Support for Signal calls.

Merge in RedPhone

// FREEBIE
This commit is contained in:
Moxie Marlinspike
2015-09-09 13:54:29 -07:00
parent 3d4ae60d81
commit d83a3d71bc
2585 changed files with 803492 additions and 45 deletions

View File

@@ -0,0 +1,44 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
include $(LOCAL_PATH)/../../../../android-webrtc.mk
LOCAL_ARM_MODE := arm
LOCAL_MODULE_CLASS := STATIC_LIBRARIES
LOCAL_MODULE := libwebrtc_apm_utility
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := \
fft4g.c \
ring_buffer.c \
delay_estimator.c \
delay_estimator_wrapper.c
# Flags passed to both C and C++ files.
LOCAL_CFLAGS := \
$(MY_WEBRTC_COMMON_DEFS)
# Include paths placed before CFLAGS/CPPFLAGS
LOCAL_C_INCLUDES := \
$(LOCAL_PATH) \
$(LOCAL_PATH)/../../.. \
$(LOCAL_PATH)/../../../common_audio/signal_processing/include \
$(LOCAL_PATH)/../../../..
LOCAL_SHARED_LIBRARIES := \
libcutils \
libdl \
libstlport
ifndef NDK_ROOT
include external/stlport/libstlport.mk
endif
include $(BUILD_STATIC_LIBRARY)

