inst_, out_data, 640, 0));
// Call Genereate with too much data.
EXPECT_EQ(-1, WebRtcCng_Generate(cng_dec_inst_, out_data, 641, 0));
EXPECT_EQ(6140, WebRtcCng_GetErrorCodeDec(cng_dec_inst_));
// Free encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_FreeDec(cng_dec_inst_));
}
// Test automatic SID.
TEST_F(CngTest, CngAutoSid) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t number_bytes;
// Create and initialize encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_CreateDec(&cng_dec_inst_));
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 16000, kSidNormalIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_InitDec(cng_dec_inst_));
// Normal Encode, 100 msec, where no SID data should be generated.
for (int i = 0; i < 10; i++) {
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 160, sid_data,
&number_bytes, kNoSid));
}
// We have reached 100 msec, and SID data should be generated.
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 160, sid_data, &number_bytes, kNoSid));
// Free encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_FreeDec(cng_dec_inst_));
}
// Test automatic SID, with very short interval.
TEST_F(CngTest, CngAutoSidShort) {
uint8_t sid_data[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t number_bytes;
// Create and initialize encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_CreateEnc(&cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_CreateDec(&cng_dec_inst_));
EXPECT_EQ(0, WebRtcCng_InitEnc(cng_enc_inst_, 16000, kSidShortIntervalUpdate,
kCNGNumParamsNormal));
EXPECT_EQ(0, WebRtcCng_InitDec(cng_dec_inst_));
// First call will never generate SID, unless forced to.
EXPECT_EQ(0, WebRtcCng_Encode(cng_enc_inst_, speech_data_, 160, sid_data,
&number_bytes, kNoSid));
// Normal Encode, 100 msec, SID data should be generated all the time.
for (int i = 0; i < 10; i++) {
EXPECT_EQ(kCNGNumParamsNormal + 1, WebRtcCng_Encode(
cng_enc_inst_, speech_data_, 160, sid_data, &number_bytes, kNoSid));
}
// Free encoder and decoder memory.
EXPECT_EQ(0, WebRtcCng_FreeEnc(cng_enc_inst_));
EXPECT_EQ(0, WebRtcCng_FreeDec(cng_dec_inst_));
}
} // namespace webrtc

View File

@@ -0,0 +1,162 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_CODING_CODECS_CNG_MAIN_INTERFACE_WEBRTC_CNG_H_
#define WEBRTC_MODULES_AUDIO_CODING_CODECS_CNG_MAIN_INTERFACE_WEBRTC_CNG_H_
#include "typedefs.h"
#ifdef __cplusplus
extern "C" {
#endif
#define WEBRTC_CNG_MAX_LPC_ORDER 12
#define WEBRTC_CNG_MAX_OUTSIZE_ORDER 640
/* Define Error codes. */
/* 6100 Encoder */
#define CNG_ENCODER_NOT_INITIATED 6120
#define CNG_DISALLOWED_LPC_ORDER 6130
#define CNG_DISALLOWED_FRAME_SIZE 6140
#define CNG_DISALLOWED_SAMPLING_FREQUENCY 6150
/* 6200 Decoder */
#define CNG_DECODER_NOT_INITIATED 6220
typedef struct WebRtcCngEncInst CNG_enc_inst;
typedef struct WebRtcCngDecInst CNG_dec_inst;
/****************************************************************************
* WebRtcCng_CreateEnc/Dec(...)
*
* These functions create an instance to the specified structure
*
* Input:
* - XXX_inst : Pointer to created instance that should be created
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_CreateEnc(CNG_enc_inst** cng_inst);
int16_t WebRtcCng_CreateDec(CNG_dec_inst** cng_inst);
/****************************************************************************
* WebRtcCng_InitEnc/Dec(...)
*
* This function initializes a instance
*
* Input:
* - cng_inst : Instance that should be initialized
*
* - fs : 8000 for narrowband and 16000 for wideband
* - interval : generate SID data every interval ms
* - quality : Number of refl. coefs, maximum allowed is 12
*
* Output:
* - cng_inst : Initialized instance
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_InitEnc(CNG_enc_inst* cng_inst, uint16_t fs, int16_t interval,
int16_t quality);
int16_t WebRtcCng_InitDec(CNG_dec_inst* cng_inst);
/****************************************************************************
* WebRtcCng_FreeEnc/Dec(...)
*
* These functions frees the dynamic memory of a specified instance
*
* Input:
* - cng_inst : Pointer to created instance that should be freed
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_FreeEnc(CNG_enc_inst* cng_inst);
int16_t WebRtcCng_FreeDec(CNG_dec_inst* cng_inst);
/****************************************************************************
* WebRtcCng_Encode(...)
*
* These functions analyzes background noise
*
* Input:
* - cng_inst : Pointer to created instance
* - speech : Signal to be analyzed
* - nrOfSamples : Size of speech vector
* - forceSID : not zero to force SID frame and reset
*
* Output:
* - bytesOut : Nr of bytes to transmit, might be 0
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_Encode(CNG_enc_inst* cng_inst, int16_t* speech,
int16_t nrOfSamples, uint8_t* SIDdata,
int16_t* bytesOut, int16_t forceSID);
/****************************************************************************
* WebRtcCng_UpdateSid(...)
*
* These functions updates the CN state, when a new SID packet arrives
*
* Input:
* - cng_inst : Pointer to created instance that should be freed
* - SID : SID packet, all headers removed
* - length : Length in bytes of SID packet
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_UpdateSid(CNG_dec_inst* cng_inst, uint8_t* SID,
int16_t length);
/****************************************************************************
* WebRtcCng_Generate(...)
*
* These functions generates CN data when needed
*
* Input:
* - cng_inst : Pointer to created instance that should be freed
* - outData : pointer to area to write CN data
* - nrOfSamples : How much data to generate
* - new_period : >0 if a new period of CNG, will reset history
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_Generate(CNG_dec_inst* cng_inst, int16_t* outData,
int16_t nrOfSamples, int16_t new_period);
/*****************************************************************************
* WebRtcCng_GetErrorCodeEnc/Dec(...)
*
* This functions can be used to check the error code of a CNG instance. When
* a function returns -1 a error code will be set for that instance. The
* function below extract the code of the last error that occurred in the
* specified instance.
*
* Input:
* - CNG_inst : CNG enc/dec instance
*
* Return value : Error code
*/
int16_t WebRtcCng_GetErrorCodeEnc(CNG_enc_inst* cng_inst);
int16_t WebRtcCng_GetErrorCodeDec(CNG_dec_inst* cng_inst);
#ifdef __cplusplus
}
#endif
#endif // WEBRTC_MODULES_AUDIO_CODING_CODECS_CNG_MAIN_INTERFACE_WEBRTC_CNG_H_

