/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_coding/main/acm2/acm_isac.h" #include #include "webrtc/modules/audio_coding/main/interface/audio_coding_module_typedefs.h" #include "webrtc/modules/audio_coding/main/acm2/acm_codec_database.h" #include "webrtc/modules/audio_coding/main/acm2/acm_common_defs.h" #include "webrtc/modules/audio_coding/neteq/interface/audio_decoder.h" #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" #include "webrtc/system_wrappers/interface/trace.h" #ifdef WEBRTC_CODEC_ISAC #include "webrtc/modules/audio_coding/codecs/isac/main/interface/isac.h" #endif #ifdef WEBRTC_CODEC_ISACFX #include "webrtc/modules/audio_coding/codecs/isac/fix/interface/isacfix.h" #endif #if defined (WEBRTC_CODEC_ISAC) || defined (WEBRTC_CODEC_ISACFX) #include "webrtc/modules/audio_coding/main/acm2/acm_isac_macros.h" #endif namespace webrtc { namespace acm2 { // we need this otherwise we cannot use forward declaration // in the header file #if (defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX)) struct ACMISACInst { ACM_ISAC_STRUCT* inst; }; #endif #define ISAC_MIN_RATE 10000 #define ISAC_MAX_RATE 56000 // Tables for bandwidth estimates #define NR_ISAC_BANDWIDTHS 24 static const int32_t kIsacRatesWb[NR_ISAC_BANDWIDTHS] = { 10000, 11100, 12300, 13700, 15200, 16900, 18800, 20900, 23300, 25900, 28700, 31900, 10100, 11200, 12400, 13800, 15300, 17000, 18900, 21000, 23400, 26000, 28800, 32000}; static const int32_t kIsacRatesSwb[NR_ISAC_BANDWIDTHS] = { 10000, 11000, 12400, 13800, 15300, 17000, 18900, 21000, 23200, 25400, 27600, 29800, 32000, 34100, 36300, 38500, 40700, 42900, 45100, 47300, 49500, 51700, 53900, 56000 }; #if (!defined(WEBRTC_CODEC_ISAC) && !defined(WEBRTC_CODEC_ISACFX)) ACMISAC::ACMISAC(int16_t /* codec_id */) : codec_inst_crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), codec_inst_ptr_(NULL), is_enc_initialized_(false), isac_coding_mode_(CHANNEL_INDEPENDENT), enforce_frame_size_(false), isac_currentBN_(32000), samples_in10MsAudio_(160), // Initiates to 16 kHz mode. decoder_initialized_(false) { } ACMISAC::~ACMISAC() { return; } ACMGenericCodec* ACMISAC::CreateInstance(void) { return NULL; } int16_t ACMISAC::InternalEncode(uint8_t* /* bitstream */, int16_t* /* bitstream_len_byte */) { return -1; } int16_t ACMISAC::InternalInitEncoder(WebRtcACMCodecParams* /* codec_params */) { return -1; } int16_t ACMISAC::InternalInitDecoder(WebRtcACMCodecParams* /* codec_params */) { return -1; } int16_t ACMISAC::InternalCreateEncoder() { return -1; } void ACMISAC::DestructEncoderSafe() { return; } void ACMISAC::InternalDestructEncoderInst(void* /* ptr_inst */) { return; } int16_t ACMISAC::Transcode(uint8_t* /* bitstream */, int16_t* /* bitstream_len_byte */, int16_t /* q_bwe */, int32_t /* scale */, bool /* is_red */) { return -1; } int16_t ACMISAC::SetBitRateSafe(int32_t /* bit_rate */) { return -1; } int32_t ACMISAC::GetEstimatedBandwidthSafe() { return -1; } int32_t ACMISAC::SetEstimatedBandwidthSafe(int32_t /* estimated_bandwidth */) { return -1; } int32_t ACMISAC::GetRedPayloadSafe(uint8_t* /* red_payload */, int16_t* /* payload_bytes */) { return -1; } int16_t ACMISAC::UpdateDecoderSampFreq(int16_t /* codec_id */) { return -1; } int16_t ACMISAC::UpdateEncoderSampFreq(uint16_t /* encoder_samp_freq_hz */) { return -1; } int16_t ACMISAC::EncoderSampFreq(uint16_t* /* samp_freq_hz */) { return -1; } int32_t ACMISAC::ConfigISACBandwidthEstimator( const uint8_t /* init_frame_size_msec */, const uint16_t /* init_rate_bit_per_sec */, const bool /* enforce_frame_size */) { return -1; } int32_t ACMISAC::SetISACMaxPayloadSize( const uint16_t /* max_payload_len_bytes */) { return -1; } int32_t ACMISAC::SetISACMaxRate(const uint32_t /* max_rate_bit_per_sec */) { return -1; } void ACMISAC::UpdateFrameLen() { return; } void ACMISAC::CurrentRate(int32_t* /*rate_bit_per_sec */) { return; } bool ACMISAC::DecoderParamsSafe(WebRtcACMCodecParams* /* dec_params */, const uint8_t /* payload_type */) { return false; } int16_t ACMISAC::REDPayloadISAC(const int32_t /* isac_rate */, const int16_t /* isac_bw_estimate */, uint8_t* /* payload */, int16_t* /* payload_len_bytes */) { return -1; } AudioDecoder* ACMISAC::Decoder(int /* codec_id */) { return NULL; } #else //===================== Actual Implementation ======================= #ifdef WEBRTC_CODEC_ISACFX // How the scaling is computed. iSAC computes a gain based on the // bottleneck. It follows the following expression for that // // G(BN_kbps) = pow(10, (a + b * BN_kbps + c * BN_kbps * BN_kbps) / 20.0) // / 3.4641; // // Where for 30 ms framelength we have, // // a = -23; b = 0.48; c = 0; // // As the default encoder is operating at 32kbps we have the scale as // // S(BN_kbps) = G(BN_kbps) / G(32); #define ISAC_NUM_SUPPORTED_RATES 9 static const uint16_t kIsacSuportedRates[ISAC_NUM_SUPPORTED_RATES] = { 32000, 30000, 26000, 23000, 21000, 19000, 17000, 15000, 12000}; static const float kIsacScale[ISAC_NUM_SUPPORTED_RATES] = { 1.0f, 0.8954f, 0.7178f, 0.6081f, 0.5445f, 0.4875f, 0.4365f, 0.3908f, 0.3311f }; enum IsacSamplingRate { kIsacWideband = 16, kIsacSuperWideband = 32 }; static float ACMISACFixTranscodingScale(uint16_t rate) { // find the scale for transcoding, the scale is rounded // downward float scale = -1; for (int16_t n = 0; n < ISAC_NUM_SUPPORTED_RATES; n++) { if (rate >= kIsacSuportedRates[n]) { scale = kIsacScale[n]; break; } } return scale; } static void ACMISACFixGetSendBitrate(ACM_ISAC_STRUCT* inst, int32_t* bottleneck) { *bottleneck = WebRtcIsacfix_GetUplinkBw(inst); } static int16_t ACMISACFixGetNewBitstream(ACM_ISAC_STRUCT* inst, int16_t bwe_index, int16_t /* jitter_index */, int32_t rate, int16_t* bitstream, bool is_red) { if (is_red) { // RED not supported with iSACFIX return -1; } float scale = ACMISACFixTranscodingScale((uint16_t)rate); return WebRtcIsacfix_GetNewBitStream(inst, bwe_index, scale, bitstream); } static int16_t ACMISACFixGetSendBWE(ACM_ISAC_STRUCT* inst, int16_t* rate_index, int16_t* /* dummy */) { int16_t local_rate_index; int16_t status = WebRtcIsacfix_GetDownLinkBwIndex(inst, &local_rate_index); if (status < 0) { return -1; } else { *rate_index = local_rate_index; return 0; } } static int16_t ACMISACFixControlBWE(ACM_ISAC_STRUCT* inst, int32_t rate_bps, int16_t frame_size_ms, int16_t enforce_frame_size) { return WebRtcIsacfix_ControlBwe( inst, (int16_t)rate_bps, frame_size_ms, enforce_frame_size); } static int16_t ACMISACFixControl(ACM_ISAC_STRUCT* inst, int32_t rate_bps, int16_t frame_size_ms) { return WebRtcIsacfix_Control(inst, (int16_t)rate_bps, frame_size_ms); } // The