View File

@@ -0,0 +1,685 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/utility/delay_estimator.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
// Number of right shifts for scaling is linearly depending on number of bits in
// the far-end binary spectrum.
static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum.
static const int kShiftsLinearSlope = 3;
static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
// Robust validation settings
static const float kHistogramMax = 3000.f;
static const float kLastHistogramMax = 250.f;
static const float kMinHistogramThreshold = 1.5f;
static const int kMinRequiredHits = 10;
static const int kMaxHitsWhenPossiblyNonCausal = 10;
static const int kMaxHitsWhenPossiblyCausal = 1000;
static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0.
static const float kFractionSlope = 0.05f;
static const float kMinFractionWhenPossiblyCausal = 0.5f;
static const float kMinFractionWhenPossiblyNonCausal = 0.25f;
// Counts and returns number of bits of a 32-bit word.
static int BitCount(uint32_t u32) {
uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
((u32 >> 2) & 011111111111);
tmp = ((tmp + (tmp >> 3)) & 030707070707);
tmp = (tmp + (tmp >> 6));
tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
return ((int) tmp);
}
// Compares the |binary_vector| with all rows of the |binary_matrix| and counts
// per row the number of times they have the same value.
//
// Inputs:
// - binary_vector : binary "vector" stored in a long
// - binary_matrix : binary "matrix" stored as a vector of long
// - matrix_size : size of binary "matrix"
//
// Output:
// - bit_counts : "Vector" stored as a long, containing for each
// row the number of times the matrix row and the
// input vector have the same value
//
static void BitCountComparison(uint32_t binary_vector,
const uint32_t* binary_matrix,
int matrix_size,
int32_t* bit_counts) {
int n = 0;
// Compare |binary_vector| with all rows of the |binary_matrix|
for (; n < matrix_size; n++) {
bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]);
}
}
// Collects necessary statistics for the HistogramBasedValidation(). This
// function has to be called prior to calling HistogramBasedValidation(). The
// statistics updated and used by the HistogramBasedValidation() are:
// 1. the number of |candidate_hits|, which states for how long we have had the
// same |candidate_delay|
// 2. the |histogram| of candidate delays over time. This histogram is
// weighted with respect to a reliability measure and time-varying to cope
// with possible delay shifts.
// For further description see commented code.
//
// Inputs:
// - candidate_delay : The delay to validate.
// - valley_depth_q14 : The cost function has a valley/minimum at the
// |candidate_delay| location. |valley_depth_q14| is the
// cost function difference between the minimum and
// maximum locations. The value is in the Q14 domain.
// - valley_level_q14 : Is the cost function value at the minimum, in Q14.
static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self,
int candidate_delay,
int32_t valley_depth_q14,
int32_t valley_level_q14) {
const float valley_depth = valley_depth_q14 * kQ14Scaling;
float decrease_in_last_set = valley_depth;
const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ?
kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal;
int i = 0;
assert(self->history_size == self->farend->history_size);
// Reset |candidate_hits| if we have a new candidate.
if (candidate_delay != self->last_candidate_delay) {
self->candidate_hits = 0;
self->last_candidate_delay = candidate_delay;
}
self->candidate_hits++;
// The |histogram| is updated differently across the bins.
// 1. The |candidate_delay| histogram bin is increased with the
// |valley_depth|, which is a simple measure of how reliable the
// |candidate_delay| is. The histogram is not increased above
// |kHistogramMax|.
self->histogram[candidate_delay] += valley_depth;
if (self->histogram[candidate_delay] > kHistogramMax) {
self->histogram[candidate_delay] = kHistogramMax;
}
// 2. The histogram bins in the neighborhood of |candidate_delay| are
// unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}.
// 3. The histogram bins in the neighborhood of |last_delay| are decreased
// with |decrease_in_last_set|. This value equals the difference between
// the cost function values at the locations |candidate_delay| and
// |last_delay| until we reach |max_hits_for_slow_change| consecutive hits
// at the |candidate_delay|. If we exceed this amount of hits the
// |candidate_delay| is a "potential" candidate and we start decreasing
// these histogram bins more rapidly with |valley_depth|.
if (self->candidate_hits < max_hits_for_slow_change) {
decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] -
valley_level_q14) * kQ14Scaling;
}
// 4. All other bins are decreased with |valley_depth|.
// TODO(bjornv): Investigate how to make this loop more efficient. Split up
// the loop? Remove parts that doesn't add too much.
for (i = 0; i < self->history_size; ++i) {
int is_in_last_set = (i >= self->last_delay - 2) &&
(i <= self->last_delay + 1) && (i != candidate_delay);
int is_in_candidate_set = (i >= candidate_delay - 2) &&
(i <= candidate_delay + 1);
self->histogram[i] -= decrease_in_last_set * is_in_last_set +
valley_depth * (!is_in_last_set && !is_in_candidate_set);
// 5. No histogram bin can go below 0.
if (self->histogram[i] < 0) {
self->histogram[i] = 0;
}
}
}
// Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(),
// based on a mix of counting concurring hits with a modified histogram
// of recent delay estimates. In brief a candidate is valid (returns 1) if it
// is the most likely according to the histogram. There are a couple of
// exceptions that are worth mentioning:
// 1. If the |candidate_delay| < |last_delay| it can be that we are in a
// non-causal state, breaking a possible echo control algorithm. Hence, we
// open up for a quicker change by allowing the change even if the
// |candidate_delay| is not the most likely one according to the histogram.
// 2. There's a minimum number of hits (kMinRequiredHits) and the histogram
// value has to reached a minimum (kMinHistogramThreshold) to be valid.
// 3. The action is also depending on the filter length used for echo control.
// If the delay difference is larger than what the filter can capture, we
// also move quicker towards a change.
// For further description see commented code.
//
// Input:
// - candidate_delay : The delay to validate.
//
// Return value:
// - is_histogram_valid : 1 - The |candidate_delay| is valid.
// 0 - Otherwise.
static int HistogramBasedValidation(const BinaryDelayEstimator* self,
int candidate_delay) {
float fraction = 1.f;
float histogram_threshold = self->histogram[self->compare_delay];
const int delay_difference = candidate_delay - self->last_delay;
int is_histogram_valid = 0;
// The histogram based validation of |candidate_delay| is done by comparing
// the |histogram| at bin |candidate_delay| with a |histogram_threshold|.
// This |histogram_threshold| equals a |fraction| of the |histogram| at bin
// |last_delay|. The |fraction| is a piecewise linear function of the
// |delay_difference| between the |candidate_delay| and the |last_delay|
// allowing for a quicker move if
// i) a potential echo control filter can not handle these large differences.
// ii) keeping |last_delay| instead of updating to |candidate_delay| could
// force an echo control into a non-causal state.
// We further require the histogram to have reached a minimum value of
// |kMinHistogramThreshold|. In addition, we also require the number of
// |candidate_hits| to be more than |kMinRequiredHits| to remove spurious
// values.
// Calculate a comparison histogram value (|histogram_threshold|) that is
// depending on the distance between the |candidate_delay| and |last_delay|.
// TODO(bjornv): How much can we gain by turning the fraction calculation
// into tables?
if (delay_difference > self->allowed_offset) {
fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset);
fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction :
kMinFractionWhenPossiblyCausal);
} else if (delay_difference < 0) {
fraction = kMinFractionWhenPossiblyNonCausal -
kFractionSlope * delay_difference;
fraction = (fraction > 1.f ? 1.f : fraction);
}
histogram_threshold *= fraction;
histogram_threshold = (histogram_threshold > kMinHistogramThreshold ?
histogram_threshold : kMinHistogramThreshold);
is_histogram_valid =
(self->histogram[candidate_delay] >= histogram_threshold) &&
(self->candidate_hits > kMinRequiredHits);
return is_histogram_valid;
}
// Performs a robust validation of the |candidate_delay| estimated in
// WebRtc_ProcessBinarySpectrum(). The algorithm takes the
// |is_instantaneous_valid| and the |is_histogram_valid| and combines them
// into a robust validation. The HistogramBasedValidation() has to be called
// prior to this call.
// For further description on how the combination is done, see commented code.
//
// Inputs:
// - candidate_delay : The delay to validate.
// - is_instantaneous_valid : The instantaneous validation performed in
// WebRtc_ProcessBinarySpectrum().
// - is_histogram_valid : The histogram based validation.
//
// Return value:
// - is_robust : 1 - The candidate_delay is valid according to a
// combination of the two inputs.
// : 0 - Otherwise.
static int RobustValidation(const BinaryDelayEstimator* self,
int candidate_delay,
int is_instantaneous_valid,
int is_histogram_valid) {
int is_robust = 0;
// The final robust validation is based on the two algorithms; 1) the
// |is_instantaneous_valid| and 2) the histogram based with result stored in
// |is_histogram_valid|.
// i) Before we actually have a valid estimate (|last_delay| == -2), we say
// a candidate is valid if either algorithm states so
// (|is_instantaneous_valid| OR |is_histogram_valid|).
is_robust = (self->last_delay < 0) &&
(is_instantaneous_valid || is_histogram_valid);
// ii) Otherwise, we need both algorithms to be certain
// (|is_instantaneous_valid| AND |is_histogram_valid|)
is_robust |= is_instantaneous_valid && is_histogram_valid;
// iii) With one exception, i.e., the histogram based algorithm can overrule
// the instantaneous one if |is_histogram_valid| = 1 and the histogram
// is significantly strong.
is_robust |= is_histogram_valid &&
(self->histogram[candidate_delay] > self->last_delay_histogram);
return is_robust;
}
void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
if (self == NULL) {
return;
}
free(self->binary_far_history);
self->binary_far_history = NULL;
free(self->far_bit_counts);
self->far_bit_counts = NULL;
free(self);
}
BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
int history_size) {
BinaryDelayEstimatorFarend* self = NULL;
if (history_size > 1) {
// Sanity conditions fulfilled.
self = malloc(sizeof(BinaryDelayEstimatorFarend));
}
if (self == NULL) {
return NULL;
}
self->history_size = 0;
self->binary_far_history = NULL;
self->far_bit_counts = NULL;
if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) {
WebRtc_FreeBinaryDelayEstimatorFarend(self);
self = NULL;
}
return self;
}
int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self,
int history_size) {
assert(self != NULL);
// (Re-)Allocate memory for history buffers.
self->binary_far_history =
realloc(self->binary_far_history,
history_size * sizeof(*self->binary_far_history));
self->far_bit_counts = realloc(self->far_bit_counts,
history_size * sizeof(*self->far_bit_counts));
if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) {
history_size = 0;
}
// Fill with zeros if we have expanded the buffers.
if (history_size > self->history_size) {
int size_diff = history_size - self->history_size;
memset(&self->binary_far_history[self->history_size],
0,
sizeof(*self->binary_far_history) * size_diff);
memset(&self->far_bit_counts[self->history_size],
0,
sizeof(*self->far_bit_counts) * size_diff);
}
self->history_size = history_size;
return self->history_size;
}
void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
assert(self != NULL);
memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size);
memset(self->far_bit_counts, 0, sizeof(int) * self->history_size);
}
void WebRtc_SoftResetBinaryDelayEstimatorFarend(
BinaryDelayEstimatorFarend* self, int delay_shift) {
int abs_shift = abs(delay_shift);
int shift_size = 0;
int dest_index = 0;
int src_index = 0;
int padding_index = 0;
assert(self != NULL);
shift_size = self->history_size - abs_shift;
assert(shift_size > 0);
if (delay_shift == 0) {
return;
} else if (delay_shift > 0) {
dest_index = abs_shift;
} else if (delay_shift < 0) {
src_index = abs_shift;
padding_index = shift_size;
}
// Shift and zero pad buffers.
memmove(&self->binary_far_history[dest_index],
&self->binary_far_history[src_index],
sizeof(*self->binary_far_history) * shift_size);
memset(&self->binary_far_history[padding_index], 0,
sizeof(*self->binary_far_history) * abs_shift);
memmove(&self->far_bit_counts[dest_index],
&self->far_bit_counts[src_index],
sizeof(*self->far_bit_counts) * shift_size);
memset(&self->far_bit_counts[padding_index], 0,
sizeof(*self->far_bit_counts) * abs_shift);
}
void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle,
uint32_t binary_far_spectrum) {
assert(handle != NULL);
// Shift binary spectrum history and insert current |binary_far_spectrum|.
memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
(handle->history_size - 1) * sizeof(uint32_t));
handle->binary_far_history[0] = binary_far_spectrum;
// Shift history of far-end binary spectrum bit counts and insert bit count
// of current |binary_far_spectrum|.
memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
(handle->history_size - 1) * sizeof(int));
handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
}
void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) {
if (self == NULL) {
return;
}
free(self->mean_bit_counts);
self->mean_bit_counts = NULL;
free(self->bit_counts);
self->bit_counts = NULL;
free(self->binary_near_history);
self->binary_near_history = NULL;
free(self->histogram);
self->histogram = NULL;
// BinaryDelayEstimator does not have ownership of |farend|, hence we do not
// free the memory here. That should be handled separately by the user.
self->farend = NULL;
free(self);
}
BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
BinaryDelayEstimatorFarend* farend, int max_lookahead) {
BinaryDelayEstimator* self = NULL;
if ((farend != NULL) && (max_lookahead >= 0)) {
// Sanity conditions fulfilled.
self = malloc(sizeof(BinaryDelayEstimator));
}
if (self == NULL) {
return NULL;
}
self->farend = farend;
self->near_history_size = max_lookahead + 1;
self->history_size = 0;
self->robust_validation_enabled = 0; // Disabled by default.
self->allowed_offset = 0;
self->lookahead = max_lookahead;
// Allocate memory for spectrum and history buffers.
self->mean_bit_counts = NULL;
self->bit_counts = NULL;
self->histogram = NULL;
self->binary_near_history =
malloc((max_lookahead + 1) * sizeof(*self->binary_near_history));
if (self->binary_near_history == NULL ||
WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) {
WebRtc_FreeBinaryDelayEstimator(self);
self = NULL;
}
return self;
}
int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self,
int history_size) {
BinaryDelayEstimatorFarend* far = self->farend;
// (Re-)Allocate memory for spectrum and history buffers.
if (history_size != far->history_size) {
// Only update far-end buffers if we need.
history_size = WebRtc_AllocateFarendBufferMemory(far, history_size);
}
// The extra array element in |mean_bit_counts| and |histogram| is a dummy
// element only used while |last_delay| == -2, i.e., before we have a valid
// estimate.
self->mean_bit_counts =
realloc(self->mean_bit_counts,
(history_size + 1) * sizeof(*self->mean_bit_counts));
self->bit_counts =
realloc(self->bit_counts, history_size * sizeof(*self->bit_counts));
self->histogram =
realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram));
if ((self->mean_bit_counts == NULL) ||
(self->bit_counts == NULL) ||
(self->histogram == NULL)) {
history_size = 0;
}
// Fill with zeros if we have expanded the buffers.
if (history_size > self->history_size) {
int size_diff = history_size - self->history_size;
memset(&self->mean_bit_counts[self->history_size],
0,
sizeof(*self->mean_bit_counts) * size_diff);
memset(&self->bit_counts[self->history_size],
0,
sizeof(*self->bit_counts) * size_diff);
memset(&self->histogram[self->history_size],
0,
sizeof(*self->histogram) * size_diff);
}
self->history_size = history_size;
return self->history_size;
}
void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
int i = 0;
assert(self != NULL);
memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size);
memset(self->binary_near_history,
0,
sizeof(uint32_t) * self->near_history_size);
for (i = 0; i <= self->history_size; ++i) {
self->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
self->histogram[i] = 0.f;
}
self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9.
self->last_delay_probability = (int) kMaxBitCountsQ9; // 32 in Q9.
// Default return value if we're unable to estimate. -1 is used for errors.
self->last_delay = -2;
self->last_candidate_delay = -2;
self->compare_delay = self->history_size;
self->candidate_hits = 0;
self->last_delay_histogram = 0.f;
}
int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
int delay_shift) {
int lookahead = 0;
assert(self != NULL);
lookahead = self->lookahead;
self->lookahead -= delay_shift;
if (self->lookahead < 0) {
self->lookahead = 0;
}
if (self->lookahead > self->near_history_size - 1) {
self->lookahead = self->near_history_size - 1;
}
return lookahead - self->lookahead;
}
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
uint32_t binary_near_spectrum) {
int i = 0;
int candidate_delay = -1;
int valid_candidate = 0;
int32_t value_best_candidate = kMaxBitCountsQ9;
int32_t value_worst_candidate = 0;
int32_t valley_depth = 0;
assert(self != NULL);
if (self->farend->history_size != self->history_size) {
// Non matching history sizes.
return -1;
}
if (self->near_history_size > 1) {
// If we apply lookahead, shift near-end binary spectrum history. Insert
// current |binary_near_spectrum| and pull out the delayed one.
memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]),
(self->near_history_size - 1) * sizeof(uint32_t));
self->binary_near_history[0] = binary_near_spectrum;
binary_near_spectrum = self->binary_near_history[self->lookahead];
}
// Compare with delayed spectra and store the |bit_counts| for each delay.
BitCountComparison(binary_near_spectrum, self->farend->binary_far_history,
self->history_size, self->bit_counts);
// Update |mean_bit_counts|, which is the smoothed version of |bit_counts|.
for (i = 0; i < self->history_size; i++) {
// |bit_counts| is constrained to [0, 32], meaning we can smooth with a
// factor up to 2^26. We use Q9.
int32_t bit_count = (self->bit_counts[i] << 9); // Q9.
// Update |mean_bit_counts| only when far-end signal has something to
// contribute. If |far_bit_counts| is zero the far-end signal is weak and
// we likely have a poor echo condition, hence don't update.
if (self->farend->far_bit_counts[i] > 0) {
// Make number of right shifts piecewise linear w.r.t. |far_bit_counts|.
int shifts = kShiftsAtZero;
shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4;
WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i]));
}
}
// Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate|
// of |mean_bit_counts|.
for (i = 0; i < self->history_size; i++) {
if (self->mean_bit_counts[i] < value_best_candidate) {
value_best_candidate = self->mean_bit_counts[i];
candidate_delay = i;
}
if (self->mean_bit_counts[i] > value_worst_candidate) {
value_worst_candidate = self->mean_bit_counts[i];
}
}
valley_depth = value_worst_candidate - value_best_candidate;
// The |value_best_candidate| is a good indicator on the probability of
// |candidate_delay| being an accurate delay (a small |value_best_candidate|
// means a good binary match). In the following sections we make a decision
// whether to update |last_delay| or not.
// 1) If the difference bit counts between the best and the worst delay
// candidates is too small we consider the situation to be unreliable and
// don't update |last_delay|.
// 2) If the situation is reliable we update |last_delay| if the value of the
// best candidate delay has a value less than
// i) an adaptive threshold |minimum_probability|, or
// ii) this corresponding value |last_delay_probability|, but updated at
// this time instant.
// Update |minimum_probability|.
if ((self->minimum_probability > kProbabilityLowerLimit) &&
(valley_depth > kProbabilityMinSpread)) {
// The "hard" threshold can't be lower than 17 (in Q9).
// The valley in the curve also has to be distinct, i.e., the
// difference between |value_worst_candidate| and |value_best_candidate| has
// to be large enough.
int32_t threshold = value_best_candidate + kProbabilityOffset;
if (threshold < kProbabilityLowerLimit) {
threshold = kProbabilityLowerLimit;
}
if (self->minimum_probability > threshold) {
self->minimum_probability = threshold;
}
}
// Update |last_delay_probability|.
// We use a Markov type model, i.e., a slowly increasing level over time.
self->last_delay_probability++;
// Validate |candidate_delay|. We have a reliable instantaneous delay
// estimate if
// 1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|)
// and
// 2) The depth of the valley is deep enough
// (|value_best_candidate| < |minimum_probability|)
// and deeper than the best estimate so far
// (|value_best_candidate| < |last_delay_probability|)
valid_candidate = ((valley_depth > kProbabilityOffset) &&
((value_best_candidate < self->minimum_probability) ||
(value_best_candidate < self->last_delay_probability)));
if (self->robust_validation_enabled) {
int is_histogram_valid = 0;
UpdateRobustValidationStatistics(self, candidate_delay, valley_depth,
value_best_candidate);
is_histogram_valid = HistogramBasedValidation(self, candidate_delay);
valid_candidate = RobustValidation(self, candidate_delay, valid_candidate,
is_histogram_valid);
}
if (valid_candidate) {
if (candidate_delay != self->last_delay) {
self->last_delay_histogram =
(self->histogram[candidate_delay] > kLastHistogramMax ?
kLastHistogramMax : self->histogram[candidate_delay]);
// Adjust the histogram if we made a change to |last_delay|, though it was
// not the most likely one according to the histogram.
if (self->histogram[candidate_delay] <
self->histogram[self->compare_delay]) {
self->histogram[self->compare_delay] = self->histogram[candidate_delay];
}
}
self->last_delay = candidate_delay;
if (value_best_candidate < self->last_delay_probability) {
self->last_delay_probability = value_best_candidate;
}
self->compare_delay = self->last_delay;
}
return self->last_delay;
}
int WebRtc_binary_last_delay(BinaryDelayEstimator* self) {
assert(self != NULL);
return self->last_delay;
}
float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) {
float quality = 0;
assert(self != NULL);
if (self->robust_validation_enabled) {
// Simply a linear function of the histogram height at delay estimate.
quality = self->histogram[self->compare_delay] / kHistogramMax;
} else {
// Note that |last_delay_probability| states how deep the minimum of the
// cost function is, so it is rather an error probability.
quality = (float) (kMaxBitCountsQ9 - self->last_delay_probability) /
kMaxBitCountsQ9;
if (quality < 0) {
quality = 0;
}
}
return quality;
}
void WebRtc_MeanEstimatorFix(int32_t new_value,
int factor,
int32_t* mean_value) {
int32_t diff = new_value - *mean_value;
// mean_new = mean_value + ((new_value - mean_value) >> factor);
if (diff < 0) {
diff = -((-diff) >> factor);
} else {
diff = (diff >> factor);
}
*mean_value += diff;
}