View File

@@ -0,0 +1,602 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc_cng.h"
#include <string.h>
#include <stdlib.h>
#include "cng_helpfuns.h"
#include "signal_processing_library.h"
typedef struct WebRtcCngDecInst_t_ {
uint32_t dec_seed;
int32_t dec_target_energy;
int32_t dec_used_energy;
int16_t dec_target_reflCoefs[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t dec_used_reflCoefs[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t dec_filtstate[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t dec_filtstateLow[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t dec_Efiltstate[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t dec_EfiltstateLow[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t dec_order;
int16_t dec_target_scale_factor; /* Q29 */
int16_t dec_used_scale_factor; /* Q29 */
int16_t target_scale_factor; /* Q13 */
int16_t errorcode;
int16_t initflag;
} WebRtcCngDecInst_t;
typedef struct WebRtcCngEncInst_t_ {
int16_t enc_nrOfCoefs;
uint16_t enc_sampfreq;
int16_t enc_interval;
int16_t enc_msSinceSID;
int32_t enc_Energy;
int16_t enc_reflCoefs[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int32_t enc_corrVector[WEBRTC_CNG_MAX_LPC_ORDER + 1];
uint32_t enc_seed;
int16_t errorcode;
int16_t initflag;
} WebRtcCngEncInst_t;
const int32_t WebRtcCng_kDbov[94] = {
1081109975, 858756178, 682134279, 541838517, 430397633, 341876992,
271562548, 215709799, 171344384, 136103682, 108110997, 85875618,
68213428, 54183852, 43039763, 34187699, 27156255, 21570980,
17134438, 13610368, 10811100, 8587562, 6821343, 5418385,
4303976, 3418770, 2715625, 2157098, 1713444, 1361037,
1081110, 858756, 682134, 541839, 430398, 341877,
271563, 215710, 171344, 136104, 108111, 85876,
68213, 54184, 43040, 34188, 27156, 21571,
17134, 13610, 10811, 8588, 6821, 5418,
4304, 3419, 2716, 2157, 1713, 1361,
1081, 859, 682, 542, 430, 342,
272, 216, 171, 136, 108, 86,
68, 54, 43, 34, 27, 22,
17, 14, 11, 9, 7, 5,
4, 3, 3, 2, 2, 1,
1, 1, 1, 1
};
const int16_t WebRtcCng_kCorrWindow[WEBRTC_CNG_MAX_LPC_ORDER] = {
32702, 32636, 32570, 32505, 32439, 32374,
32309, 32244, 32179, 32114, 32049, 31985
};
/****************************************************************************
* WebRtcCng_CreateEnc/Dec(...)
*
* These functions create an instance to the specified structure
*
* Input:
* - XXX_inst : Pointer to created instance that should be created
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_CreateEnc(CNG_enc_inst** cng_inst) {
if (cng_inst != NULL) {
*cng_inst = (CNG_enc_inst*) malloc(sizeof(WebRtcCngEncInst_t));
if (*cng_inst != NULL) {
(*(WebRtcCngEncInst_t**) cng_inst)->errorcode = 0;
(*(WebRtcCngEncInst_t**) cng_inst)->initflag = 0;
/* Needed to get the right function pointers in SPLIB. */
WebRtcSpl_Init();
return 0;
} else {
/* The memory could not be allocated. */
return -1;
}
} else {
/* The input pointer is invalid (NULL). */
return -1;
}
}
int16_t WebRtcCng_CreateDec(CNG_dec_inst** cng_inst) {
if (cng_inst != NULL ) {
*cng_inst = (CNG_dec_inst*) malloc(sizeof(WebRtcCngDecInst_t));
if (*cng_inst != NULL ) {
(*(WebRtcCngDecInst_t**) cng_inst)->errorcode = 0;
(*(WebRtcCngDecInst_t**) cng_inst)->initflag = 0;
/* Needed to get the right function pointers in SPLIB. */
WebRtcSpl_Init();
return 0;
} else {
/* The memory could not be allocated */
return -1;
}
} else {
/* The input pointer is invalid (NULL). */
return -1;
}
}
/****************************************************************************
* WebRtcCng_InitEnc/Dec(...)
*
* This function initializes a instance
*
* Input:
* - cng_inst : Instance that should be initialized
*
* - fs : 8000 for narrowband and 16000 for wideband
* - interval : generate SID data every interval ms
* - quality : TBD
*
* Output:
* - cng_inst : Initialized instance
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_InitEnc(CNG_enc_inst* cng_inst, uint16_t fs, int16_t interval,
int16_t quality) {
int i;
WebRtcCngEncInst_t* inst = (WebRtcCngEncInst_t*) cng_inst;
memset(inst, 0, sizeof(WebRtcCngEncInst_t));
/* Check LPC order */
if (quality > WEBRTC_CNG_MAX_LPC_ORDER || quality <= 0) {
inst->errorcode = CNG_DISALLOWED_LPC_ORDER;
return -1;
}
inst->enc_sampfreq = fs;
inst->enc_interval = interval;
inst->enc_nrOfCoefs = quality;
inst->enc_msSinceSID = 0;
inst->enc_seed = 7777; /* For debugging only. */
inst->enc_Energy = 0;
for (i = 0; i < (WEBRTC_CNG_MAX_LPC_ORDER + 1); i++) {
inst->enc_reflCoefs[i] = 0;
inst->enc_corrVector[i] = 0;
}
inst->initflag = 1;
return 0;
}
int16_t WebRtcCng_InitDec(CNG_dec_inst* cng_inst) {
int i;
WebRtcCngDecInst_t* inst = (WebRtcCngDecInst_t*) cng_inst;
memset(inst, 0, sizeof(WebRtcCngDecInst_t));
inst->dec_seed = 7777; /* For debugging only. */
inst->dec_order = 5;
inst->dec_target_scale_factor = 0;
inst->dec_used_scale_factor = 0;
for (i = 0; i < (WEBRTC_CNG_MAX_LPC_ORDER + 1); i++) {
inst->dec_filtstate[i] = 0;
inst->dec_target_reflCoefs[i] = 0;
inst->dec_used_reflCoefs[i] = 0;
}
inst->dec_target_reflCoefs[0] = 0;
inst->dec_used_reflCoefs[0] = 0;
inst->dec_used_energy = 0;
inst->initflag = 1;
return 0;
}
/****************************************************************************
* WebRtcCng_FreeEnc/Dec(...)
*
* These functions frees the dynamic memory of a specified instance
*
* Input:
* - cng_inst : Pointer to created instance that should be freed
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_FreeEnc(CNG_enc_inst* cng_inst) {
free(cng_inst);
return 0;
}
int16_t WebRtcCng_FreeDec(CNG_dec_inst* cng_inst) {
free(cng_inst);
return 0;
}
