/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/common_audio/vad/vad_sp.h" #include #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/common_audio/vad/vad_core.h" #include "webrtc/typedefs.h" // Allpass filter coefficients, upper and lower, in Q13. // Upper: 0.64, Lower: 0.17. static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 }; // Q13. static const int16_t kSmoothingDown = 6553; // 0.2 in Q15. static const int16_t kSmoothingUp = 32439; // 0.99 in Q15. // TODO(bjornv): Move this function to vad_filterbank.c. // Downsampling filter based on splitting filter and allpass functions. void WebRtcVad_Downsampling(const int16_t* signal_in, int16_t* signal_out, int32_t* filter_state, int in_length) { int16_t tmp16_1 = 0, tmp16_2 = 0; int32_t tmp32_1 = filter_state[0]; int32_t tmp32_2 = filter_state[1]; int n = 0; int half_length = (in_length >> 1); // Downsampling by 2 gives half length. // Filter coefficients in Q13, filter state in Q0. for (n = 0; n < half_length; n++) { // All-pass filtering upper branch. tmp16_1 = (int16_t) ((tmp32_1 >> 1) + WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], *signal_in, 14)); *signal_out = tmp16_1; tmp32_1 = (int32_t) (*signal_in++) - WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], tmp16_1, 12); // All-pass filtering lower branch. tmp16_2 = (int16_t) ((tmp32_2 >> 1) + WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], *signal_in, 14)); *signal_out++ += tmp16_2; tmp32_2 = (int32_t) (*signal_in++) - WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], tmp16_2, 12); } // Store the filter states. filter_state[0] = tmp32_1; filter_state[1] = tmp32_2; } // Inserts |feature_value| into |low_value_vector|, if it is one of the 16 // smallest values the last 100 frames. Then calculates and returns the median // of the five smallest values. int16_t WebRtcVad_FindMinimum(VadInstT* self, int16_t feature_value, int channel) { int i = 0, j = 0; int position = -1; // Offset to beginning of the 16 minimum values in memory. const int offset = (channel << 4); int16_t current_median = 1600; int16_t alpha = 0; int32_t tmp32 = 0; // Pointer to memory for the 16 minimum values and the age of each value of // the |channel|. int16_t* age = &self->index_vector[offset]; int16_t* smallest_values = &self->low_value_vector[offset]; assert(channel < kNumChannels); // Each value in |smallest_values| is getting 1 loop older. Update |age|, and // remove old values. for (i = 0; i < 16; i++) { if (age[i] != 100) { age[i]++; } else { // Too old value. Remove from memory and shift larger values downwards. for (j = i; j < 16; j++) { smallest_values[j] = smallest_values[j + 1]; age[j] = age[j + 1]; } age[15] = 101; smallest_values[15] = 10000; } } // Check if |feature_value| is smaller than any of the values in // |smallest_values|. If so, find the |position| where to insert the new value // (|feature_value|). if (feature_value < smallest_values[7]) { if (feature_value < smallest_values[3]) { if (feature_value < smallest_values[1]) { if (feature_value < smallest_values[0]) { position = 0; } else { position = 1; } } else if (feature_value < smallest_values[2]) { position = 2; } else { position = 3; } } else if (feature_value < smallest_values[5]) { if (feature_value < smallest_values[4]) { position = 4; } else { position = 5; } } else if (feature_value < smallest_values[6]) { position = 6; } else { position = 7; } } else if (feature_value < smallest_values[15]) { if (feature_value < smallest_values[11]) { if (feature_value < smallest_values[9]) { if (feature_value < smallest_values[8]) { position = 8; } else { position = 9; } } else if (feature_value < smallest_values[10]) { position = 10; } else { position = 11; } } else if (feature_value < smallest_values[13]) { if (feature_value < smallest_values[12]) { position = 12; } else { position = 13; } } else if (feature_value < smallest_values[14]) { position = 14; } else { position = 15; } } // If we have detected a new small value, insert it at the correct position // and shift larger values up. if (position > -1) { for (i = 15; i > position; i--) { smallest_values[i] = smallest_values[i - 1]; age[i] = age[i - 1]; } smallest_values[position] = feature_value; age[position] = 1; } // Get |current_median|. if (self->frame_counter > 2) { current_median = smallest_values[2]; } else if (self->frame_counter > 0) { current_median = smallest_values[0]; } // Smooth the median value. if (self->frame_counter > 0) { if (current_median < self->mean_value[channel]) { alpha = kSmoothingDown; // 0.2 in Q15. } else { alpha = kSmoothingUp; // 0.99 in Q15. } } tmp32 = WEBRTC_SPL_MUL_16_16(alpha + 1, self->mean_value[channel]); tmp32 += WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX - alpha, current_median); tmp32 += 16384; self->mean_value[channel] = (int16_t) (tmp32 >> 15); return self->mean_value[channel]; }