View File

@@ -0,0 +1,251 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs delay estimation on binary converted spectra.
// The return value is 0 - OK and -1 - Error, unless otherwise stated.
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
#include "webrtc/typedefs.h"
static const int32_t kMaxBitCountsQ9 = (32 << 9); // 32 matching bits in Q9.
typedef struct {
// Pointer to bit counts.
int* far_bit_counts;
// Binary history variables.
uint32_t* binary_far_history;
int history_size;
} BinaryDelayEstimatorFarend;
typedef struct {
// Pointer to bit counts.
int32_t* mean_bit_counts;
// Array only used locally in ProcessBinarySpectrum() but whose size is
// determined at run-time.
int32_t* bit_counts;
// Binary history variables.
uint32_t* binary_near_history;
int near_history_size;
int history_size;
// Delay estimation variables.
int32_t minimum_probability;
int last_delay_probability;
// Delay memory.
int last_delay;
// Robust validation
int robust_validation_enabled;
int allowed_offset;
int last_candidate_delay;
int compare_delay;
int candidate_hits;
float* histogram;
float last_delay_histogram;
// For dynamically changing the lookahead when using SoftReset...().
int lookahead;
// Far-end binary spectrum history buffer etc.
BinaryDelayEstimatorFarend* farend;
} BinaryDelayEstimator;
// Releases the memory allocated by
// WebRtc_CreateBinaryDelayEstimatorFarend(...).
// Input:
// - self : Pointer to the binary delay estimation far-end
// instance which is the return value of
// WebRtc_CreateBinaryDelayEstimatorFarend().
//
void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self);
// Allocates the memory needed by the far-end part of the binary delay
// estimation. The memory needs to be initialized separately through
// WebRtc_InitBinaryDelayEstimatorFarend(...).
//
// Inputs:
// - history_size : Size of the far-end binary spectrum history.
//
// Return value:
// - BinaryDelayEstimatorFarend*
// : Created |handle|. If the memory can't be allocated
// or if any of the input parameters are invalid NULL
// is returned.
//
BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
int history_size);
// Re-allocates the buffers.
//
// Inputs:
// - self : Pointer to the binary estimation far-end instance
// which is the return value of
// WebRtc_CreateBinaryDelayEstimatorFarend().
// - history_size : Size of the far-end binary spectrum history.
//
// Return value:
// - history_size : The history size allocated.
int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self,
int history_size);
// Initializes the delay estimation far-end instance created with
// WebRtc_CreateBinaryDelayEstimatorFarend(...).
//
// Input:
// - self : Pointer to the delay estimation far-end instance.
//
// Output:
// - self : Initialized far-end instance.
//
void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self);
// Soft resets the delay estimation far-end instance created with
// WebRtc_CreateBinaryDelayEstimatorFarend(...).
//
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
//
void WebRtc_SoftResetBinaryDelayEstimatorFarend(
BinaryDelayEstimatorFarend* self, int delay_shift);
// Adds the binary far-end spectrum to the internal far-end history buffer. This
// spectrum is used as reference when calculating the delay using
// WebRtc_ProcessBinarySpectrum().
//
// Inputs:
// - self : Pointer to the delay estimation far-end
// instance.
// - binary_far_spectrum : Far-end binary spectrum.
//
// Output:
// - self : Updated far-end instance.
//
void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* self,
uint32_t binary_far_spectrum);
// Releases the memory allocated by WebRtc_CreateBinaryDelayEstimator(...).
//
// Note that BinaryDelayEstimator utilizes BinaryDelayEstimatorFarend, but does
// not take ownership of it, hence the BinaryDelayEstimator has to be torn down
// before the far-end.
//
// Input:
// - self : Pointer to the binary delay estimation instance
// which is the return value of
// WebRtc_CreateBinaryDelayEstimator().
//
void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self);
// Allocates the memory needed by the binary delay estimation. The memory needs
// to be initialized separately through WebRtc_InitBinaryDelayEstimator(...).
//
// See WebRtc_CreateDelayEstimator(..) in delay_estimator_wrapper.c for detailed
// description.
BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
BinaryDelayEstimatorFarend* farend, int max_lookahead);
// Re-allocates |history_size| dependent buffers. The far-end buffers will be
// updated at the same time if needed.
//
// Input:
// - self : Pointer to the binary estimation instance which is
// the return value of
// WebRtc_CreateBinaryDelayEstimator().
// - history_size : Size of the history buffers.
//
// Return value:
// - history_size : The history size allocated.
int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self,
int history_size);
// Initializes the delay estimation instance created with
// WebRtc_CreateBinaryDelayEstimator(...).
//
// Input:
// - self : Pointer to the delay estimation instance.
//
// Output:
// - self : Initialized instance.
//
void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self);
// Soft resets the delay estimation instance created with
// WebRtc_CreateBinaryDelayEstimator(...).
//
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
//
// Return value:
// - actual_shifts : The actual number of shifts performed.
//
int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
int delay_shift);
// Estimates and returns the delay between the binary far-end and binary near-
// end spectra. It is assumed the binary far-end spectrum has been added using
// WebRtc_AddBinaryFarSpectrum() prior to this call. The value will be offset by
// the lookahead (i.e. the lookahead should be subtracted from the returned
// value).
//
// Inputs:
// - self : Pointer to the delay estimation instance.
// - binary_near_spectrum : Near-end binary spectrum of the current block.
//
// Output:
// - self : Updated instance.
//
// Return value:
// - delay : >= 0 - Calculated delay value.
// -2 - Insufficient data for estimation.
//
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
uint32_t binary_near_spectrum);
// Returns the last calculated delay updated by the function
// WebRtc_ProcessBinarySpectrum(...).
//
// Input:
// - self : Pointer to the delay estimation instance.
//
// Return value:
// - delay : >= 0 - Last calculated delay value
// -2 - Insufficient data for estimation.
//
int WebRtc_binary_last_delay(BinaryDelayEstimator* self);
// Returns the estimation quality of the last calculated delay updated by the
// function WebRtc_ProcessBinarySpectrum(...). The estimation quality is a value
// in the interval [0, 1]. The higher the value, the better the quality.
//
// Return value:
// - delay_quality : >= 0 - Estimation quality of last calculated
// delay value.
float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self);
// Updates the |mean_value| recursively with a step size of 2^-|factor|. This
// function is used internally in the Binary Delay Estimator as well as the
// Fixed point wrapper.
//
// Inputs:
// - new_value : The new value the mean should be updated with.
// - factor : The step size, in number of right shifts.
//
// Input/Output:
// - mean_value : Pointer to the mean value.
//
void WebRtc_MeanEstimatorFix(int32_t new_value,
int factor,
int32_t* mean_value);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_

View File

@@ -0,0 +1,48 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Header file including the delay estimator handle used for testing.
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_INTERNAL_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_INTERNAL_H_
#include "webrtc/modules/audio_processing/utility/delay_estimator.h"
#include "webrtc/typedefs.h"
typedef union {
float float_;
int32_t int32_;
} SpectrumType;
typedef struct {
// Pointers to mean values of spectrum.
SpectrumType* mean_far_spectrum;
// |mean_far_spectrum| initialization indicator.
int far_spectrum_initialized;
int spectrum_size;
// Far-end part of binary spectrum based delay estimation.
BinaryDelayEstimatorFarend* binary_farend;
} DelayEstimatorFarend;
typedef struct {
// Pointers to mean values of spectrum.
SpectrumType* mean_near_spectrum;
// |mean_near_spectrum| initialization indicator.
int near_spectrum_initialized;
int spectrum_size;
// Binary spectrum based delay estimator
BinaryDelayEstimator* binary_handle;
} DelayEstimator;
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_INTERNAL_H_