/****************************************************************************
* WebRtcCng_Encode(...)
*
* These functions analyzes background noise
*
* Input:
* - cng_inst : Pointer to created instance
* - speech : Signal (noise) to be analyzed
* - nrOfSamples : Size of speech vector
* - bytesOut : Nr of bytes to transmit, might be 0
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_Encode(CNG_enc_inst* cng_inst, int16_t* speech,
int16_t nrOfSamples, uint8_t* SIDdata,
int16_t* bytesOut, int16_t forceSID) {
WebRtcCngEncInst_t* inst = (WebRtcCngEncInst_t*) cng_inst;
int16_t arCoefs[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int32_t corrVector[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t refCs[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t hanningW[WEBRTC_CNG_MAX_OUTSIZE_ORDER];
int16_t ReflBeta = 19661; /* 0.6 in q15. */
int16_t ReflBetaComp = 13107; /* 0.4 in q15. */
int32_t outEnergy;
int outShifts;
int i, stab;
int acorrScale;
int index;
int16_t ind, factor;
int32_t* bptr;
int32_t blo, bhi;
int16_t negate;
const int16_t* aptr;
int16_t speechBuf[WEBRTC_CNG_MAX_OUTSIZE_ORDER];
/* Check if encoder initiated. */
if (inst->initflag != 1) {
inst->errorcode = CNG_ENCODER_NOT_INITIATED;
return -1;
}
/* Check framesize. */
if (nrOfSamples > WEBRTC_CNG_MAX_OUTSIZE_ORDER) {
inst->errorcode = CNG_DISALLOWED_FRAME_SIZE;
return -1;
}
for (i = 0; i < nrOfSamples; i++) {
speechBuf[i] = speech[i];
}
factor = nrOfSamples;
/* Calculate energy and a coefficients. */
outEnergy = WebRtcSpl_Energy(speechBuf, nrOfSamples, &outShifts);
while (outShifts > 0) {
/* We can only do 5 shifts without destroying accuracy in
* division factor. */
if (outShifts > 5) {
outEnergy <<= (outShifts - 5);
outShifts = 5;
} else {
factor /= 2;
outShifts--;
}
}
outEnergy = WebRtcSpl_DivW32W16(outEnergy, factor);
if (outEnergy > 1) {
/* Create Hanning Window. */
WebRtcSpl_GetHanningWindow(hanningW, nrOfSamples / 2);
for (i = 0; i < (nrOfSamples / 2); i++)
hanningW[nrOfSamples - i - 1] = hanningW[i];
WebRtcSpl_ElementwiseVectorMult(speechBuf, hanningW, speechBuf, nrOfSamples,
14);
WebRtcSpl_AutoCorrelation(speechBuf, nrOfSamples, inst->enc_nrOfCoefs,
corrVector, &acorrScale);
if (*corrVector == 0)
*corrVector = WEBRTC_SPL_WORD16_MAX;
/* Adds the bandwidth expansion. */
aptr = WebRtcCng_kCorrWindow;
bptr = corrVector;
/* (zzz) lpc16_1 = 17+1+820+2+2 = 842 (ordo2=700). */
for (ind = 0; ind < inst->enc_nrOfCoefs; ind++) {
/* The below code multiplies the 16 b corrWindow values (Q15) with
* the 32 b corrvector (Q0) and shifts the result down 15 steps. */
negate = *bptr < 0;
if (negate)
*bptr = -*bptr;
blo = (int32_t) * aptr * (*bptr & 0xffff);
bhi = ((blo >> 16) & 0xffff)
+ ((int32_t)(*aptr++) * ((*bptr >> 16) & 0xffff));
blo = (blo & 0xffff) | ((bhi & 0xffff) << 16);
*bptr = (((bhi >> 16) & 0x7fff) << 17) | ((uint32_t) blo >> 15);
if (negate)
*bptr = -*bptr;
bptr++;
}
/* End of bandwidth expansion. */
stab = WebRtcSpl_LevinsonDurbin(corrVector, arCoefs, refCs,
inst->enc_nrOfCoefs);
if (!stab) {
/* Disregard from this frame */
*bytesOut = 0;
return 0;
}
} else {
for (i = 0; i < inst->enc_nrOfCoefs; i++)
refCs[i] = 0;
}
if (forceSID) {
/* Read instantaneous values instead of averaged. */
for (i = 0; i < inst->enc_nrOfCoefs; i++)
inst->enc_reflCoefs[i] = refCs[i];
inst->enc_Energy = outEnergy;
} else {
/* Average history with new values. */
for (i = 0; i < (inst->enc_nrOfCoefs); i++) {
inst->enc_reflCoefs[i] = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(
inst->enc_reflCoefs[i], ReflBeta, 15);
inst->enc_reflCoefs[i] += (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(
refCs[i], ReflBetaComp, 15);
}
inst->enc_Energy = (outEnergy >> 2) + (inst->enc_Energy >> 1)
+ (inst->enc_Energy >> 2);
}
if (inst->enc_Energy < 1) {
inst->enc_Energy = 1;
}
if ((inst->enc_msSinceSID > (inst->enc_interval - 1)) || forceSID) {
/* Search for best dbov value. */
index = 0;
for (i = 1; i < 93; i++) {
/* Always round downwards. */
if ((inst->enc_Energy - WebRtcCng_kDbov[i]) > 0) {
index = i;
break;
}
}
if ((i == 93) && (index == 0))
index = 94;
SIDdata[0] = index;
/* Quantize coefficients with tweak for WebRtc implementation of RFC3389. */
if (inst->enc_nrOfCoefs == WEBRTC_CNG_MAX_LPC_ORDER) {
for (i = 0; i < inst->enc_nrOfCoefs; i++) {
/* Q15 to Q7 with rounding. */
SIDdata[i + 1] = ((inst->enc_reflCoefs[i] + 128) >> 8);
}
} else {
for (i = 0; i < inst->enc_nrOfCoefs; i++) {
/* Q15 to Q7 with rounding. */
SIDdata[i + 1] = (127 + ((inst->enc_reflCoefs[i] + 128) >> 8));
}
}
inst->enc_msSinceSID = 0;
*bytesOut = inst->enc_nrOfCoefs + 1;
inst->enc_msSinceSID += (1000 * nrOfSamples) / inst->enc_sampfreq;
return inst->enc_nrOfCoefs + 1;
} else {
inst->enc_msSinceSID += (1000 * nrOfSamples) / inst->enc_sampfreq;
*bytesOut = 0;
return 0;
}
}
/****************************************************************************
* WebRtcCng_UpdateSid(...)
*
* These functions updates the CN state, when a new SID packet arrives
*
* Input:
* - cng_inst : Pointer to created instance that should be freed
* - SID : SID packet, all headers removed
* - length : Length in bytes of SID packet
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_UpdateSid(CNG_dec_inst* cng_inst, uint8_t* SID,
int16_t length) {
WebRtcCngDecInst_t* inst = (WebRtcCngDecInst_t*) cng_inst;
int16_t refCs[WEBRTC_CNG_MAX_LPC_ORDER];
int32_t targetEnergy;
int i;
if (inst->initflag != 1) {
inst->errorcode = CNG_DECODER_NOT_INITIATED;
return -1;
}
/* Throw away reflection coefficients of higher order than we can handle. */