following two function should have the same signature as their counter // part in iSAC floating-point, i.e. WebRtcIsac_EncSampRate & // WebRtcIsac_DecSampRate. static uint16_t ACMISACFixGetEncSampRate(ACM_ISAC_STRUCT* /* inst */) { return 16000; } static uint16_t ACMISACFixGetDecSampRate(ACM_ISAC_STRUCT* /* inst */) { return 16000; } #endif ACMISAC::ACMISAC(int16_t codec_id) : AudioDecoder(ACMCodecDB::neteq_decoders_[codec_id]), codec_inst_crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), is_enc_initialized_(false), isac_coding_mode_(CHANNEL_INDEPENDENT), enforce_frame_size_(false), isac_current_bn_(32000), samples_in_10ms_audio_(160), // Initiates to 16 kHz mode. decoder_initialized_(false) { codec_id_ = codec_id; // Create codec instance. codec_inst_ptr_ = new ACMISACInst; if (codec_inst_ptr_ == NULL) { return; } codec_inst_ptr_->inst = NULL; state_ = codec_inst_ptr_; } ACMISAC::~ACMISAC() { if (codec_inst_ptr_ != NULL) { if (codec_inst_ptr_->inst != NULL) { ACM_ISAC_FREE(codec_inst_ptr_->inst); codec_inst_ptr_->inst = NULL; } delete codec_inst_ptr_; codec_inst_ptr_ = NULL; } return; } int16_t ACMISAC::InternalInitDecoder(WebRtcACMCodecParams* codec_params) { // set decoder sampling frequency. if (codec_params->codec_inst.plfreq == 32000 || codec_params->codec_inst.plfreq == 48000) { UpdateDecoderSampFreq(ACMCodecDB::kISACSWB); } else { UpdateDecoderSampFreq(ACMCodecDB::kISAC); } // in a one-way communication we may never register send-codec. // However we like that the BWE to work properly so it has to // be initialized. The BWE is initialized when iSAC encoder is initialized. // Therefore, we need this. if (!encoder_initialized_) { // Since we don't require a valid rate or a valid packet size when // initializing the decoder, we set valid values before initializing encoder codec_params->codec_inst.rate = kIsacWbDefaultRate; codec_params->codec_inst.pacsize = kIsacPacSize960; if (InternalInitEncoder(codec_params) < 0) { return -1; } encoder_initialized_ = true; } CriticalSectionScoped lock(codec_inst_crit_sect_.get()); return ACM_ISAC_DECODERINIT(codec_inst_ptr_->inst); } ACMGenericCodec* ACMISAC::CreateInstance(void) { return NULL; } int16_t ACMISAC::InternalEncode(uint8_t* bitstream, int16_t* bitstream_len_byte) { // ISAC takes 10ms audio every time we call encoder, therefore, // it should be treated like codecs with 'basic coding block' // non-zero, and the following 'while-loop' should not be necessary. // However, due to a mistake in the codec the frame-size might change // at the first 10ms pushed in to iSAC if the bit-rate is low, this is // sort of a bug in iSAC. to address this we treat iSAC as the // following. CriticalSectionScoped lock(codec_inst_crit_sect_.get()); if (codec_inst_ptr_ == NULL) { return -1; } *bitstream_len_byte = 0; while ((*bitstream_len_byte == 0) && (in_audio_ix_read_ < frame_len_smpl_)) { if (in_audio_ix_read_ > in_audio_ix_write_) { // something is wrong. WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, unique_id_, "The actual frame-size of iSAC appears to be larger that " "expected. All audio pushed in but no bit-stream is " "generated."); return -1; } *bitstream_len_byte = ACM_ISAC_ENCODE( codec_inst_ptr_->inst, &in_audio_[in_audio_ix_read_], reinterpret_cast(bitstream)); // increment