/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/common_audio/signal_processing/include/real_fft.h" #include #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" struct RealFFT { int order; }; struct RealFFT* WebRtcSpl_CreateRealFFTC(int order) { struct RealFFT* self = NULL; if (order > kMaxFFTOrder || order < 0) { return NULL; } self = malloc(sizeof(struct RealFFT)); if (self == NULL) { return NULL; } self->order = order; return self; } void WebRtcSpl_FreeRealFFTC(struct RealFFT* self) { if (self != NULL) { free(self); } } // The C version FFT functions (i.e. WebRtcSpl_RealForwardFFTC and // WebRtcSpl_RealInverseFFTC) are real-valued FFT wrappers for complex-valued // FFT implementation in SPL. int WebRtcSpl_RealForwardFFTC(struct RealFFT* self, const int16_t* real_data_in, int16_t* complex_data_out) { int i = 0; int j = 0; int result = 0; int n = 1 << self->order; // The complex-value FFT implementation needs a buffer to hold 2^order // 16-bit COMPLEX numbers, for both time and frequency data. int16_t complex_buffer[2 << kMaxFFTOrder]; // Insert zeros to the imaginary parts for complex forward FFT input. for (i = 0, j = 0; i < n; i += 1, j += 2) { complex_buffer[j] = real_data_in[i]; complex_buffer[j + 1] = 0; }; WebRtcSpl_ComplexBitReverse(complex_buffer, self->order); result = WebRtcSpl_ComplexFFT(complex_buffer, self->order, 1); // For real FFT output, use only the first N + 2 elements from // complex forward FFT. memcpy(complex_data_out, complex_buffer, sizeof(int16_t) * (n + 2)); return result; } int WebRtcSpl_RealInverseFFTC(struct RealFFT* self, const int16_t* complex_data_in, int16_t* real_data_out) { int i = 0; int j = 0; int result = 0; int n = 1 << self->order; // Create the buffer specific to complex-valued FFT implementation. int16_t complex_buffer[2 << kMaxFFTOrder]; // For n-point FFT, first copy the first n + 2 elements into complex // FFT, then construct the remaining n - 2 elements by real FFT's // conjugate-symmetric properties. memcpy(complex_buffer, complex_data_in, sizeof(int16_t) * (n + 2)); for (i = n + 2; i < 2 * n; i += 2) { complex_buffer[i] = complex_data_in[2 * n - i]; complex_buffer[i + 1] = -complex_data_in[2 * n - i + 1]; } WebRtcSpl_ComplexBitReverse(complex_buffer, self->order); result = WebRtcSpl_ComplexIFFT(complex_buffer, self->order, 1); // Strip out the imaginary parts of the complex inverse FFT output. for (i = 0, j = 0; i < n; i += 1, j += 2) { real_data_out[i] = complex_buffer[j]; } return result; } #if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON) // TODO(kma): Replace the following function bodies into optimized functions // for ARM Neon. struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order) { return WebRtcSpl_CreateRealFFTC(order); } void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self) { WebRtcSpl_FreeRealFFTC(self); } int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self, const int16_t* real_data_in, int16_t* complex_data_out) { return WebRtcSpl_RealForwardFFTC(self, real_data_in, complex_data_out); } int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self, const int16_t* complex_data_in, int16_t* real_data_out) { return WebRtcSpl_RealInverseFFTC(self, complex_data_in, real_data_out); } #endif // WEBRTC_DETECT_ARM_NEON || WEBRTC_ARCH_ARM_NEON