if (length > (WEBRTC_CNG_MAX_LPC_ORDER + 1))
length = WEBRTC_CNG_MAX_LPC_ORDER + 1;
inst->dec_order = length - 1;
if (SID[0] > 93)
SID[0] = 93;
targetEnergy = WebRtcCng_kDbov[SID[0]];
/* Take down target energy to 75%. */
targetEnergy = targetEnergy >> 1;
targetEnergy += targetEnergy >> 2;
inst->dec_target_energy = targetEnergy;
/* Reconstruct coeffs with tweak for WebRtc implementation of RFC3389. */
if (inst->dec_order == WEBRTC_CNG_MAX_LPC_ORDER) {
for (i = 0; i < (inst->dec_order); i++) {
refCs[i] = SID[i + 1] << 8; /* Q7 to Q15*/
inst->dec_target_reflCoefs[i] = refCs[i];
}
} else {
for (i = 0; i < (inst->dec_order); i++) {
refCs[i] = (SID[i + 1] - 127) << 8; /* Q7 to Q15. */
inst->dec_target_reflCoefs[i] = refCs[i];
}
}
for (i = (inst->dec_order); i < WEBRTC_CNG_MAX_LPC_ORDER; i++) {
refCs[i] = 0;
inst->dec_target_reflCoefs[i] = refCs[i];
}
return 0;
}
/****************************************************************************
* WebRtcCng_Generate(...)
*
* These functions generates CN data when needed
*
* Input:
* - cng_inst : Pointer to created instance that should be freed
* - outData : pointer to area to write CN data
* - nrOfSamples : How much data to generate
*
* Return value : 0 - Ok
* -1 - Error
*/
int16_t WebRtcCng_Generate(CNG_dec_inst* cng_inst, int16_t* outData,
int16_t nrOfSamples, int16_t new_period) {
WebRtcCngDecInst_t* inst = (WebRtcCngDecInst_t*) cng_inst;
int i;
int16_t excitation[WEBRTC_CNG_MAX_OUTSIZE_ORDER];
int16_t low[WEBRTC_CNG_MAX_OUTSIZE_ORDER];
int16_t lpPoly[WEBRTC_CNG_MAX_LPC_ORDER + 1];
int16_t ReflBetaStd = 26214; /* 0.8 in q15. */
int16_t ReflBetaCompStd = 6553; /* 0.2 in q15. */
int16_t ReflBetaNewP = 19661; /* 0.6 in q15. */
int16_t ReflBetaCompNewP = 13107; /* 0.4 in q15. */
int16_t Beta, BetaC, tmp1, tmp2, tmp3;
int32_t targetEnergy;
int16_t En;
int16_t temp16;
if (nrOfSamples > WEBRTC_CNG_MAX_OUTSIZE_ORDER) {
inst->errorcode = CNG_DISALLOWED_FRAME_SIZE;
return -1;
}
if (new_period) {
inst->dec_used_scale_factor = inst->dec_target_scale_factor;
Beta = ReflBetaNewP;
BetaC = ReflBetaCompNewP;
} else {
Beta = ReflBetaStd;
BetaC = ReflBetaCompStd;
}
/* Here we use a 0.5 weighting, should possibly be modified to 0.6. */
tmp1 = inst->dec_used_scale_factor << 2; /* Q13->Q15 */
tmp2 = inst->dec_target_scale_factor << 2; /* Q13->Q15 */
tmp3 = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(tmp1, Beta, 15);
tmp3 += (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(tmp2, BetaC, 15);
inst->dec_used_scale_factor = tmp3 >> 2; /* Q15->Q13 */
inst->dec_used_energy = inst->dec_used_energy >> 1;
inst->dec_used_energy += inst->dec_target_energy >> 1;
/* Do the same for the reflection coeffs. */
for (i = 0; i < WEBRTC_CNG_MAX_LPC_ORDER; i++) {
inst->dec_used_reflCoefs[i] = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(
inst->dec_used_reflCoefs[i], Beta, 15);
inst->dec_used_reflCoefs[i] += (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(
inst->dec_target_reflCoefs[i], BetaC, 15);
}
/* Compute the polynomial coefficients. */
WebRtcCng_K2a16(inst->dec_used_reflCoefs, WEBRTC_CNG_MAX_LPC_ORDER, lpPoly);
targetEnergy = inst->dec_used_energy;
/* Calculate scaling factor based on filter energy. */
En = 8192; /* 1.0 in Q13. */
for (i = 0; i < (WEBRTC_CNG_MAX_LPC_ORDER); i++) {
/* Floating point value for reference.
E *= 1.0 - (inst->dec_used_reflCoefs[i] / 32768.0) *
(inst->dec_used_reflCoefs[i] / 32768.0);
*/
/* Same in fixed point. */
/* K(i).^2 in Q15. */
temp16 = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(
inst->dec_used_reflCoefs[i], inst->dec_used_reflCoefs[i], 15);
/* 1 - K(i).^2 in Q15. */
temp16 = 0x7fff - temp16;
En = (int16_t) WEBRTC_SPL_MUL_16_16_RSFT(En, temp16, 15);
}
/* float scaling= sqrt(E * inst->dec_target_energy / (1 << 24)); */
/* Calculate sqrt(En * target_energy / excitation energy) */
targetEnergy = WebRtcSpl_Sqrt(inst->dec_used_energy);
En = (int16_t) WebRtcSpl_Sqrt(En) << 6;
En = (En * 3) >> 1; /* 1.5 estimates sqrt(2). */
inst->dec_used_scale_factor = (int16_t)((En * targetEnergy) >> 12);
/* Generate excitation. */
/* Excitation energy per sample is 2.^24 - Q13 N(0,1). */
for (i = 0; i < nrOfSamples; i++) {
excitation[i] = WebRtcSpl_RandN(&inst->dec_seed) >> 1;
}
/* Scale to correct energy. */
WebRtcSpl_ScaleVector(excitation, excitation, inst->dec_used_scale_factor,
nrOfSamples, 13);
/* |lpPoly| - Coefficients in Q12.
* |excitation| - Speech samples.
* |nst->dec_filtstate| - State preservation.
* |outData| - Filtered speech samples. */
WebRtcSpl_FilterAR(lpPoly, WEBRTC_CNG_MAX_LPC_ORDER + 1, excitation,
nrOfSamples, inst->dec_filtstate, WEBRTC_CNG_MAX_LPC_ORDER,
inst->dec_filtstateLow, WEBRTC_CNG_MAX_LPC_ORDER, outData,
low, nrOfSamples);
return 0;
}
/****************************************************************************
* WebRtcCng_GetErrorCodeEnc/Dec(...)
*
* This functions can be used to check the error code of a CNG instance. When
* a function returns -1 a error code will be set for that instance. The
* function below extract the code of the last error that occured in the
* specified instance.
*
* Input:
* - CNG_inst : CNG enc/dec instance
*
* Return value : Error code
*/
int16_t WebRtcCng_GetErrorCodeEnc(CNG_enc_inst* cng_inst) {
/* Typecast pointer to real structure. */
WebRtcCngEncInst_t* inst = (WebRtcCngEncInst_t*) cng_inst;
return inst->errorcode;
}
int16_t WebRtcCng_GetErrorCodeDec(CNG_dec_inst* cng_inst) {
/* Typecast pointer to real structure. */
WebRtcCngDecInst_t* inst = (WebRtcCngDecInst_t*) cng_inst;
return inst->errorcode;
}