the read index this tell the caller that how far // we have gone forward in reading the audio buffer in_audio_ix_read_ += samples_in_10ms_audio_; } if (*bitstream_len_byte == 0) { WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceAudioCoding, unique_id_, "ISAC Has encoded the whole frame but no bit-stream is " "generated."); } // a packet is generated iSAC, is set in adaptive mode may change // the frame length and we like to update the bottleneck value as // well, although updating bottleneck is not crucial if ((*bitstream_len_byte > 0) && (isac_coding_mode_ == ADAPTIVE)) { ACM_ISAC_GETSENDBITRATE(codec_inst_ptr_->inst, &isac_current_bn_); } UpdateFrameLen(); return *bitstream_len_byte; } int16_t ACMISAC::InternalInitEncoder(WebRtcACMCodecParams* codec_params) { // if rate is set to -1 then iSAC has to be in adaptive mode if (codec_params->codec_inst.rate == -1) { isac_coding_mode_ = ADAPTIVE; } else if ((codec_params->codec_inst.rate >= ISAC_MIN_RATE) && (codec_params->codec_inst.rate <= ISAC_MAX_RATE)) { // sanity check that rate is in acceptable range isac_coding_mode_ = CHANNEL_INDEPENDENT; isac_current_bn_ = codec_params->codec_inst.rate; } else { return -1; } // we need to set the encoder sampling frequency. if (UpdateEncoderSampFreq((uint16_t)codec_params->codec_inst.plfreq) < 0) { return -1; } CriticalSectionScoped lock(codec_inst_crit_sect_.get()); if (ACM_ISAC_ENCODERINIT(codec_inst_ptr_->inst, isac_coding_mode_) < 0) { return -1; } // apply the frame-size and rate if operating in // channel-independent mode if (isac_coding_mode_ == CHANNEL_INDEPENDENT) { if (ACM_ISAC_CONTROL(codec_inst_ptr_->inst, codec_params->codec_inst.rate, codec_params->codec_inst.pacsize / (codec_params->codec_inst.plfreq / 1000)) < 0) { return -1; } } else { // We need this for adaptive case and has to be called // after initialization ACM_ISAC_GETSENDBITRATE(codec_inst_ptr_->inst, &isac_current_bn_); } frame_len_smpl_ = ACM_ISAC_GETNEWFRAMELEN(codec_inst_ptr_->inst); return 0; } int16_t ACMISAC::InternalCreateEncoder() { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); if (codec_inst_ptr_ == NULL) { return -1; } decoder_initialized_ = false; int16_t status = ACM_ISAC_CREATE(&(codec_inst_ptr_->inst)); if (status < 0) codec_inst_ptr_->inst = NULL; return status; } int16_t ACMISAC::Transcode(uint8_t* bitstream, int16_t* bitstream_len_byte, int16_t q_bwe, int32_t rate, bool is_red) { int16_t jitter_info = 0; // transcode from a higher rate to lower rate sanity check CriticalSectionScoped lock(codec_inst_crit_sect_.get()); if (codec_inst_ptr_ == NULL) { return -1; } *bitstream_len_byte = ACM_ISAC_GETNEWBITSTREAM( codec_inst_ptr_->inst, q_bwe, jitter_info, rate, reinterpret_cast(bitstream), (is_red) ? 1 : 0); if (*bitstream_len_byte < 0) { // error happened *bitstream_len_byte = 0; return -1; } else { return *bitstream_len_byte; } } void ACMISAC::UpdateFrameLen() { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); frame_len_smpl_ = ACM_ISAC_GETNEWFRAMELEN(codec_inst_ptr_->inst); encoder_params_.codec_inst.pacsize = frame_len_smpl_; } void ACMISAC::DestructEncoderSafe() { // codec with shared instance cannot delete. encoder_initialized_ = false; return; } void ACMISAC::InternalDestructEncoderInst(void* ptr_inst) { if (ptr_inst != NULL) { ACM_ISAC_FREE(static_cast(ptr_inst)); } return; } int16_t ACMISAC::SetBitRateSafe(int32_t bit_rate) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); if (codec_inst_ptr_ == NULL) { return -1; } uint16_t encoder_samp_freq; EncoderSampFreq(&encoder_samp_freq); bool reinit = false; // change the BN of iSAC if (bit_rate == -1) { // ADAPTIVE MODE // Check if it was already in adaptive mode if (isac_coding_mode_ != ADAPTIVE) { // was not in adaptive, then set the mode to adaptive // and flag for re-initialization isac_coding_mode_ = ADAPTIVE; reinit = true; } } else if ((bit_rate >= ISAC_MIN_RATE) && (bit_rate <= ISAC_MAX_RATE)) { // Sanity check if the rate valid // check if it was in channel-independent mode before if (isac_coding_mode_ != CHANNEL_INDEPENDENT) { // was not in channel independent, set the mode to // channel-independent and flag for re-initialization isac_coding_mode_ = CHANNEL_INDEPENDENT; reinit = true; } // store the bottleneck isac_current_bn_ = (uint16_t)bit_rate; } else { // invlaid rate return -1; } int16_t status = 0; if (reinit) { // initialize and check if it is successful if (ACM_ISAC_ENCODERINIT(codec_inst_ptr_->inst, isac_coding_mode_) < 0) { // failed initialization return -1; } } if (isac_coding_mode_ == CHANNEL_INDEPENDENT) { status = ACM_ISAC_CONTROL( codec_inst_ptr_->inst, isac_current_bn_, (encoder_samp_freq == 32000 || encoder_samp_freq == 48000) ? 30 : (frame_len_smpl_ / 16)); if (status < 0) { status = -1; } } // Update encoder parameters encoder_params_.codec_inst.rate = bit_rate; UpdateFrameLen(); return status; } int32_t ACMISAC::GetEstimatedBandwidthSafe() { int16_t bandwidth_index = 0; int16_t delay_index = 0; int samp_rate; // Get bandwidth information CriticalSectionScoped lock(codec_inst_crit_sect_.get()); ACM_ISAC_GETSENDBWE(codec_inst_ptr_->inst, &bandwidth_index, &delay_index); // Validy check of index if ((bandwidth_index < 0) || (bandwidth_index >= NR_ISAC_BANDWIDTHS)) { return -1; } // Check sample frequency samp_rate = ACM_ISAC_GETDECSAMPRATE(codec_inst_ptr_->inst); if (samp_rate == 16000) { return kIsacRatesWb[bandwidth_index]; } else { return kIsacRatesSwb[bandwidth_index]; } } int32_t ACMISAC::SetEstimatedBandwidthSafe(int32_t estimated_bandwidth) { int samp_rate; int16_t bandwidth_index; // Check sample frequency and choose appropriate table CriticalSectionScoped lock(codec_inst_crit_sect_.get()); samp_rate = ACM_ISAC_GETENCSAMPRATE(codec_inst_ptr_->inst); if (samp_rate == 16000) { // Search through the WB rate table to find the index bandwidth_index = NR_ISAC_BANDWIDTHS / 2 - 1; for (int i = 0; i < (NR_ISAC_BANDWIDTHS / 2); i++) { if (estimated_bandwidth == kIsacRatesWb[i]) { bandwidth_index = i; break; } else if (estimated_bandwidth == kIsacRatesWb[i + NR_ISAC_BANDWIDTHS / 2]) { bandwidth_index = i + NR_ISAC_BANDWIDTHS / 2; break; } else if (estimated_bandwidth < kIsacRatesWb[i]) { bandwidth_index = i; break; } } } else { // Search through the SWB rate table to find the index bandwidth_index = NR_ISAC_BANDWIDTHS - 1; for (int i = 0; i < NR_ISAC_BANDWIDTHS; i++) { if (estimated_bandwidth <= kIsacRatesSwb[i]) { bandwidth_index = i; break; } } } // Set iSAC Bandwidth Estimate ACM_ISAC_SETBWE(codec_inst_ptr_->inst, bandwidth_index); return 0; } int32_t ACMISAC::GetRedPayloadSafe( #if (!defined(WEBRTC_CODEC_ISAC)) uint8_t* /* red_payload */, int16_t* /* payload_bytes */) { return -1; #else uint8_t* red_payload, int16_t* payload_bytes) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); int16_t bytes = WebRtcIsac_GetRedPayload( codec_inst_ptr_->inst, reinterpret_cast(red_payload)); if (bytes < 0) { return -1; } *payload_bytes = bytes; return 0; #endif } int16_t ACMISAC::UpdateDecoderSampFreq( #ifdef WEBRTC_CODEC_ISAC int16_t codec_id) { // The decoder supports only wideband and super-wideband. CriticalSectionScoped lock(codec_inst_crit_sect_.get()); if (ACMCodecDB::kISAC == codec_id) { return WebRtcIsac_SetDecSampRate(codec_inst_ptr_->inst, 16000); } else if (ACMCodecDB::kISACSWB == codec_id || ACMCodecDB::kISACFB == codec_id) { return WebRtcIsac_SetDecSampRate(codec_inst_ptr_->inst, 32000); } else { return -1; } #else int16_t /* codec_id */) { return 0; #endif } int16_t ACMISAC::UpdateEncoderSampFreq( #ifdef WEBRTC_CODEC_ISAC uint16_t encoder_samp_freq_hz) { uint16_t current_samp_rate_hz; EncoderSampFreq(¤t_samp_rate_hz); if (current_samp_rate_hz != encoder_samp_freq_hz) { if ((encoder_samp_freq_hz != 16000) && (encoder_samp_freq_hz != 32000) && (encoder_samp_freq_hz != 48000)) { return -1; } else { in_audio_ix_read_ = 0; in_audio_ix_write_ = 0; in_timestamp_ix_write_ = 0; CriticalSectionScoped lock(codec_inst_crit_sect_.get()); if (WebRtcIsac_SetEncSampRate(codec_inst_ptr_->inst, encoder_samp_freq_hz) < 0) { return -1; } samples_in_10ms_audio_ = encoder_samp_freq_hz / 100; frame_len_smpl_ = ACM_ISAC_GETNEWFRAMELEN(codec_inst_ptr_->inst); encoder_params_.codec_inst.pacsize = frame_len_smpl_; encoder_params_.codec_inst.plfreq = encoder_samp_freq_hz; return 0; } } #else uint16_t /* codec_id */) { #endif return 0; } int16_t ACMISAC::EncoderSampFreq(uint16_t* samp_freq_hz) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); *samp_freq_hz = ACM_ISAC_GETENCSAMPRATE(codec_inst_ptr_->inst); return 0; } int32_t ACMISAC::ConfigISACBandwidthEstimator( const uint8_t init_frame_size_msec, const uint16_t init_rate_bit_per_sec, const bool enforce_frame_size) { int16_t status; { uint16_t samp_freq_hz; EncoderSampFreq(&samp_freq_hz); CriticalSectionScoped lock(codec_inst_crit_sect_.get()); // TODO(turajs): at 32kHz we hardcode calling with 30ms and enforce // the frame-size otherwise we might get error. Revise if // control-bwe is changed. if (samp_freq_hz == 32000 || samp_freq_hz == 48000) { status = ACM_ISAC_CONTROL_BWE(codec_inst_ptr_->inst, init_rate_bit_per_sec, 30, 1); } else { status = ACM_ISAC_CONTROL_BWE(codec_inst_ptr_->inst, init_rate_bit_per_sec, init_frame_size_msec, enforce_frame_size ? 1 : 0); } } if (status < 0) { WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, unique_id_, "Couldn't config iSAC BWE."); return -1; } { WriteLockScoped wl(codec_wrapper_lock_); UpdateFrameLen(); } CriticalSectionScoped lock(codec_inst_crit_sect_.get()); ACM_ISAC_GETSENDBITRATE(codec_inst_ptr_->inst, &isac_current_bn_); return 0; } int32_t ACMISAC::SetISACMaxPayloadSize(const uint16_t max_payload_len_bytes) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); return ACM_ISAC_SETMAXPAYLOADSIZE(codec_inst_ptr_->inst, max_payload_len_bytes); } int32_t ACMISAC::SetISACMaxRate(const uint32_t