View File

@@ -0,0 +1,621 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gtest/include/gtest/gtest.h"
extern "C" {
#include "webrtc/modules/audio_processing/utility/delay_estimator.h"
#include "webrtc/modules/audio_processing/utility/delay_estimator_internal.h"
#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
}
#include "webrtc/typedefs.h"
namespace {
enum { kSpectrumSize = 65 };
// Delay history sizes.
enum { kMaxDelay = 100 };
enum { kLookahead = 10 };
enum { kHistorySize = kMaxDelay + kLookahead };
// Length of binary spectrum sequence.
enum { kSequenceLength = 400 };
const int kDifferentHistorySize = 3;
const int kDifferentLookahead = 1;
const int kEnable[] = { 0, 1 };
const size_t kSizeEnable = sizeof(kEnable) / sizeof(*kEnable);
class DelayEstimatorTest : public ::testing::Test {
protected:
DelayEstimatorTest();
virtual void SetUp();
virtual void TearDown();
void Init();
void InitBinary();
void VerifyDelay(BinaryDelayEstimator* binary_handle, int offset, int delay);
void RunBinarySpectra(BinaryDelayEstimator* binary1,
BinaryDelayEstimator* binary2,
int near_offset, int lookahead_offset, int far_offset);
void RunBinarySpectraTest(int near_offset, int lookahead_offset,
int ref_robust_validation, int robust_validation);
void* handle_;
DelayEstimator* self_;
void* farend_handle_;
DelayEstimatorFarend* farend_self_;
BinaryDelayEstimator* binary_;
BinaryDelayEstimatorFarend* binary_farend_;
int spectrum_size_;
// Dummy input spectra.
float far_f_[kSpectrumSize];
float near_f_[kSpectrumSize];
uint16_t far_u16_[kSpectrumSize];
uint16_t near_u16_[kSpectrumSize];
uint32_t binary_spectrum_[kSequenceLength + kHistorySize];
};
DelayEstimatorTest::DelayEstimatorTest()
: handle_(NULL),
self_(NULL),
farend_handle_(NULL),
farend_self_(NULL),
binary_(NULL),
binary_farend_(NULL),
spectrum_size_(kSpectrumSize) {
// Dummy input data are set with more or less arbitrary non-zero values.
memset(far_f_, 1, sizeof(far_f_));
memset(near_f_, 2, sizeof(near_f_));
memset(far_u16_, 1, sizeof(far_u16_));
memset(near_u16_, 2, sizeof(near_u16_));
// Construct a sequence of binary spectra used to verify delay estimate. The
// |kSequenceLength| has to be long enough for the delay estimation to leave
// the initialized state.
binary_spectrum_[0] = 1;
for (int i = 1; i < (kSequenceLength + kHistorySize); i++) {
binary_spectrum_[i] = 3 * binary_spectrum_[i - 1];
}
}
void DelayEstimatorTest::SetUp() {
farend_handle_ = WebRtc_CreateDelayEstimatorFarend(kSpectrumSize,
kHistorySize);
ASSERT_TRUE(farend_handle_ != NULL);
farend_self_ = reinterpret_cast<DelayEstimatorFarend*>(farend_handle_);
handle_ = WebRtc_CreateDelayEstimator(farend_handle_, kLookahead);
ASSERT_TRUE(handle_ != NULL);
self_ = reinterpret_cast<DelayEstimator*>(handle_);
binary_farend_ = WebRtc_CreateBinaryDelayEstimatorFarend(kHistorySize);
ASSERT_TRUE(binary_farend_ != NULL);
binary_ = WebRtc_CreateBinaryDelayEstimator(binary_farend_, kLookahead);
ASSERT_TRUE(binary_ != NULL);
}
void DelayEstimatorTest::TearDown() {
WebRtc_FreeDelayEstimator(handle_);
handle_ = NULL;
self_ = NULL;
WebRtc_FreeDelayEstimatorFarend(farend_handle_);
farend_handle_ = NULL;
farend_self_ = NULL;
WebRtc_FreeBinaryDelayEstimator(binary_);
binary_ = NULL;
WebRtc_FreeBinaryDelayEstimatorFarend(binary_farend_);
binary_farend_ = NULL;
}
void DelayEstimatorTest::Init() {
// Initialize Delay Estimator
EXPECT_EQ(0, WebRtc_InitDelayEstimatorFarend(farend_handle_));
EXPECT_EQ(0, WebRtc_InitDelayEstimator(handle_));
// Verify initialization.
EXPECT_EQ(0, farend_self_->far_spectrum_initialized);
EXPECT_EQ(0, self_->near_spectrum_initialized);
EXPECT_EQ(-2, WebRtc_last_delay(handle_)); // Delay in initial state.
EXPECT_FLOAT_EQ(0, WebRtc_last_delay_quality(handle_)); // Zero quality.
}
void DelayEstimatorTest::InitBinary() {
// Initialize Binary Delay Estimator (far-end part).
WebRtc_InitBinaryDelayEstimatorFarend(binary_farend_);
// Initialize Binary Delay Estimator
WebRtc_InitBinaryDelayEstimator(binary_);
// Verify initialization. This does not guarantee a complete check, since
// |last_delay| may be equal to -2 before initialization if done on the fly.
EXPECT_EQ(-2, binary_->last_delay);
}
void DelayEstimatorTest::VerifyDelay(BinaryDelayEstimator* binary_handle,
int offset, int delay) {
// Verify that we WebRtc_binary_last_delay() returns correct delay.
EXPECT_EQ(delay, WebRtc_binary_last_delay(binary_handle));
if (delay != -2) {
// Verify correct delay estimate. In the non-causal case the true delay
// is equivalent with the |offset|.
EXPECT_EQ(offset, delay);
}
}
void DelayEstimatorTest::RunBinarySpectra(BinaryDelayEstimator* binary1,
BinaryDelayEstimator* binary2,
int near_offset,
int lookahead_offset,
int far_offset) {
int different_validations = binary1->robust_validation_enabled ^
binary2->robust_validation_enabled;
WebRtc_InitBinaryDelayEstimatorFarend(binary_farend_);
WebRtc_InitBinaryDelayEstimator(binary1);
WebRtc_InitBinaryDelayEstimator(binary2);
// Verify initialization. This does not guarantee a complete check, since
// |last_delay| may be equal to -2 before initialization if done on the fly.
EXPECT_EQ(-2, binary1->last_delay);
EXPECT_EQ(-2, binary2->last_delay);
for (int i = kLookahead; i < (kSequenceLength + kLookahead); i++) {
WebRtc_AddBinaryFarSpectrum(binary_farend_,
binary_spectrum_[i + far_offset]);
int delay_1 = WebRtc_ProcessBinarySpectrum(binary1, binary_spectrum_[i]);
int delay_2 =
WebRtc_ProcessBinarySpectrum(binary2,
binary_spectrum_[i - near_offset]);
VerifyDelay(binary1, far_offset + kLookahead, delay_1);
VerifyDelay(binary2,
far_offset + kLookahead + lookahead_offset + near_offset,
delay_2);
// Expect the two delay estimates to be offset by |lookahead_offset| +
// |near_offset| when we have left the initial state.
if ((delay_1 != -2) && (delay_2 != -2)) {
EXPECT_EQ(delay_1, delay_2 - lookahead_offset - near_offset);
}
// For the case of identical signals |delay_1| and |delay_2| should match
// all the time, unless one of them has robust validation turned on. In
// that case the robust validation leaves the initial state faster.
if ((near_offset == 0) && (lookahead_offset == 0)) {
if (!different_validations) {
EXPECT_EQ(delay_1, delay_2);
} else {
if (binary1->robust_validation_enabled) {
EXPECT_GE(delay_1, delay_2);
} else {
EXPECT_GE(delay_2, delay_1);
}
}
}
}
// Verify that we have left the initialized state.
EXPECT_NE(-2, WebRtc_binary_last_delay(binary1));
EXPECT_LT(0, WebRtc_binary_last_delay_quality(binary1));
EXPECT_NE(-2, WebRtc_binary_last_delay(binary2));
EXPECT_LT(0, WebRtc_binary_last_delay_quality(binary2));
}
void DelayEstimatorTest::RunBinarySpectraTest(int near_offset,
int lookahead_offset,
int ref_robust_validation,
int robust_validation) {
BinaryDelayEstimator* binary2 =
WebRtc_CreateBinaryDelayEstimator(binary_farend_,
kLookahead + lookahead_offset);
// Verify the delay for both causal and non-causal systems. For causal systems
// the delay is equivalent with a positive |offset| of the far-end sequence.
// For non-causal systems the delay is equivalent with a negative |offset| of
// the far-end sequence.
binary_->robust_validation_enabled = ref_robust_validation;
binary2->robust_validation_enabled = robust_validation;
for (int offset = -kLookahead;
offset < kMaxDelay - lookahead_offset - near_offset;
offset++) {
RunBinarySpectra(binary_, binary2, near_offset, lookahead_offset, offset);
}
WebRtc_FreeBinaryDelayEstimator(binary2);
binary2 = NULL;
binary_->robust_validation_enabled = 0; // Reset reference.
}
TEST_F(DelayEstimatorTest, CorrectErrorReturnsOfWrapper) {
// In this test we verify correct error returns on invalid API calls.
// WebRtc_CreateDelayEstimatorFarend() and WebRtc_CreateDelayEstimator()
// should return a NULL pointer on invalid input values.
// Make sure we have a non-NULL value at start, so we can detect NULL after
// create failure.
void* handle = farend_handle_;
handle = WebRtc_CreateDelayEstimatorFarend(33, kHistorySize);
EXPECT_TRUE(handle == NULL);
handle = WebRtc_CreateDelayEstimatorFarend(kSpectrumSize, 1);
EXPECT_TRUE(handle == NULL);
handle = handle_;
handle = WebRtc_CreateDelayEstimator(NULL, kLookahead);
EXPECT_TRUE(handle == NULL);
handle = WebRtc_CreateDelayEstimator(farend_handle_, -1);
EXPECT_TRUE(handle == NULL);
// WebRtc_InitDelayEstimatorFarend() and WebRtc_InitDelayEstimator() should
// return -1 if we have a NULL pointer as |handle|.
EXPECT_EQ(-1, WebRtc_InitDelayEstimatorFarend(NULL));
EXPECT_EQ(-1, WebRtc_InitDelayEstimator(NULL));
// WebRtc_AddFarSpectrumFloat() should return -1 if we have:
// 1) NULL pointer as |handle|.
// 2) NULL pointer as far-end spectrum.
// 3) Incorrect spectrum size.
EXPECT_EQ(-1, WebRtc_AddFarSpectrumFloat(NULL, far_f_, spectrum_size_));
// Use |farend_handle_| which is properly created at SetUp().
EXPECT_EQ(-1, WebRtc_AddFarSpectrumFloat(farend_handle_, NULL,
spectrum_size_));
EXPECT_EQ(-1, WebRtc_AddFarSpectrumFloat(farend_handle_, far_f_,
spectrum_size_ + 1));
// WebRtc_AddFarSpectrumFix() should return -1 if we have:
// 1) NULL pointer as |handle|.
// 2) NULL pointer as far-end spectrum.
// 3) Incorrect spectrum size.
// 4) Too high precision in far-end spectrum (Q-domain > 15).
EXPECT_EQ(-1, WebRtc_AddFarSpectrumFix(NULL, far_u16_, spectrum_size_, 0));
EXPECT_EQ(-1, WebRtc_AddFarSpectrumFix(farend_handle_, NULL, spectrum_size_,
0));
EXPECT_EQ(-1, WebRtc_AddFarSpectrumFix(farend_handle_, far_u16_,
spectrum_size_ + 1, 0));
EXPECT_EQ(-1, WebRtc_AddFarSpectrumFix(farend_handle_, far_u16_,
spectrum_size_, 16));
// WebRtc_set_history_size() should return -1 if:
// 1) |handle| is a NULL.
// 2) |history_size| <= 1.
EXPECT_EQ(-1, WebRtc_set_history_size(NULL, 1));
EXPECT_EQ(-1, WebRtc_set_history_size(handle_, 1));
// WebRtc_history_size() should return -1 if:
// 1) NULL pointer input.
EXPECT_EQ(-1, WebRtc_history_size(NULL));
// 2) there is a mismatch between history size.
void* tmp_handle = WebRtc_CreateDelayEstimator(farend_handle_, kHistorySize);
EXPECT_EQ(0, WebRtc_InitDelayEstimator(tmp_handle));
EXPECT_EQ(kDifferentHistorySize,
WebRtc_set_history_size(tmp_handle, kDifferentHistorySize));
EXPECT_EQ(kDifferentHistorySize, WebRtc_history_size(tmp_handle));
EXPECT_EQ(kHistorySize, WebRtc_set_history_size(handle_, kHistorySize));
EXPECT_EQ(-1, WebRtc_history_size(tmp_handle));
// WebRtc_set_lookahead() should return -1 if we try a value outside the
/// buffer.
EXPECT_EQ(-1, WebRtc_set_lookahead(handle_, kLookahead + 1));
EXPECT_EQ(-1, WebRtc_set_lookahead(handle_, -1));
// WebRtc_set_allowed_offset() should return -1 if we have:
// 1) NULL pointer as |handle|.
// 2) |allowed_offset| < 0.
EXPECT_EQ(-1, WebRtc_set_allowed_offset(NULL, 0));
EXPECT_EQ(-1, WebRtc_set_allowed_offset(handle_, -1));
EXPECT_EQ(-1, WebRtc_get_allowed_offset(NULL));
// WebRtc_enable_robust_validation() should return -1 if we have:
// 1) NULL pointer as |handle|.
// 2) Incorrect |enable| value (not 0 or 1).
EXPECT_EQ(-1, WebRtc_enable_robust_validation(NULL, kEnable[0]));
EXPECT_EQ(-1, WebRtc_enable_robust_validation(handle_, -1));
EXPECT_EQ(-1, WebRtc_enable_robust_validation(handle_, 2));
// WebRtc_is_robust_validation_enabled() should return -1 if we have NULL
// pointer as |handle|.
EXPECT_EQ(-1, WebRtc_is_robust_validation_enabled(NULL));
// WebRtc_DelayEstimatorProcessFloat() should return -1 if we have:
// 1) NULL pointer as |handle|.
// 2) NULL pointer as near-end spectrum.
// 3) Incorrect spectrum size.