View File

@@ -0,0 +1,40 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
include $(LOCAL_PATH)/../../../../../android-webrtc.mk
LOCAL_ARM_MODE := arm
LOCAL_MODULE_CLASS := STATIC_LIBRARIES
LOCAL_MODULE := libwebrtc_g711
LOCAL_MODULE_TAGS := optional
LOCAL_GENERATED_SOURCES :=
LOCAL_SRC_FILES := \
g711_interface.c \
g711.c
# Flags passed to both C and C++ files.
LOCAL_CFLAGS := \
$(MY_WEBRTC_COMMON_DEFS)
LOCAL_C_INCLUDES := \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/../../../..
LOCAL_SHARED_LIBRARIES := \
libcutils \
libdl \
libstlport
ifndef NDK_ROOT
include external/stlport/libstlport.mk
endif
include $(BUILD_STATIC_LIBRARY)

View File

@@ -0,0 +1,5 @@
# These are for the common case of adding or renaming files. If you're doing
# structural changes, please get a review from a reviewer in this file.
per-file *.gyp=*
per-file *.gypi=*

View File

@@ -0,0 +1,73 @@
/*
* SpanDSP - a series of DSP components for telephony
*
* g711.c - A-law and u-law transcoding routines
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2006 Steve Underwood
*
* Despite my general liking of the GPL, I place this code in the
* public domain for the benefit of all mankind - even the slimy
* ones who might try to proprietize my work and use it to my
* detriment.
*
* $Id: g711.c,v 1.1 2006/06/07 15:46:39 steveu Exp $
*
* Modifications for WebRtc, 2011/04/28, by tlegrand:
* -Removed unused include files
* -Changed to use WebRtc types
* -Added option to run encoder bitexact with ITU-T reference implementation
*/
#include "g711.h"
#include "typedefs.h"
/* Copied from the CCITT G.711 specification */
static const uint8_t ulaw_to_alaw_table[256] = {
42, 43, 40, 41, 46, 47, 44, 45, 34, 35, 32, 33, 38, 39, 36,
37, 58, 59, 56, 57, 62, 63, 60, 61, 50, 51, 48, 49, 54, 55,
52, 53, 10, 11, 8, 9, 14, 15, 12, 13, 2, 3, 0, 1, 6,
7, 4, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, 17, 22,
23, 20, 21, 106, 104, 105, 110, 111, 108, 109, 98, 99, 96, 97, 102,
103, 100, 101, 122, 120, 126, 127, 124, 125, 114, 115, 112, 113, 118, 119,
116, 117, 75, 73, 79, 77, 66, 67, 64, 65, 70, 71, 68, 69, 90,
91, 88, 89, 94, 95, 92, 93, 82, 82, 83, 83, 80, 80, 81, 81,
86, 86, 87, 87, 84, 84, 85, 85, 170, 171, 168, 169, 174, 175, 172,
173, 162, 163, 160, 161, 166, 167, 164, 165, 186, 187, 184, 185, 190, 191,
188, 189, 178, 179, 176, 177, 182, 183, 180, 181, 138, 139, 136, 137, 142,
143, 140, 141, 130, 131, 128, 129, 134, 135, 132, 154, 155, 152, 153, 158,
159, 156, 157, 146, 147, 144, 145, 150, 151, 148, 149, 234, 232, 233, 238,
239, 236, 237, 226, 227, 224, 225, 230, 231, 228, 229, 250, 248, 254, 255,
252, 253, 242, 243, 240, 241, 246, 247, 244, 245, 203, 201, 207, 205, 194,
195, 192, 193, 198, 199, 196, 197, 218, 219, 216, 217, 222, 223, 220, 221,
210, 210, 211, 211, 208, 208, 209, 209, 214, 214, 215, 215, 212, 212, 213,
213
};
/* These transcoding tables are copied from the CCITT G.711 specification. To
achieve optimal results, do not change them. */
static const uint8_t alaw_to_ulaw_table[256] = {
42, 43, 40, 41, 46, 47, 44, 45, 34, 35, 32, 33, 38, 39, 36,
37, 57, 58, 55, 56, 61, 62, 59, 60, 49, 50, 47, 48, 53, 54,
51, 52, 10, 11, 8, 9, 14, 15, 12, 13, 2, 3, 0, 1, 6,
7, 4, 5, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, 17,
22, 23, 20, 21, 98, 99, 96, 97, 102, 103, 100, 101, 93, 93, 92,
92, 95, 95, 94, 94, 116, 118, 112, 114, 124, 126, 120, 122, 106, 107,
104, 105, 110, 111, 108, 109, 72, 73, 70, 71, 76, 77, 74, 75, 64,
65, 63, 63, 68, 69, 66, 67, 86, 87, 84, 85, 90, 91, 88, 89,
79, 79, 78, 78, 82, 83, 80, 81, 170, 171, 168, 169, 174, 175, 172,
173, 162, 163, 160, 161, 166, 167, 164, 165, 185, 186, 183, 184, 189, 190,
187, 188, 177, 178, 175, 176, 181, 182, 179, 180, 138, 139, 136, 137, 142,
143, 140, 141, 130, 131, 128, 129, 134, 135, 132, 133, 154, 155, 152, 153,
158, 159, 156, 157, 146, 147, 144, 145, 150, 151, 148, 149, 226, 227, 224,
225, 230, 231, 228, 229, 221, 221, 220, 220, 223, 223, 222, 222, 244, 246,
240, 242, 252, 254, 248, 250, 234, 235, 232, 233, 238, 239, 236, 237, 200,
201, 198, 199, 204, 205, 202, 203, 192, 193, 191, 191, 196, 197, 194, 195,
214, 215, 212, 213, 218, 219, 216, 217, 207, 207, 206, 206, 210, 211, 208,
209
};
uint8_t alaw_to_ulaw(uint8_t alaw) { return alaw_to_ulaw_table[alaw]; }
uint8_t ulaw_to_alaw(uint8_t ulaw) { return ulaw_to_alaw_table[ulaw]; }

View File

@@ -0,0 +1,48 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'G711',
'type': 'static_library',
'include_dirs': [
'include',
'<(webrtc_root)',
],
'direct_dependent_settings': {
'include_dirs': [
'include',
'<(webrtc_root)',
],
},
'sources': [
'include/g711_interface.h',
'g711_interface.c',
'g711.c',
'g711.h',
],
},
], # targets
'conditions': [
['include_tests==1', {
'targets': [
{
'target_name': 'g711_test',
'type': 'executable',
'dependencies': [
'G711',
],
'sources': [
'test/testG711.cc',
],
},
], # targets
}], # include_tests
], # conditions
}

