/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/system_wrappers/interface/rtp_to_ntp.h" #include "webrtc/system_wrappers/interface/clock.h" #include namespace webrtc { RtcpMeasurement::RtcpMeasurement() : ntp_secs(0), ntp_frac(0), rtp_timestamp(0) {} RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t timestamp) : ntp_secs(ntp_secs), ntp_frac(ntp_frac), rtp_timestamp(timestamp) {} // Calculates the RTP timestamp frequency from two pairs of NTP and RTP // timestamps. bool CalculateFrequency( int64_t rtcp_ntp_ms1, uint32_t rtp_timestamp1, int64_t rtcp_ntp_ms2, uint32_t rtp_timestamp2, double* frequency_khz) { if (rtcp_ntp_ms1 <= rtcp_ntp_ms2) { return false; } *frequency_khz = static_cast(rtp_timestamp1 - rtp_timestamp2) / static_cast(rtcp_ntp_ms1 - rtcp_ntp_ms2); return true; } // Detects if there has been a wraparound between |old_timestamp| and // |new_timestamp|, and compensates by adding 2^32 if that is the case. bool CompensateForWrapAround(uint32_t new_timestamp, uint32_t old_timestamp, int64_t* compensated_timestamp) { assert(compensated_timestamp); int64_t wraps = CheckForWrapArounds(new_timestamp, old_timestamp); if (wraps < 0) { // Reordering, don't use this packet. return false; } *compensated_timestamp = new_timestamp + (wraps << 32); return true; } bool UpdateRtcpList(uint32_t ntp_secs, uint32_t ntp_frac, uint32_t rtp_timestamp, RtcpList* rtcp_list, bool* new_rtcp_sr) { *new_rtcp_sr = false; if (ntp_secs == 0 && ntp_frac == 0) { return false; } RtcpMeasurement measurement; measurement.ntp_secs = ntp_secs; measurement.ntp_frac = ntp_frac; measurement.rtp_timestamp = rtp_timestamp; for (RtcpList::iterator it = rtcp_list->begin(); it != rtcp_list->end(); ++it) { if (measurement.ntp_secs == (*it).ntp_secs && measurement.ntp_frac == (*it).ntp_frac) { // This RTCP has already been added to the list. return true; } } // We need two RTCP SR reports to map between RTP and NTP. More than two will // not improve the mapping. if (rtcp_list->size() == 2) { rtcp_list->pop_back(); } rtcp_list->push_front(measurement); *new_rtcp_sr = true; return true; } // Converts |rtp_timestamp| to the NTP time base using the NTP and RTP timestamp // pairs in |rtcp|. The converted timestamp is returned in // |rtp_timestamp_in_ms|. This function compensates for wrap arounds in RTP // timestamps and returns false if it can't do the conversion due to reordering. bool RtpToNtpMs(int64_t rtp_timestamp, const RtcpList& rtcp, int64_t* rtp_timestamp_in_ms) { assert(rtcp.size() == 2); int64_t rtcp_ntp_ms_new = Clock::NtpToMs(rtcp.front().ntp_secs, rtcp.front().ntp_frac); int64_t rtcp_ntp_ms_old = Clock::NtpToMs(rtcp.back().ntp_secs, rtcp.back().ntp_frac); int64_t rtcp_timestamp_new = rtcp.front().rtp_timestamp; int64_t rtcp_timestamp_old = rtcp.back().rtp_timestamp; if (!CompensateForWrapAround(rtcp_timestamp_new, rtcp_timestamp_old, &rtcp_timestamp_new)) { return false; } double freq_khz; if (!CalculateFrequency(rtcp_ntp_ms_new, rtcp_timestamp_new, rtcp_ntp_ms_old, rtcp_timestamp_old, &freq_khz)) { return false; } double offset = rtcp_timestamp_new - freq_khz * rtcp_ntp_ms_new; int64_t rtp_timestamp_unwrapped; if (!CompensateForWrapAround(rtp_timestamp, rtcp_timestamp_old, &rtp_timestamp_unwrapped)) { return false; } double rtp_timestamp_ntp_ms = (static_cast(rtp_timestamp_unwrapped) - offset) / freq_khz + 0.5f; if (rtp_timestamp_ntp_ms < 0) { return false; } *rtp_timestamp_in_ms = rtp_timestamp_ntp_ms; return true; } int CheckForWrapArounds(uint32_t new_timestamp, uint32_t old_timestamp) { if (new_timestamp < old_timestamp) { // This difference should be less than -2^31 if we have had a wrap around // (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is // cast to a int32_t, it should be positive. if (static_cast(new_timestamp - old_timestamp) > 0) { // Forward wrap around. return 1; } } else if (static_cast(old_timestamp - new_timestamp) > 0) { // This difference should be less than -2^31 if we have had a backward wrap // around. Since it is cast to a int32_t, it should be positive. return -1; } return 0; } } // namespace webrtc