// 4) Non matching history sizes if multiple delay estimators using the same
// far-end reference.
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFloat(NULL, near_f_,
spectrum_size_));
// Use |handle_| which is properly created at SetUp().
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFloat(handle_, NULL,
spectrum_size_));
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFloat(handle_, near_f_,
spectrum_size_ + 1));
// |tmp_handle| is already in a non-matching state.
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFloat(tmp_handle,
near_f_,
spectrum_size_));
// WebRtc_DelayEstimatorProcessFix() should return -1 if we have:
// 1) NULL pointer as |handle|.
// 2) NULL pointer as near-end spectrum.
// 3) Incorrect spectrum size.
// 4) Too high precision in near-end spectrum (Q-domain > 15).
// 5) Non matching history sizes if multiple delay estimators using the same
// far-end reference.
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFix(NULL, near_u16_, spectrum_size_,
0));
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFix(handle_, NULL, spectrum_size_,
0));
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFix(handle_, near_u16_,
spectrum_size_ + 1, 0));
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFix(handle_, near_u16_,
spectrum_size_, 16));
// |tmp_handle| is already in a non-matching state.
EXPECT_EQ(-1, WebRtc_DelayEstimatorProcessFix(tmp_handle,
near_u16_,
spectrum_size_,
0));
WebRtc_FreeDelayEstimator(tmp_handle);
// WebRtc_last_delay() should return -1 if we have a NULL pointer as |handle|.
EXPECT_EQ(-1, WebRtc_last_delay(NULL));
// Free any local memory if needed.
WebRtc_FreeDelayEstimator(handle);
}
TEST_F(DelayEstimatorTest, VerifyAllowedOffset) {
// Is set to zero by default.
EXPECT_EQ(0, WebRtc_get_allowed_offset(handle_));
for (int i = 1; i >= 0; i--) {
EXPECT_EQ(0, WebRtc_set_allowed_offset(handle_, i));
EXPECT_EQ(i, WebRtc_get_allowed_offset(handle_));
Init();
// Unaffected over a reset.
EXPECT_EQ(i, WebRtc_get_allowed_offset(handle_));
}
}
TEST_F(DelayEstimatorTest, VerifyEnableRobustValidation) {
// Disabled by default.
EXPECT_EQ(0, WebRtc_is_robust_validation_enabled(handle_));
for (size_t i = 0; i < kSizeEnable; ++i) {
EXPECT_EQ(0, WebRtc_enable_robust_validation(handle_, kEnable[i]));
EXPECT_EQ(kEnable[i], WebRtc_is_robust_validation_enabled(handle_));
Init();
// Unaffected over a reset.
EXPECT_EQ(kEnable[i], WebRtc_is_robust_validation_enabled(handle_));
}
}
TEST_F(DelayEstimatorTest, InitializedSpectrumAfterProcess) {
// In this test we verify that the mean spectra are initialized after first
// time we call WebRtc_AddFarSpectrum() and Process() respectively. The test
// also verifies the state is not left for zero spectra.
const float kZerosFloat[kSpectrumSize] = { 0.0 };
const uint16_t kZerosU16[kSpectrumSize] = { 0 };
// For floating point operations, process one frame and verify initialization
// flag.
Init();
EXPECT_EQ(0, WebRtc_AddFarSpectrumFloat(farend_handle_, kZerosFloat,
spectrum_size_));
EXPECT_EQ(0, farend_self_->far_spectrum_initialized);
EXPECT_EQ(0, WebRtc_AddFarSpectrumFloat(farend_handle_, far_f_,
spectrum_size_));
EXPECT_EQ(1, farend_self_->far_spectrum_initialized);
EXPECT_EQ(-2, WebRtc_DelayEstimatorProcessFloat(handle_, kZerosFloat,
spectrum_size_));
EXPECT_EQ(0, self_->near_spectrum_initialized);
EXPECT_EQ(-2, WebRtc_DelayEstimatorProcessFloat(handle_, near_f_,
spectrum_size_));
EXPECT_EQ(1, self_->near_spectrum_initialized);
// For fixed point operations, process one frame and verify initialization
// flag.
Init();
EXPECT_EQ(0, WebRtc_AddFarSpectrumFix(farend_handle_, kZerosU16,
spectrum_size_, 0));
EXPECT_EQ(0, farend_self_->far_spectrum_initialized);
EXPECT_EQ(0, WebRtc_AddFarSpectrumFix(farend_handle_, far_u16_,
spectrum_size_, 0));
EXPECT_EQ(1, farend_self_->far_spectrum_initialized);
EXPECT_EQ(-2, WebRtc_DelayEstimatorProcessFix(handle_, kZerosU16,
spectrum_size_, 0));
EXPECT_EQ(0, self_->near_spectrum_initialized);
EXPECT_EQ(-2, WebRtc_DelayEstimatorProcessFix(handle_, near_u16_,
spectrum_size_, 0));
EXPECT_EQ(1, self_->near_spectrum_initialized);
}
TEST_F(DelayEstimatorTest, CorrectLastDelay) {
// In this test we verify that we get the correct last delay upon valid call.
// We simply process the same data until we leave the initialized state
// (|last_delay| = -2). Then we compare the Process() output with the
// last_delay() call.
// TODO(bjornv): Update quality values for robust validation.
int last_delay = 0;
// Floating point operations.
Init();
for (int i = 0; i < 200; i++) {
EXPECT_EQ(0, WebRtc_AddFarSpectrumFloat(farend_handle_, far_f_,
spectrum_size_));
last_delay = WebRtc_DelayEstimatorProcessFloat(handle_, near_f_,
spectrum_size_);
if (last_delay != -2) {
EXPECT_EQ(last_delay, WebRtc_last_delay(handle_));
if (!WebRtc_is_robust_validation_enabled(handle_)) {
EXPECT_FLOAT_EQ(7203.f / kMaxBitCountsQ9,
WebRtc_last_delay_quality(handle_));
}
break;
}
}
// Verify that we have left the initialized state.
EXPECT_NE(-2, WebRtc_last_delay(handle_));
EXPECT_LT(0, WebRtc_last_delay_quality(handle_));
// Fixed point operations.
Init();
for (int i = 0; i < 200; i++) {
EXPECT_EQ(0, WebRtc_AddFarSpectrumFix(farend_handle_, far_u16_,
spectrum_size_, 0));
last_delay = WebRtc_DelayEstimatorProcessFix(handle_, near_u16_,
spectrum_size_, 0);
if (last_delay != -2) {
EXPECT_EQ(last_delay, WebRtc_last_delay(handle_));
if (!WebRtc_is_robust_validation_enabled(handle_)) {
EXPECT_FLOAT_EQ(7203.f / kMaxBitCountsQ9,
WebRtc_last_delay_quality(handle_));
}
break;
}
}
// Verify that we have left the initialized state.
EXPECT_NE(-2, WebRtc_last_delay(handle_));
EXPECT_LT(0, WebRtc_last_delay_quality(handle_));
}
TEST_F(DelayEstimatorTest, CorrectErrorReturnsOfBinaryEstimatorFarend) {
// In this test we verify correct output on invalid API calls to the Binary
// Delay Estimator (far-end part).
BinaryDelayEstimatorFarend* binary = binary_farend_;
// WebRtc_CreateBinaryDelayEstimatorFarend() should return -1 if the input
// history size is less than 2. This is to make sure the buffer shifting
// applies properly.
// Make sure we have a non-NULL value at start, so we can detect NULL after
// create failure.
binary = WebRtc_CreateBinaryDelayEstimatorFarend(1);
EXPECT_TRUE(binary == NULL);
}
TEST_F(DelayEstimatorTest, CorrectErrorReturnsOfBinaryEstimator) {
// In this test we verify correct output on invalid API calls to the Binary
// Delay Estimator.
BinaryDelayEstimator* binary_handle = binary_;
// WebRtc_CreateBinaryDelayEstimator() should return -1 if we have a NULL
// pointer as |binary_farend| or invalid input values. Upon failure, the
// |binary_handle| should be NULL.
// Make sure we have a non-NULL value at start, so we can detect NULL after
// create failure.
binary_handle = WebRtc_CreateBinaryDelayEstimator(NULL, kLookahead);
EXPECT_TRUE(binary_handle == NULL);
binary_handle = WebRtc_CreateBinaryDelayEstimator(binary_farend_, -1);
EXPECT_TRUE(binary_handle == NULL);
}
TEST_F(DelayEstimatorTest, MeanEstimatorFix) {
// In this test we verify that we update the mean value in correct direction
// only. With "direction" we mean increase or decrease.
int32_t mean_value = 4000;
int32_t mean_value_before = mean_value;
int32_t new_mean_value = mean_value * 2;
// Increasing |mean_value|.
WebRtc_MeanEstimatorFix(new_mean_value, 10, &mean_value);
EXPECT_LT(mean_value_before, mean_value);
EXPECT_GT(new_mean_value, mean_value);
// Decreasing |mean_value|.
new_mean_value = mean_value / 2;
mean_value_before = mean_value;
WebRtc_MeanEstimatorFix(new_mean_value, 10, &mean_value);
EXPECT_GT(mean_value_before, mean_value);
EXPECT_LT(new_mean_value, mean_value);
}
TEST_F(DelayEstimatorTest, ExactDelayEstimateMultipleNearSameSpectrum) {
// In this test we verify that we get the correct delay estimates if we shift
// the signal accordingly. We create two Binary Delay Estimators and feed them
// with the same signals, so they should output the same results.
// We verify both causal and non-causal delays.
// For these noise free signals, the robust validation should not have an
// impact, hence we turn robust validation on/off for both reference and
// delayed near end.
for (size_t i = 0; i < kSizeEnable; ++i) {
for (size_t j = 0; j < kSizeEnable; ++j) {
RunBinarySpectraTest(0, 0, kEnable[i], kEnable[j]);
}
}
}
TEST_F(DelayEstimatorTest, ExactDelayEstimateMultipleNearDifferentSpectrum) {
// In this test we use the same setup as above, but we now feed the two Binary
// Delay Estimators with different signals, so they should output different
// results.
// For these noise free signals, the robust validation should not have an
// impact, hence we turn robust validation on/off for both reference and
// delayed near end.
const int kNearOffset = 1;
for (size_t i = 0; i < kSizeEnable; ++i) {
for (size_t j = 0; j < kSizeEnable; ++j) {
RunBinarySpectraTest(kNearOffset, 0, kEnable[i], kEnable[j]);
}
}
}
TEST_F(DelayEstimatorTest, ExactDelayEstimateMultipleNearDifferentLookahead) {
// In this test we use the same setup as above, feeding the two Binary
// Delay Estimators with the same signals. The difference is that we create
// them with different lookahead.
// For these noise free signals, the robust validation should not have an
// impact, hence we turn robust validation on/off for both reference and
// delayed near end.
const int kLookaheadOffset = 1;
for (size_t i = 0; i < kSizeEnable; ++i) {
for (size_t j = 0; j < kSizeEnable; ++j) {
RunBinarySpectraTest(0, kLookaheadOffset, kEnable[i], kEnable[j]);
}
}
}
TEST_F(DelayEstimatorTest, AllowedOffsetNoImpactWhenRobustValidationDisabled) {
// The same setup as in ExactDelayEstimateMultipleNearSameSpectrum with the
// difference that |allowed_offset| is set for the reference binary delay
// estimator.
binary_->allowed_offset = 10;
RunBinarySpectraTest(0, 0, 0, 0);
binary_->allowed_offset = 0; // Reset reference.
}
TEST_F(DelayEstimatorTest, VerifyLookaheadAtCreate) {
void* farend_handle = WebRtc_CreateDelayEstimatorFarend(kSpectrumSize,
kMaxDelay);
ASSERT_TRUE(farend_handle != NULL);
void* handle = WebRtc_CreateDelayEstimator(farend_handle, kLookahead);
ASSERT_TRUE(handle != NULL);
EXPECT_EQ(kLookahead, WebRtc_lookahead(handle));
WebRtc_FreeDelayEstimator(handle);
WebRtc_FreeDelayEstimatorFarend(farend_handle);
}
TEST_F(DelayEstimatorTest, VerifyLookaheadIsSetAndKeptAfterInit) {
EXPECT_EQ(kLookahead, WebRtc_lookahead(handle_));
EXPECT_EQ(kDifferentLookahead,
WebRtc_set_lookahead(handle_, kDifferentLookahead));
EXPECT_EQ(kDifferentLookahead, WebRtc_lookahead(handle_));
EXPECT_EQ(0, WebRtc_InitDelayEstimatorFarend(farend_handle_));
EXPECT_EQ(kDifferentLookahead, WebRtc_lookahead(handle_));
EXPECT_EQ(0, WebRtc_InitDelayEstimator(handle_));
EXPECT_EQ(kDifferentLookahead, WebRtc_lookahead(handle_));
}
TEST_F(DelayEstimatorTest, VerifyHistorySizeAtCreate) {
EXPECT_EQ(kHistorySize, WebRtc_history_size(handle_));
}
TEST_F(DelayEstimatorTest, VerifyHistorySizeIsSetAndKeptAfterInit) {
EXPECT_EQ(kHistorySize, WebRtc_history_size(handle_));
EXPECT_EQ(kDifferentHistorySize,
WebRtc_set_history_size(handle_, kDifferentHistorySize));
EXPECT_EQ(kDifferentHistorySize, WebRtc_history_size(handle_));
EXPECT_EQ(0, WebRtc_InitDelayEstimator(handle_));
EXPECT_EQ(kDifferentHistorySize, WebRtc_history_size(handle_));
EXPECT_EQ(0, WebRtc_InitDelayEstimatorFarend(farend_handle_));
EXPECT_EQ(kDifferentHistorySize, WebRtc_history_size(handle_));
}
// TODO(bjornv): Add tests for SoftReset...(...).
} // namespace