View File

@@ -0,0 +1,344 @@
/*
* SpanDSP - a series of DSP components for telephony
*
* g711.h - In line A-law and u-law conversion routines
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2001 Steve Underwood
*
* Despite my general liking of the GPL, I place this code in the
* public domain for the benefit of all mankind - even the slimy
* ones who might try to proprietize my work and use it to my
* detriment.
*
* $Id: g711.h,v 1.1 2006/06/07 15:46:39 steveu Exp $
*
* Modifications for WebRtc, 2011/04/28, by tlegrand:
* -Changed to use WebRtc types
* -Changed __inline__ to __inline
* -Two changes to make implementation bitexact with ITU-T reference implementation
*/
/*! \page g711_page A-law and mu-law handling
Lookup tables for A-law and u-law look attractive, until you consider the impact
on the CPU cache. If it causes a substantial area of your processor cache to get
hit too often, cache sloshing will severely slow things down. The main reason
these routines are slow in C, is the lack of direct access to the CPU's "find
the first 1" instruction. A little in-line assembler fixes that, and the
conversion routines can be faster than lookup tables, in most real world usage.
A "find the first 1" instruction is available on most modern CPUs, and is a
much underused feature.
If an assembly language method of bit searching is not available, these routines
revert to a method that can be a little slow, so the cache thrashing might not
seem so bad :(
Feel free to submit patches to add fast "find the first 1" support for your own
favourite processor.
Look up tables are used for transcoding between A-law and u-law, since it is
difficult to achieve the precise transcoding procedure laid down in the G.711
specification by other means.
*/
#if !defined(_G711_H_)
#define _G711_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "typedefs.h"
#if defined(__i386__)
/*! \brief Find the bit position of the highest set bit in a word
\param bits The word to be searched
\return The bit number of the highest set bit, or -1 if the word is zero. */
static __inline__ int top_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movl $-1,%%edx;\n"
" bsrl %%eax,%%edx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
/*! \brief Find the bit position of the lowest set bit in a word
\param bits The word to be searched
\return The bit number of the lowest set bit, or -1 if the word is zero. */
static __inline__ int bottom_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movl $-1,%%edx;\n"
" bsfl %%eax,%%edx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
#elif defined(__x86_64__)
static __inline__ int top_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movq $-1,%%rdx;\n"
" bsrq %%rax,%%rdx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
static __inline__ int bottom_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movq $-1,%%rdx;\n"
" bsfq %%rax,%%rdx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
#else
static __inline int top_bit(unsigned int bits) {
int i;
if (bits == 0) {
return -1;
}
i = 0;
if (bits & 0xFFFF0000) {
bits &= 0xFFFF0000;
i += 16;
}
if (bits & 0xFF00FF00) {
bits &= 0xFF00FF00;
i += 8;
}
if (bits & 0xF0F0F0F0) {
bits &= 0xF0F0F0F0;
i += 4;
}
if (bits & 0xCCCCCCCC) {
bits &= 0xCCCCCCCC;
i += 2;
}
if (bits & 0xAAAAAAAA) {
bits &= 0xAAAAAAAA;
i += 1;
}
return i;
}
static __inline int bottom_bit(unsigned int bits) {
int i;
if (bits == 0) {
return -1;
}
i = 32;
if (bits & 0x0000FFFF) {
bits &= 0x0000FFFF;
i -= 16;
}
if (bits & 0x00FF00FF) {
bits &= 0x00FF00FF;
i -= 8;
}
if (bits & 0x0F0F0F0F) {
bits &= 0x0F0F0F0F;
i -= 4;
}
if (bits & 0x33333333) {
bits &= 0x33333333;
i -= 2;
}
if (bits & 0x55555555) {
bits &= 0x55555555;
i -= 1;
}
return i;
}
#endif
/* N.B. It is tempting to use look-up tables for A-law and u-law conversion.
* However, you should consider the cache footprint.
*
* A 64K byte table for linear to x-law and a 512 byte table for x-law to
* linear sound like peanuts these days, and shouldn't an array lookup be
* real fast? No! When the cache sloshes as badly as this one will, a tight
* calculation may be better. The messiest part is normally finding the
* segment, but a little inline assembly can fix that on an i386, x86_64 and
* many other modern processors.
*/
/*
* Mu-law is basically as follows:
*
* Biased Linear Input Code Compressed Code
* ------------------------ ---------------
* 00000001wxyza 000wxyz
* 0000001wxyzab 001wxyz
* 000001wxyzabc 010wxyz
* 00001wxyzabcd 011wxyz
* 0001wxyzabcde 100wxyz
* 001wxyzabcdef 101wxyz
* 01wxyzabcdefg 110wxyz
* 1wxyzabcdefgh 111wxyz
*
* Each biased linear code has a leading 1 which identifies the segment
* number. The value of the segment number is equal to 7 minus the number
* of leading 0's. The quantization interval is directly available as the
* four bits wxyz. * The trailing bits (a - h) are ignored.
*
* Ordinarily the complement of the resulting code word is used for
* transmission, and so the code word is complemented before it is returned.
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
//#define ULAW_ZEROTRAP /* turn on the trap as per the MIL-STD */
#define ULAW_BIAS 0x84 /* Bias for linear code. */
/*! \brief Encode a linear sample to u-law
\param linear The sample to encode.
\return The u-law value.
*/
static __inline uint8_t linear_to_ulaw(int linear) {
uint8_t u_val;
int mask;
int seg;
/* Get the sign and the magnitude of the value. */
if (linear < 0) {
/* WebRtc, tlegrand: -1 added to get bitexact to reference implementation */
linear = ULAW_BIAS - linear - 1;
mask = 0x7F;
} else {
linear = ULAW_BIAS + linear;
mask = 0xFF;
}
seg = top_bit(linear | 0xFF) - 7;
/*
* Combine the sign, segment, quantization bits,
* and complement the code word.
*/
if (seg >= 8)
u_val = (uint8_t)(0x7F ^ mask);
else