max_rate_bit_per_sec) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); return ACM_ISAC_SETMAXRATE(codec_inst_ptr_->inst, max_rate_bit_per_sec); } void ACMISAC::CurrentRate(int32_t* rate_bit_per_sec) { if (isac_coding_mode_ == ADAPTIVE) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); ACM_ISAC_GETSENDBITRATE(codec_inst_ptr_->inst, rate_bit_per_sec); } } int16_t ACMISAC::REDPayloadISAC(const int32_t isac_rate, const int16_t isac_bw_estimate, uint8_t* payload, int16_t* payload_len_bytes) { int16_t status; ReadLockScoped rl(codec_wrapper_lock_); status = Transcode(payload, payload_len_bytes, isac_bw_estimate, isac_rate, true); return status; } int ACMISAC::Decode(const uint8_t* encoded, size_t encoded_len, int16_t* decoded, SpeechType* speech_type) { int16_t temp_type; CriticalSectionScoped lock(codec_inst_crit_sect_.get()); int ret = ACM_ISAC_DECODE_B(static_cast(codec_inst_ptr_->inst), reinterpret_cast(encoded), static_cast(encoded_len), decoded, &temp_type); *speech_type = ConvertSpeechType(temp_type); return ret; } int ACMISAC::DecodePlc(int num_frames, int16_t* decoded) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); return ACM_ISAC_DECODEPLC( static_cast(codec_inst_ptr_->inst), decoded, static_cast(num_frames)); } int ACMISAC::IncomingPacket(const uint8_t* payload, size_t payload_len, uint16_t rtp_sequence_number, uint32_t rtp_timestamp, uint32_t arrival_timestamp) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); return ACM_ISAC_DECODE_BWE( static_cast(codec_inst_ptr_->inst), reinterpret_cast(payload), static_cast(payload_len), rtp_sequence_number, rtp_timestamp, arrival_timestamp); } int ACMISAC::DecodeRedundant(const uint8_t* encoded, size_t encoded_len, int16_t* decoded, SpeechType* speech_type) { int16_t temp_type = 1; // Default is speech. CriticalSectionScoped lock(codec_inst_crit_sect_.get()); int16_t ret = ACM_ISAC_DECODERCU(static_cast(codec_inst_ptr_->inst), reinterpret_cast(encoded), static_cast(encoded_len), decoded, &temp_type); *speech_type = ConvertSpeechType(temp_type); return ret; } int ACMISAC::ErrorCode() { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); return ACM_ISAC_GETERRORCODE( static_cast(codec_inst_ptr_->inst)); } AudioDecoder* ACMISAC::Decoder(int codec_id) { // Create iSAC instance if it does not exist. WriteLockScoped wl(codec_wrapper_lock_); if (!encoder_exist_) { CriticalSectionScoped lock(codec_inst_crit_sect_.get()); assert(codec_inst_ptr_->inst == NULL); encoder_initialized_ = false; decoder_initialized_ = false; if (ACM_ISAC_CREATE(&(codec_inst_ptr_->inst)) < 0) { codec_inst_ptr_->inst = NULL; return NULL; } encoder_exist_ = true; } WebRtcACMCodecParams codec_params; if (!encoder_initialized_ || !decoder_initialized_) { ACMCodecDB::Codec(codec_id, &codec_params.codec_inst); // The following three values are not used but we set them to valid values. codec_params.enable_dtx = false; codec_params.enable_vad = false; codec_params.vad_mode = VADNormal; } if (!encoder_initialized_) { // Initialize encoder to make sure bandwidth estimator works. if (InternalInitEncoder(&codec_params) < 0) return NULL; encoder_initialized_ = true; } if (!decoder_initialized_) { if (InternalInitDecoder(&codec_params) < 0) return NULL; decoder_initialized_ = true; } return this; } #endif } // namespace acm2 } // namespace webrtc