View File

@@ -0,0 +1,485 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "webrtc/modules/audio_processing/utility/delay_estimator.h"
#include "webrtc/modules/audio_processing/utility/delay_estimator_internal.h"
#include "webrtc/system_wrappers/interface/compile_assert_c.h"
// Only bit |kBandFirst| through bit |kBandLast| are processed and
// |kBandFirst| - |kBandLast| must be < 32.
enum { kBandFirst = 12 };
enum { kBandLast = 43 };
static __inline uint32_t SetBit(uint32_t in, int pos) {
uint32_t mask = (1 << pos);
uint32_t out = (in | mask);
return out;
}
// Calculates the mean recursively. Same version as WebRtc_MeanEstimatorFix(),
// but for float.
//
// Inputs:
// - new_value : New additional value.
// - scale : Scale for smoothing (should be less than 1.0).
//
// Input/Output:
// - mean_value : Pointer to the mean value for updating.
//
static void MeanEstimatorFloat(float new_value,
float scale,
float* mean_value) {
assert(scale < 1.0f);
*mean_value += (new_value - *mean_value) * scale;
}
// Computes the binary spectrum by comparing the input |spectrum| with a
// |threshold_spectrum|. Float and fixed point versions.
//
// Inputs:
// - spectrum : Spectrum of which the binary spectrum should be
// calculated.
// - threshold_spectrum : Threshold spectrum with which the input
// spectrum is compared.
// Return:
// - out : Binary spectrum.
//
static uint32_t BinarySpectrumFix(const uint16_t* spectrum,
SpectrumType* threshold_spectrum,
int q_domain,
int* threshold_initialized) {
int i = kBandFirst;
uint32_t out = 0;
assert(q_domain < 16);
if (!(*threshold_initialized)) {
// Set the |threshold_spectrum| to half the input |spectrum| as starting
// value. This speeds up the convergence.
for (i = kBandFirst; i <= kBandLast; i++) {
if (spectrum[i] > 0) {
// Convert input spectrum from Q(|q_domain|) to Q15.
int32_t spectrum_q15 = ((int32_t) spectrum[i]) << (15 - q_domain);
threshold_spectrum[i].int32_ = (spectrum_q15 >> 1);
*threshold_initialized = 1;
}
}
}
for (i = kBandFirst; i <= kBandLast; i++) {
// Convert input spectrum from Q(|q_domain|) to Q15.
int32_t spectrum_q15 = ((int32_t) spectrum[i]) << (15 - q_domain);
// Update the |threshold_spectrum|.
WebRtc_MeanEstimatorFix(spectrum_q15, 6, &(threshold_spectrum[i].int32_));
// Convert |spectrum| at current frequency bin to a binary value.
if (spectrum_q15 > threshold_spectrum[i].int32_) {
out = SetBit(out, i - kBandFirst);
}
}
return out;
}
static uint32_t BinarySpectrumFloat(const float* spectrum,
SpectrumType* threshold_spectrum,
int* threshold_initialized) {
int i = kBandFirst;
uint32_t out = 0;
const float kScale = 1 / 64.0;
if (!(*threshold_initialized)) {
// Set the |threshold_spectrum| to half the input |spectrum| as starting
// value. This speeds up the convergence.
for (i = kBandFirst; i <= kBandLast; i++) {
if (spectrum[i] > 0.0f) {
threshold_spectrum[i].float_ = (spectrum[i] / 2);
*threshold_initialized = 1;
}
}
}
for (i = kBandFirst; i <= kBandLast; i++) {
// Update the |threshold_spectrum|.
MeanEstimatorFloat(spectrum[i], kScale, &(threshold_spectrum[i].float_));
// Convert |spectrum| at current frequency bin to a binary value.
if (spectrum[i] > threshold_spectrum[i].float_) {
out = SetBit(out, i - kBandFirst);
}
}
return out;
}
void WebRtc_FreeDelayEstimatorFarend(void* handle) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*) handle;
if (handle == NULL) {
return;
}
free(self->mean_far_spectrum);
self->mean_far_spectrum = NULL;
WebRtc_FreeBinaryDelayEstimatorFarend(self->binary_farend);
self->binary_farend = NULL;
free(self);
}
void* WebRtc_CreateDelayEstimatorFarend(int spectrum_size, int history_size) {
DelayEstimatorFarend* self = NULL;
// Check if the sub band used in the delay estimation is small enough to fit
// the binary spectra in a uint32_t.
COMPILE_ASSERT(kBandLast - kBandFirst < 32);
if (spectrum_size >= kBandLast) {
self = malloc(sizeof(DelayEstimatorFarend));
}
if (self != NULL) {
int memory_fail = 0;
// Allocate memory for the binary far-end spectrum handling.
self->binary_farend = WebRtc_CreateBinaryDelayEstimatorFarend(history_size);
memory_fail |= (self->binary_farend == NULL);
// Allocate memory for spectrum buffers.
self->mean_far_spectrum = malloc(spectrum_size * sizeof(SpectrumType));
memory_fail |= (self->mean_far_spectrum == NULL);
self->spectrum_size = spectrum_size;
if (memory_fail) {
WebRtc_FreeDelayEstimatorFarend(self);
self = NULL;
}
}
return self;
}
int WebRtc_InitDelayEstimatorFarend(void* handle) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*) handle;
if (self == NULL) {
return -1;
}
// Initialize far-end part of binary delay estimator.
WebRtc_InitBinaryDelayEstimatorFarend(self->binary_farend);
// Set averaged far and near end spectra to zero.
memset(self->mean_far_spectrum, 0,
sizeof(SpectrumType) * self->spectrum_size);
// Reset initialization indicators.
self->far_spectrum_initialized = 0;
return 0;
}
void WebRtc_SoftResetDelayEstimatorFarend(void* handle, int delay_shift) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*) handle;
assert(self != NULL);
WebRtc_SoftResetBinaryDelayEstimatorFarend(self->binary_farend, delay_shift);
}
int WebRtc_AddFarSpectrumFix(void* handle,
const uint16_t* far_spectrum,
int spectrum_size,
int far_q) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*) handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (far_spectrum == NULL) {
// Empty far end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
if (far_q > 15) {
// If |far_q| is larger than 15 we cannot guarantee no wrap around.
return -1;
}
// Get binary spectrum.
binary_spectrum = BinarySpectrumFix(far_spectrum, self->mean_far_spectrum,
far_q, &(self->far_spectrum_initialized));
WebRtc_AddBinaryFarSpectrum(self->binary_farend, binary_spectrum);
return 0;
}
int WebRtc_AddFarSpectrumFloat(void* handle,
const float* far_spectrum,
int spectrum_size) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*) handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (far_spectrum == NULL) {
// Empty far end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
// Get binary spectrum.
binary_spectrum = BinarySpectrumFloat(far_spectrum, self->mean_far_spectrum,
&(self->far_spectrum_initialized));
WebRtc_AddBinaryFarSpectrum(self->binary_farend, binary_spectrum);
return 0;
}
void WebRtc_FreeDelayEstimator(void* handle) {
DelayEstimator* self = (DelayEstimator*) handle;
if (handle == NULL) {
return;
}
free(self->mean_near_spectrum);
self->mean_near_spectrum = NULL;
WebRtc_FreeBinaryDelayEstimator(self->binary_handle);
self->binary_handle = NULL;
free(self);
}
void* WebRtc_CreateDelayEstimator(void* farend_handle, int max_lookahead) {
DelayEstimator* self = NULL;
DelayEstimatorFarend* farend = (DelayEstimatorFarend*) farend_handle;
if (farend_handle != NULL) {
self = malloc(sizeof(DelayEstimator));
}
if (self != NULL) {
int memory_fail = 0;
// Allocate memory for the farend spectrum handling.
self->binary_handle =
WebRtc_CreateBinaryDelayEstimator(farend->binary_farend, max_lookahead);
memory_fail |= (self->binary_handle == NULL);
// Allocate memory for spectrum buffers.
self->mean_near_spectrum = malloc(farend->spectrum_size *
sizeof(SpectrumType));
memory_fail |= (self->mean_near_spectrum == NULL);
self->spectrum_size = farend->spectrum_size;
if (memory_fail) {
WebRtc_FreeDelayEstimator(self);
self = NULL;
}
}
return self;
}
int WebRtc_InitDelayEstimator(void* handle) {
DelayEstimator* self = (DelayEstimator*) handle;
if (self == NULL) {
return -1;
}
// Initialize binary delay estimator.
WebRtc_InitBinaryDelayEstimator(self->binary_handle);
// Set averaged far and near end spectra to zero.
memset(self->mean_near_spectrum, 0,
sizeof(SpectrumType) * self->spectrum_size);
// Reset initialization indicators.
self->near_spectrum_initialized = 0;
return 0;
}
int WebRtc_SoftResetDelayEstimator(void* handle, int delay_shift) {
DelayEstimator* self = (DelayEstimator*) handle;
assert(self != NULL);
return WebRtc_SoftResetBinaryDelayEstimator(self->binary_handle, delay_shift);
}
int WebRtc_set_history_size(void* handle, int history_size) {
DelayEstimator* self = handle;
if ((self == NULL) || (history_size <= 1)) {
return -1;
}
return WebRtc_AllocateHistoryBufferMemory(self->binary_handle, history_size);
}
int WebRtc_history_size(const void* handle) {
const DelayEstimator* self = handle;
if (self == NULL) {
return -1;
}
if (self->binary_handle->farend->history_size !=
self->binary_handle->history_size) {
// Non matching history sizes.
return -1;
}
return self->binary_handle->history_size;
}
int WebRtc_set_lookahead(void* handle, int lookahead) {
DelayEstimator* self = (DelayEstimator*) handle;
assert(self != NULL);
assert(self->binary_handle != NULL);
if ((lookahead > self->binary_handle->near_history_size - 1) ||
(lookahead < 0)) {
return -1;
}
self->binary_handle->lookahead = lookahead;
return self->binary_handle->lookahead;
}
int WebRtc_lookahead(void* handle) {
DelayEstimator* self = (DelayEstimator*) handle;
assert(self != NULL);
assert(self->binary_handle != NULL);
return self->binary_handle->lookahead;
}
int WebRtc_set_allowed_offset(void* handle, int allowed_offset) {
DelayEstimator* self = (DelayEstimator*) handle;
if ((self == NULL) || (allowed_offset < 0)) {
return -1;
}
self->binary_handle->allowed_offset = allowed_offset;
return 0;
}
int WebRtc_get_allowed_offset(const void* handle) {
const DelayEstimator* self = (const DelayEstimator*) handle;
if (self == NULL) {
return -1;
}
return self->binary_handle->allowed_offset;
}
int WebRtc_enable_robust_validation(void* handle, int enable) {
DelayEstimator* self = (DelayEstimator*) handle;
if (self == NULL) {
return -1;
}
if ((enable < 0) || (enable > 1)) {
return -1;
}
assert(self->binary_handle != NULL);
self->binary_handle->robust_validation_enabled = enable;
return 0;
}
int WebRtc_is_robust_validation_enabled(const void* handle) {
const DelayEstimator* self = (const DelayEstimator*) handle;
if (self == NULL) {
return -1;
}
return self->binary_handle->robust_validation_enabled;
}
int WebRtc_DelayEstimatorProcessFix(void* handle,
const uint16_t* near_spectrum,
int spectrum_size,
int near_q) {
DelayEstimator* self = (DelayEstimator*) handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (near_spectrum == NULL) {
// Empty near end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
if (near_q > 15) {
// If |near_q| is larger than 15 we cannot guarantee no wrap around.
return -1;
}
// Get binary spectra.
binary_spectrum = BinarySpectrumFix(near_spectrum,
self->mean_near_spectrum,
near_q,
&(self->near_spectrum_initialized));
return WebRtc_ProcessBinarySpectrum(self->binary_handle, binary_spectrum);
}
int WebRtc_DelayEstimatorProcessFloat(void* handle,
const float* near_spectrum,
int spectrum_size) {
DelayEstimator* self = (DelayEstimator*) handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (near_spectrum == NULL) {
// Empty near end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
// Get binary spectrum.
binary_spectrum = BinarySpectrumFloat(near_spectrum, self->mean_near_spectrum,
&(self->near_spectrum_initialized));
return WebRtc_ProcessBinarySpectrum(self->binary_handle, binary_spectrum);
}
int WebRtc_last_delay(void* handle) {
DelayEstimator* self = (DelayEstimator*) handle;
if (self == NULL) {
return -1;
}
return WebRtc_binary_last_delay(self->binary_handle);
}
float WebRtc_last_delay_quality(void* handle) {
DelayEstimator* self = (DelayEstimator*) handle;
assert(self != NULL);
return WebRtc_binary_last_delay_quality(self->binary_handle);
}