u_val = (uint8_t)(((seg << 4) | ((linear >> (seg + 3)) & 0xF)) ^ mask);
#ifdef ULAW_ZEROTRAP
/* Optional ITU trap */
if (u_val == 0)
u_val = 0x02;
#endif
return u_val;
}
/*! \brief Decode an u-law sample to a linear value.
\param ulaw The u-law sample to decode.
\return The linear value.
*/
static __inline int16_t ulaw_to_linear(uint8_t ulaw) {
int t;
/* Complement to obtain normal u-law value. */
ulaw = ~ulaw;
/*
* Extract and bias the quantization bits. Then
* shift up by the segment number and subtract out the bias.
*/
t = (((ulaw & 0x0F) << 3) + ULAW_BIAS) << (((int) ulaw & 0x70) >> 4);
return (int16_t)((ulaw & 0x80) ? (ULAW_BIAS - t) : (t - ULAW_BIAS));
}
/*
* A-law is basically as follows:
*
* Linear Input Code Compressed Code
* ----------------- ---------------
* 0000000wxyza 000wxyz
* 0000001wxyza 001wxyz
* 000001wxyzab 010wxyz
* 00001wxyzabc 011wxyz
* 0001wxyzabcd 100wxyz
* 001wxyzabcde 101wxyz
* 01wxyzabcdef 110wxyz
* 1wxyzabcdefg 111wxyz
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
#define ALAW_AMI_MASK 0x55
/*! \brief Encode a linear sample to A-law
\param linear The sample to encode.
\return The A-law value.
*/
static __inline uint8_t linear_to_alaw(int linear) {
int mask;
int seg;
if (linear >= 0) {
/* Sign (bit 7) bit = 1 */
mask = ALAW_AMI_MASK | 0x80;
} else {
/* Sign (bit 7) bit = 0 */
mask = ALAW_AMI_MASK;
/* WebRtc, tlegrand: Changed from -8 to -1 to get bitexact to reference
* implementation */
linear = -linear - 1;
}
/* Convert the scaled magnitude to segment number. */
seg = top_bit(linear | 0xFF) - 7;
if (seg >= 8) {
if (linear >= 0) {
/* Out of range. Return maximum value. */
return (uint8_t)(0x7F ^ mask);
}
/* We must be just a tiny step below zero */
return (uint8_t)(0x00 ^ mask);
}
/* Combine the sign, segment, and quantization bits. */
return (uint8_t)(((seg << 4) | ((linear >> ((seg) ? (seg + 3) : 4)) & 0x0F)) ^
mask);
}
/*! \brief Decode an A-law sample to a linear value.
\param alaw The A-law sample to decode.
\return The linear value.
*/
static __inline int16_t alaw_to_linear(uint8_t alaw) {
int i;
int seg;
alaw ^= ALAW_AMI_MASK;
i = ((alaw & 0x0F) << 4);
seg = (((int) alaw & 0x70) >> 4);
if (seg)
i = (i + 0x108) << (seg - 1);
else
i += 8;
return (int16_t)((alaw & 0x80) ? i : -i);
}
/*! \brief Transcode from A-law to u-law, using the procedure defined in G.711.
\param alaw The A-law sample to transcode.
\return The best matching u-law value.
*/
uint8_t alaw_to_ulaw(uint8_t alaw);
/*! \brief Transcode from u-law to A-law, using the procedure defined in G.711.
\param alaw The u-law sample to transcode.
\return The best matching A-law value.
*/
uint8_t ulaw_to_alaw(uint8_t ulaw);
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,175 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include "g711.h"
#include "g711_interface.h"
#include "typedefs.h"
int16_t WebRtcG711_EncodeA(void* state,
int16_t* speechIn,
int16_t len,
int16_t* encoded) {
int n;
uint16_t tempVal, tempVal2;
// Set and discard to avoid getting warnings
(void)(state = NULL);
// Sanity check of input length
if (len < 0) {
return (-1);
}
// Loop over all samples
for (n = 0; n < len; n++) {
tempVal = (uint16_t) linear_to_alaw(speechIn[n]);
#ifdef WEBRTC_ARCH_BIG_ENDIAN
if ((n & 0x1) == 1) {
encoded[n >> 1] |= ((uint16_t) tempVal);
} else {
encoded[n >> 1] = ((uint16_t) tempVal) << 8;
}
#else
if ((n & 0x1) == 1) {
tempVal2 |= ((uint16_t) tempVal) << 8;
encoded[n >> 1] |= ((uint16_t) tempVal) << 8;
} else {
tempVal2 = ((uint16_t) tempVal);
encoded[n >> 1] = ((uint16_t) tempVal);
}
#endif
}
return (len);
}
int16_t WebRtcG711_EncodeU(void* state,
int16_t* speechIn,
int16_t len,
int16_t* encoded) {
int n;
uint16_t tempVal;
// Set and discard to avoid getting warnings
(void)(state = NULL);
// Sanity check of input length
if (len < 0) {
return (-1);
}
// Loop over all samples
for (n = 0; n < len; n++) {
tempVal = (uint16_t) linear_to_ulaw(speechIn[n]);
#ifdef WEBRTC_ARCH_BIG_ENDIAN
if ((n & 0x1) == 1) {
encoded[n >> 1] |= ((uint16_t) tempVal);
} else {
encoded[n >> 1] = ((uint16_t) tempVal) << 8;
}
#else
if ((n & 0x1) == 1) {
encoded[n >> 1] |= ((uint16_t) tempVal) << 8;
} else {
encoded[n >> 1] = ((uint16_t) tempVal);
}
#endif
}
return (len);
}
int16_t WebRtcG711_DecodeA(void* state,
int16_t* encoded,
int16_t len,
int16_t* decoded,
int16_t* speechType) {
int n;
uint16_t tempVal;
// Set and discard to avoid getting warnings
(void)(state = NULL);
// Sanity check of input length
if (len < 0) {
return (-1);
}
for (n = 0; n < len; n++) {
#ifdef WEBRTC_ARCH_BIG_ENDIAN
if ((n & 0x1) == 1) {
tempVal = ((uint16_t) encoded[n >> 1] & 0xFF);
} else {
tempVal = ((uint16_t) encoded[n >> 1] >> 8);
}
#else
if ((n & 0x1) == 1) {
tempVal = (encoded[n >> 1] >> 8);
} else {
tempVal = (encoded[n >> 1] & 0xFF);
}
#endif
decoded[n] = (int16_t) alaw_to_linear(tempVal);
}
*speechType = 1;
return (len);
}
int16_t WebRtcG711_DecodeU(void* state,
int16_t* encoded,
int16_t len,
int16_t* decoded,
int16_t* speechType) {
int n;
uint16_t tempVal;
// Set and discard to avoid getting warnings
(void)(state = NULL);
// Sanity check of input length
if (len < 0) {
return (-1);
}
for (n = 0; n < len; n++) {
#ifdef WEBRTC_ARCH_BIG_ENDIAN
if ((n & 0x1) == 1) {
tempVal = ((uint16_t) encoded[n >> 1] & 0xFF);
} else {
tempVal = ((uint16_t) encoded[n >> 1] >> 8);
}
#else
if ((n & 0x1) == 1) {
tempVal = (encoded[n >> 1] >> 8);
} else {
tempVal = (encoded[n >> 1] & 0xFF);
}
#endif
decoded[n] = (int16_t) ulaw_to_linear(tempVal);
}
*speechType = 1;
return (len);
}
int WebRtcG711_DurationEst(void* state,
const uint8_t* payload,
int payload_length_bytes) {
(void) state;
(void) payload;
/* G.711 is one byte per sample, so we can just return the number of bytes. */
return payload_length_bytes;
}
int16_t WebRtcG711_Version(char* version, int16_t lenBytes) {
strncpy(version, "2.0.0", lenBytes);
return 0;
}