View File

@@ -0,0 +1,244 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs delay estimation on block by block basis.
// The return value is 0 - OK and -1 - Error, unless otherwise stated.
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
#include "webrtc/typedefs.h"
// Releases the memory allocated by WebRtc_CreateDelayEstimatorFarend(...)
void WebRtc_FreeDelayEstimatorFarend(void* handle);
// Allocates the memory needed by the far-end part of the delay estimation. The
// memory needs to be initialized separately through
// WebRtc_InitDelayEstimatorFarend(...).
//
// Inputs:
// - spectrum_size : Size of the spectrum used both in far-end and
// near-end. Used to allocate memory for spectrum
// specific buffers.
// - history_size : The far-end history buffer size. A change in buffer
// size can be forced with WebRtc_set_history_size().
// Note that the maximum delay which can be estimated is
// determined together with WebRtc_set_lookahead().
//
// Return value:
// - void* : Created |handle|. If the memory can't be allocated or
// if any of the input parameters are invalid NULL is
// returned.
void* WebRtc_CreateDelayEstimatorFarend(int spectrum_size, int history_size);
// Initializes the far-end part of the delay estimation instance returned by
// WebRtc_CreateDelayEstimatorFarend(...)
int WebRtc_InitDelayEstimatorFarend(void* handle);
// Soft resets the far-end part of the delay estimation instance returned by
// WebRtc_CreateDelayEstimatorFarend(...).
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
void WebRtc_SoftResetDelayEstimatorFarend(void* handle, int delay_shift);
// Adds the far-end spectrum to the far-end history buffer. This spectrum is
// used as reference when calculating the delay using
// WebRtc_ProcessSpectrum().
//
// Inputs:
// - far_spectrum : Far-end spectrum.
// - spectrum_size : The size of the data arrays (same for both far- and
// near-end).
// - far_q : The Q-domain of the far-end data.
//
// Output:
// - handle : Updated far-end instance.
//
int WebRtc_AddFarSpectrumFix(void* handle,
const uint16_t* far_spectrum,
int spectrum_size,
int far_q);
// See WebRtc_AddFarSpectrumFix() for description.
int WebRtc_AddFarSpectrumFloat(void* handle,
const float* far_spectrum,
int spectrum_size);
// Releases the memory allocated by WebRtc_CreateDelayEstimator(...)
void WebRtc_FreeDelayEstimator(void* handle);
// Allocates the memory needed by the delay estimation. The memory needs to be
// initialized separately through WebRtc_InitDelayEstimator(...).
//
// Inputs:
// - farend_handle : Pointer to the far-end part of the delay estimation
// instance created prior to this call using
// WebRtc_CreateDelayEstimatorFarend().
//
// Note that WebRtc_CreateDelayEstimator does not take
// ownership of |farend_handle|, which has to be torn
// down properly after this instance.
//
// - max_lookahead : Maximum amount of non-causal lookahead allowed. The
// actual amount of lookahead used can be controlled by
// WebRtc_set_lookahead(...). The default |lookahead| is
// set to |max_lookahead| at create time. Use
// WebRtc_set_lookahead(...) before start if a different
// value is desired.
//
// Using lookahead can detect cases in which a near-end
// signal occurs before the corresponding far-end signal.
// It will delay the estimate for the current block by an
// equal amount, and the returned values will be offset
// by it.
//
// A value of zero is the typical no-lookahead case.
// This also represents the minimum delay which can be
// estimated.
//
// Note that the effective range of delay estimates is
// [-|lookahead|,... ,|history_size|-|lookahead|)
// where |history_size| is set through
// WebRtc_set_history_size().
//
// Return value:
// - void* : Created |handle|. If the memory can't be allocated or
// if any of the input parameters are invalid NULL is
// returned.
void* WebRtc_CreateDelayEstimator(void* farend_handle, int max_lookahead);
// Initializes the delay estimation instance returned by
// WebRtc_CreateDelayEstimator(...)
int WebRtc_InitDelayEstimator(void* handle);
// Soft resets the delay estimation instance returned by
// WebRtc_CreateDelayEstimator(...)
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
//
// Return value:
// - actual_shifts : The actual number of shifts performed.
int WebRtc_SoftResetDelayEstimator(void* handle, int delay_shift);
// Sets the effective |history_size| used. Valid values from 2. We simply need
// at least two delays to compare to perform an estimate. If |history_size| is
// changed, buffers are reallocated filling in with zeros if necessary.
// Note that changing the |history_size| affects both buffers in far-end and
// near-end. Hence it is important to change all DelayEstimators that use the
// same reference far-end, to the same |history_size| value.
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - history_size : Effective history size to be used.
// Return value:
// - new_history_size : The new history size used. If the memory was not able
// to be allocated 0 is returned.
int WebRtc_set_history_size(void* handle, int history_size);
// Returns the history_size currently used.
// Input:
// - handle : Pointer to the delay estimation instance.
int WebRtc_history_size(const void* handle);
// Sets the amount of |lookahead| to use. Valid values are [0, max_lookahead]
// where |max_lookahead| was set at create time through
// WebRtc_CreateDelayEstimator(...).
//
// Input:
// - handle : Pointer to the delay estimation instance.
// - lookahead : The amount of lookahead to be used.
//
// Return value:
// - new_lookahead : The actual amount of lookahead set, unless |handle| is
// a NULL pointer or |lookahead| is invalid, for which an
// error is returned.
int WebRtc_set_lookahead(void* handle, int lookahead);
// Returns the amount of lookahead we currently use.
// Input:
// - handle : Pointer to the delay estimation instance.
int WebRtc_lookahead(void* handle);
// Sets the |allowed_offset| used in the robust validation scheme. If the
// delay estimator is used in an echo control component, this parameter is
// related to the filter length. In principle |allowed_offset| should be set to
// the echo control filter length minus the expected echo duration, i.e., the
// delay offset the echo control can handle without quality regression. The
// default value, used if not set manually, is zero. Note that |allowed_offset|
// has to be non-negative.
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - allowed_offset : The amount of delay offset, measured in partitions,
// the echo control filter can handle.
int WebRtc_set_allowed_offset(void* handle, int allowed_offset);
// Returns the |allowed_offset| in number of partitions.
int WebRtc_get_allowed_offset(const void* handle);
// Enables/Disables a robust validation functionality in the delay estimation.
// This is by default set to disabled at create time. The state is preserved
// over a reset.
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - enable : Enable (1) or disable (0) this feature.
int WebRtc_enable_robust_validation(void* handle, int enable);
// Returns 1 if robust validation is enabled and 0 if disabled.
int WebRtc_is_robust_validation_enabled(const void* handle);
// Estimates and returns the delay between the far-end and near-end blocks. The
// value will be offset by the lookahead (i.e. the lookahead should be
// subtracted from the returned value).
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - near_spectrum : Pointer to the near-end spectrum data of the current
// block.
// - spectrum_size : The size of the data arrays (same for both far- and
// near-end).
// - near_q : The Q-domain of the near-end data.
//
// Output:
// - handle : Updated instance.
//
// Return value:
// - delay : >= 0 - Calculated delay value.
// -1 - Error.
// -2 - Insufficient data for estimation.
int WebRtc_DelayEstimatorProcessFix(void* handle,
const uint16_t* near_spectrum,
int spectrum_size,
int near_q);
// See WebRtc_DelayEstimatorProcessFix() for description.
int WebRtc_DelayEstimatorProcessFloat(void* handle,
const float* near_spectrum,
int spectrum_size);
// Returns the last calculated delay updated by the function
// WebRtc_DelayEstimatorProcess(...).
//
// Input:
// - handle : Pointer to the delay estimation instance.
//
// Return value:
// - delay : >= 0 - Last calculated delay value.
// -1 - Error.
// -2 - Insufficient data for estimation.
int WebRtc_last_delay(void* handle);
// Returns the estimation quality/probability of the last calculated delay
// updated by the function WebRtc_DelayEstimatorProcess(...). The estimation
// quality is a value in the interval [0, 1]. The higher the value, the better
// the quality.
//
// Return value:
// - delay_quality : >= 0 - Estimation quality of last calculated delay.
float WebRtc_last_delay_quality(void* handle);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,17 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_FFT4G_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_FFT4G_H_
void WebRtc_rdft(int, int, float *, int *, float *);
void WebRtc_cdft(int, int, float *, int *, float *);
#endif

View File

@@ -0,0 +1,252 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// A ring buffer to hold arbitrary data. Provides no thread safety. Unless
// otherwise specified, functions return 0 on success and -1 on error.
#include "webrtc/modules/audio_processing/utility/ring_buffer.h"
#include <stddef.h> // size_t
#include <stdlib.h>
#include <string.h>
enum Wrap {
SAME_WRAP,
DIFF_WRAP
};
struct RingBuffer {
size_t read_pos;
size_t write_pos;
size_t element_count;
size_t element_size;
enum Wrap rw_wrap;
char* data;
};
// Get address of region(s) from which we can read data.
// If the region is contiguous, |data_ptr_bytes_2| will be zero.
// If non-contiguous, |data_ptr_bytes_2| will be the size in bytes of the second
// region. Returns room available to be read or |element_count|, whichever is
// smaller.
static size_t GetBufferReadRegions(RingBuffer* buf,
size_t element_count,
void** data_ptr_1,
size_t* data_ptr_bytes_1,
void** data_ptr_2,
size_t* data_ptr_bytes_2) {
const size_t readable_elements = WebRtc_available_read(buf);
const size_t read_elements = (readable_elements < element_count ?
readable_elements : element_count);
const size_t margin = buf->element_count - buf->read_pos;
// Check to see if read is not contiguous.
if (read_elements > margin) {
// Write data in two blocks that wrap the buffer.
*data_ptr_1 = buf->data + buf->read_pos * buf->element_size;
*data_ptr_bytes_1 = margin * buf->element_size;
*data_ptr_2 = buf->data;
*data_ptr_bytes_2 = (read_elements - margin) * buf->element_size;
} else {
*data_ptr_1 = buf->data + buf->read_pos * buf->element_size;
*data_ptr_bytes_1 = read_elements * buf->element_size;
*data_ptr_2 = NULL;
*data_ptr_bytes_2 = 0;
}
return read_elements;
}
RingBuffer* WebRtc_CreateBuffer(size_t element_count, size_t element_size) {
RingBuffer* self = NULL;
if (element_count == 0 || element_size == 0) {
return NULL;
}
self = malloc(sizeof(RingBuffer));
if (!self) {
return NULL;
}
self->data = malloc(element_count * element_size);
if (!self->data) {
free(self);
self = NULL;
return NULL;
}
self->element_count = element_count;
self->element_size = element_size;
return self;
}
int WebRtc_InitBuffer(RingBuffer* self) {
if (!self) {
return -1;
}
self->read_pos = 0;
self->write_pos = 0;
self->rw_wrap = SAME_WRAP;
// Initialize buffer to zeros
memset(self->data, 0, self->element_count * self->element_size);
return 0;
}
void WebRtc_FreeBuffer(void* handle) {
RingBuffer* self = (RingBuffer*)handle;
if (!self) {
return;
}
free(self->data);
free(self);
}
size_t WebRtc_ReadBuffer(RingBuffer* self,
void** data_ptr,
void* data,
size_t element_count) {
if (self == NULL) {
return 0;
}
if (data == NULL) {
return 0;
}
{
void* buf_ptr_1 = NULL;
void* buf_ptr_2 = NULL;
size_t buf_ptr_bytes_1 = 0;
size_t buf_ptr_bytes_2 = 0;
const size_t read_count = GetBufferReadRegions(self,
element_count,
&buf_ptr_1,
&buf_ptr_bytes_1,
&buf_ptr_2,
&buf_ptr_bytes_2);
if (buf_ptr_bytes_2 > 0) {
// We have a wrap around when reading the buffer. Copy the buffer data to
// |data| and point to it.
memcpy(data, buf_ptr_1, buf_ptr_bytes_1);
memcpy(((char*) data) + buf_ptr_bytes_1, buf_ptr_2, buf_ptr_bytes_2);
buf_ptr_1 = data;
} else if (!data_ptr) {
// No wrap, but a memcpy was requested.
memcpy(data, buf_ptr_1, buf_ptr_bytes_1);
}
if (data_ptr) {
// |buf_ptr_1| == |data| in the case of a wrap.
*data_ptr = buf_ptr_1;
}
// Update read position
WebRtc_MoveReadPtr(self, (int) read_count);
return read_count;
}
}
size_t WebRtc_WriteBuffer(RingBuffer* self,
const void* data,
size_t element_count) {
if (!self) {
return 0;
}
if (!data) {
return 0;
}
{
const size_t free_elements = WebRtc_available_write(self);
const size_t write_elements = (free_elements < element_count ? free_elements
: element_count);
size_t n = write_elements;
const size_t margin = self->element_count - self->write_pos;
if (write_elements > margin) {
// Buffer wrap around when writing.
memcpy(self->data + self->write_pos * self->element_size,
data, margin * self->element_size);
self->write_pos = 0;
n -= margin;
self->rw_wrap = DIFF_WRAP;
}
memcpy(self->data + self->write_pos * self->element_size,
((const char*) data) + ((write_elements - n) * self->element_size),
n * self->element_size);
self->write_pos += n;
return write_elements;
}
}
int WebRtc_MoveReadPtr(RingBuffer* self, int element_count) {
if (!self) {
return 0;
}
{
// We need to be able to take care of negative changes, hence use "int"
// instead of "size_t".
const int free_elements = (int) WebRtc_available_write(self);
const int readable_elements = (int) WebRtc_available_read(self);
int read_pos = (int) self->read_pos;
if (element_count > readable_elements) {
element_count = readable_elements;
}
if (element_count < -free_elements) {
element_count = -free_elements;
}
read_pos += element_count;
if (read_pos > (int) self->element_count) {
// Buffer wrap around. Restart read position and wrap indicator.
read_pos -= (int) self->element_count;
self->rw_wrap = SAME_WRAP;
}
if (read_pos < 0) {
// Buffer wrap around. Restart read position and wrap indicator.
read_pos += (int) self->element_count;
self->rw_wrap = DIFF_WRAP;
}
self->read_pos = (size_t) read_pos;
return element_count;
}
}
size_t WebRtc_available_read(const RingBuffer* self) {
if (!self) {
return 0;
}
if (self->rw_wrap == SAME_WRAP) {
return self->write_pos - self->read_pos;
} else {
return self->element_count - self->read_pos + self->write_pos;
}
}
size_t WebRtc_available_write(const RingBuffer* self) {
if (!self) {
return 0;
}
return self->element_count - WebRtc_available_read(self);
}

View File

@@ -0,0 +1,58 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// A ring buffer to hold arbitrary data. Provides no thread safety. Unless
// otherwise specified, functions return 0 on success and -1 on error.
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_RING_BUFFER_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_RING_BUFFER_H_
#include <stddef.h> // size_t
typedef struct RingBuffer RingBuffer;
// Returns NULL on failure.
RingBuffer* WebRtc_CreateBuffer(size_t element_count, size_t element_size);
int WebRtc_InitBuffer(RingBuffer* handle);
void WebRtc_FreeBuffer(void* handle);
// Reads data from the buffer. The |data_ptr| will point to the address where
// it is located. If all |element_count| data are feasible to read without
// buffer wrap around |data_ptr| will point to the location in the buffer.
// Otherwise, the data will be copied to |data| (memory allocation done by the
// user) and |data_ptr| points to the address of |data|. |data_ptr| is only
// guaranteed to be valid until the next call to WebRtc_WriteBuffer().
//
// To force a copying to |data|, pass a NULL |data_ptr|.
//
// Returns number of elements read.
size_t WebRtc_ReadBuffer(RingBuffer* handle,
void** data_ptr,
void* data,
size_t element_count);
// Writes |data| to buffer and returns the number of elements written.
size_t WebRtc_WriteBuffer(RingBuffer* handle, const void* data,
size_t element_count);
// Moves the buffer read position and returns the number of elements moved.
// Positive |element_count| moves the read position towards the write position,
// that is, flushing the buffer. Negative |element_count| moves the read
// position away from the the write position, that is, stuffing the buffer.
// Returns number of elements moved.
int WebRtc_MoveReadPtr(RingBuffer* handle, int element_count);
// Returns number of available elements to read.
size_t WebRtc_available_read(const RingBuffer* handle);
// Returns number of available elements for write.
size_t WebRtc_available_write(const RingBuffer* handle);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_RING_BUFFER_H_

View File

@@ -0,0 +1,152 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// TODO(ajm): Make this a comprehensive test.
extern "C" {
#include "webrtc/modules/audio_processing/utility/ring_buffer.h"
}
#include <stdlib.h>
#include <time.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
namespace webrtc {
struct FreeBufferDeleter {
inline void operator()(void* ptr) const {
WebRtc_FreeBuffer(ptr);
}
};
typedef scoped_ptr<RingBuffer, FreeBufferDeleter> scoped_ring_buffer;
static void AssertElementEq(int expected, int actual) {
ASSERT_EQ(expected, actual);
}
static int SetIncrementingData(int* data, int num_elements,
int starting_value) {
for (int i = 0; i < num_elements; i++) {
data[i] = starting_value++;
}
return starting_value;
}
static int CheckIncrementingData(int* data, int num_elements,
int starting_value) {
for (int i = 0; i < num_elements; i++) {
AssertElementEq(starting_value++, data[i]);
}
return starting_value;
}
// We use ASSERTs in this test to avoid obscuring the seed in the case of a
// failure.
static void RandomStressTest(int** data_ptr) {
const int kNumTests = 10;
const int kNumOps = 1000;
const int kMaxBufferSize = 1000;
unsigned int seed = time(NULL);
printf("seed=%u\n", seed);
srand(seed);
for (int i = 0; i < kNumTests; i++) {
const int buffer_size = std::max(rand() % kMaxBufferSize, 1);
scoped_ptr<int[]> write_data(new int[buffer_size]);
scoped_ptr<int[]> read_data(new int[buffer_size]);
scoped_ring_buffer buffer(WebRtc_CreateBuffer(buffer_size, sizeof(int)));
ASSERT_TRUE(buffer.get() != NULL);
ASSERT_EQ(0, WebRtc_InitBuffer(buffer.get()));
int buffer_consumed = 0;
int write_element = 0;
int read_element = 0;
for (int j = 0; j < kNumOps; j++) {
const bool write = rand() % 2 == 0 ? true : false;
const int num_elements = rand() % buffer_size;
if (write) {
const int buffer_available = buffer_size - buffer_consumed;
ASSERT_EQ(static_cast<size_t>(buffer_available),
WebRtc_available_write(buffer.get()));
const int expected_elements = std::min(num_elements, buffer_available);
write_element = SetIncrementingData(write_data.get(), expected_elements,
write_element);
ASSERT_EQ(static_cast<size_t>(expected_elements),
WebRtc_WriteBuffer(buffer.get(), write_data.get(),
num_elements));
buffer_consumed = std::min(buffer_consumed + expected_elements,
buffer_size);
} else {
const int expected_elements = std::min(num_elements,
buffer_consumed);
ASSERT_EQ(static_cast<size_t>(buffer_consumed),
WebRtc_available_read(buffer.get()));
ASSERT_EQ(static_cast<size_t>(expected_elements),
WebRtc_ReadBuffer(buffer.get(),
reinterpret_cast<void**>(data_ptr),
read_data.get(),
num_elements));
int* check_ptr = read_data.get();
if (data_ptr) {
check_ptr = *data_ptr;
}
read_element = CheckIncrementingData(check_ptr, expected_elements,
read_element);
buffer_consumed = std::max(buffer_consumed - expected_elements, 0);
}
}
}
}
TEST(RingBufferTest, RandomStressTest) {
int* data_ptr = NULL;
RandomStressTest(&data_ptr);
}
TEST(RingBufferTest, RandomStressTestWithNullPtr) {
RandomStressTest(NULL);
}
TEST(RingBufferTest, PassingNulltoReadBufferForcesMemcpy) {
const size_t kDataSize = 2;
int write_data[kDataSize];
int read_data[kDataSize];
int* data_ptr;
scoped_ring_buffer buffer(WebRtc_CreateBuffer(kDataSize, sizeof(int)));
ASSERT_TRUE(buffer.get() != NULL);
ASSERT_EQ(0, WebRtc_InitBuffer(buffer.get()));
SetIncrementingData(write_data, kDataSize, 0);
EXPECT_EQ(kDataSize, WebRtc_WriteBuffer(buffer.get(), write_data, kDataSize));
SetIncrementingData(read_data, kDataSize, kDataSize);
EXPECT_EQ(kDataSize, WebRtc_ReadBuffer(buffer.get(),
reinterpret_cast<void**>(&data_ptr), read_data, kDataSize));
// Copying was not necessary, so |read_data| has not been updated.
CheckIncrementingData(data_ptr, kDataSize, 0);
CheckIncrementingData(read_data, kDataSize, kDataSize);
EXPECT_EQ(kDataSize, WebRtc_WriteBuffer(buffer.get(), write_data, kDataSize));
EXPECT_EQ(kDataSize, WebRtc_ReadBuffer(buffer.get(), NULL, read_data,
kDataSize));
// Passing NULL forces a memcpy, so |read_data| is now updated.
CheckIncrementingData(read_data, kDataSize, 0);
}
TEST(RingBufferTest, CreateHandlesErrors) {
EXPECT_TRUE(WebRtc_CreateBuffer(0, 1) == NULL);
EXPECT_TRUE(WebRtc_CreateBuffer(1, 0) == NULL);
RingBuffer* buffer = WebRtc_CreateBuffer(1, 1);
EXPECT_TRUE(buffer != NULL);
WebRtc_FreeBuffer(buffer);
}
} // namespace webrtc