View File

@@ -0,0 +1,167 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_CODING_CODECS_G711_MAIN_INTERFACE_G711_INTERFACE_H_
#define MODULES_AUDIO_CODING_CODECS_G711_MAIN_INTERFACE_G711_INTERFACE_H_
#include "typedefs.h"
// Comfort noise constants
#define G711_WEBRTC_SPEECH 1
#define G711_WEBRTC_CNG 2
#ifdef __cplusplus
extern "C" {
#endif
/****************************************************************************
* WebRtcG711_EncodeA(...)
*
* This function encodes a G711 A-law frame and inserts it into a packet.
* Input speech length has be of any length.
*
* Input:
* - state : Dummy state to make this codec look more like
* other codecs
* - speechIn : Input speech vector
* - len : Samples in speechIn
*
* Output:
* - encoded : The encoded data vector
*
* Return value : >0 - Length (in bytes) of coded data
* -1 - Error
*/
int16_t WebRtcG711_EncodeA(void* state,
int16_t* speechIn,
int16_t len,
int16_t* encoded);
/****************************************************************************
* WebRtcG711_EncodeU(...)
*
* This function encodes a G711 U-law frame and inserts it into a packet.
* Input speech length has be of any length.
*
* Input:
* - state : Dummy state to make this codec look more like
* other codecs
* - speechIn : Input speech vector
* - len : Samples in speechIn
*
* Output:
* - encoded : The encoded data vector
*
* Return value : >0 - Length (in bytes) of coded data
* -1 - Error
*/
int16_t WebRtcG711_EncodeU(void* state,
int16_t* speechIn,
int16_t len,
int16_t* encoded);
/****************************************************************************
* WebRtcG711_DecodeA(...)
*
* This function decodes a packet G711 A-law frame.
*
* Input:
* - state : Dummy state to make this codec look more like
* other codecs
* - encoded : Encoded data
* - len : Bytes in encoded vector
*
* Output:
* - decoded : The decoded vector
* - speechType : 1 normal, 2 CNG (for G711 it should
* always return 1 since G711 does not have a
* built-in DTX/CNG scheme)
*
* Return value : >0 - Samples in decoded vector
* -1 - Error
*/
int16_t WebRtcG711_DecodeA(void* state,
int16_t* encoded,
int16_t len,
int16_t* decoded,
int16_t* speechType);
/****************************************************************************
* WebRtcG711_DecodeU(...)
*
* This function decodes a packet G711 U-law frame.
*
* Input:
* - state : Dummy state to make this codec look more like
* other codecs
* - encoded : Encoded data
* - len : Bytes in encoded vector
*
* Output:
* - decoded : The decoded vector
* - speechType : 1 normal, 2 CNG (for G711 it should
* always return 1 since G711 does not have a
* built-in DTX/CNG scheme)
*
* Return value : >0 - Samples in decoded vector
* -1 - Error
*/
int16_t WebRtcG711_DecodeU(void* state,
int16_t* encoded,
int16_t len,
int16_t* decoded,
int16_t* speechType);
/****************************************************************************
* WebRtcG711_DurationEst(...)
*
* This function estimates the duration of a G711 packet in samples.
*
* Input:
* - state : Dummy state to make this codec look more like
* other codecs
* - payload : Encoded data
* - payloadLengthBytes : Bytes in encoded vector
*
* Return value : The duration of the packet in samples, which is
* just payload_length_bytes, since G.711 uses one
* byte per sample.
*/
int WebRtcG711_DurationEst(void* state,
const uint8_t* payload,
int payload_length_bytes);
/**********************************************************************
* WebRtcG711_Version(...)
*
* This function gives the version string of the G.711 codec.
*
* Input:
* - lenBytes: the size of Allocated space (in Bytes) where
* the version number is written to (in string format).
*
* Output:
* - version: Pointer to a buffer where the version number is
* written to.
*
*/
int16_t WebRtcG711_Version(char* version, int16_t lenBytes);
#ifdef __cplusplus
}
#endif
#endif /* MODULES_AUDIO_CODING_CODECS_G711_MAIN_INTERFACE_G711_INTERFACE_H_ */

View File

@@ -0,0 +1,180 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* testG711.cpp : Defines the entry point for the console application.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* include API */
#include "g711_interface.h"
/* Runtime statistics */
#include <time.h>
#define CLOCKS_PER_SEC_G711 1000
/* function for reading audio data from PCM file */
int readframe(int16_t* data, FILE* inp, int length) {
short k, rlen, status = 0;
rlen = (short) fread(data, sizeof(int16_t), length, inp);
if (rlen < length) {
for (k = rlen; k < length; k++)
data[k] = 0;
status = 1;
}
return status;
}
int main(int argc, char* argv[]) {
char inname[80], outname[40], bitname[40];
FILE* inp;
FILE* outp;
FILE* bitp = NULL;
int framecnt, endfile;
int16_t framelength = 80;
int err;
/* Runtime statistics */
double starttime;
double runtime;
double length_file;
int16_t stream_len = 0;
int16_t shortdata[480];
int16_t decoded[480];
int16_t streamdata[500];
int16_t speechType[1];
char law[2];
char versionNumber[40];
/* handling wrong input arguments in the command line */
if ((argc != 5) && (argc != 6)) {
printf("\n\nWrong number of arguments or flag values.\n\n");
printf("\n");
printf("\nG.711 test application\n\n");
printf("Usage:\n\n");
printf("./testG711.exe framelength law infile outfile \n\n");
printf("framelength: Framelength in samples.\n");
printf("law : Coding law, A och u.\n");
printf("infile : Normal speech input file\n");
printf("outfile : Speech output file\n\n");
printf("outbits : Output bitstream file [optional]\n\n");
exit(0);
}
/* Get version and print */
WebRtcG711_Version(versionNumber, 40);
printf("-----------------------------------\n");
printf("G.711 version: %s\n\n", versionNumber);
/* Get frame length */
framelength = atoi(argv[1]);
/* Get compression law */
strcpy(law, argv[2]);
/* Get Input and Output files */
sscanf(argv[3], "%s", inname);
sscanf(argv[4], "%s", outname);
if (argc == 6) {
sscanf(argv[5], "%s", bitname);
if ((bitp = fopen(bitname, "wb")) == NULL) {
printf(" G.711: Cannot read file %s.\n", bitname);
exit(1);
}
}
if ((inp = fopen(inname, "rb")) == NULL) {
printf(" G.711: Cannot read file %s.\n", inname);
exit(1);
}
if ((outp = fopen(outname, "wb")) == NULL) {
printf(" G.711: Cannot write file %s.\n", outname);
exit(1);
}
printf("\nInput: %s\nOutput: %s\n", inname, outname);
if (argc == 6) {
printf("\nBitfile: %s\n", bitname);
}
starttime = clock() / (double) CLOCKS_PER_SEC_G711; /* Runtime statistics */
/* Initialize encoder and decoder */
framecnt = 0;
endfile = 0;
while (endfile == 0) {
framecnt++;
/* Read speech block */
endfile = readframe(shortdata, inp, framelength);
/* G.711 encoding */
if (!strcmp(law, "A")) {
/* A-law encoding */
stream_len = WebRtcG711_EncodeA(NULL, shortdata, framelength, streamdata);
if (argc == 6) {
/* Write bits to file */
if (fwrite(streamdata, sizeof(unsigned char), stream_len, bitp) !=
static_cast<size_t>(stream_len)) {
return -1;
}
}
err = WebRtcG711_DecodeA(NULL, streamdata, stream_len, decoded,
speechType);
} else if (!strcmp(law, "u")) {
/* u-law encoding */
stream_len = WebRtcG711_EncodeU(NULL, shortdata, framelength, streamdata);
if (argc == 6) {
/* Write bits to file */
if (fwrite(streamdata, sizeof(unsigned char), stream_len, bitp) !=
static_cast<size_t>(stream_len)) {
return -1;
}
}
err = WebRtcG711_DecodeU(NULL, streamdata, stream_len, decoded,
speechType);
} else {
printf("Wrong law mode\n");
exit(1);
}
if (stream_len < 0 || err < 0) {
/* exit if returned with error */
printf("Error in encoder/decoder\n");
} else {
/* Write coded speech to file */
if (fwrite(decoded, sizeof(short), framelength, outp) !=
static_cast<size_t>(framelength)) {
return -1;
}
}
}
runtime = (double)(clock() / (double) CLOCKS_PER_SEC_G711 - starttime);
length_file = ((double) framecnt * (double) framelength / 8000);
printf("\n\nLength of speech file: %.1f s\n", length_file);
printf("Time to run G.711: %.2f s (%.2f %% of realtime)\n\n",
runtime,
(100 * runtime / length_file));
printf("---------------------END----------------------\n");
fclose(inp);
fclose(outp);
return 0;
}

Some files were not shown because too many files have changed in this diff Show More