/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /****************************************************************** iLBC Speech Coder ANSI-C Source Code WebRtcIlbcfix_StateSearch.c ******************************************************************/ #include "defines.h" #include "constants.h" #include "abs_quant.h" /*----------------------------------------------------------------* * encoding of start state *---------------------------------------------------------------*/ void WebRtcIlbcfix_StateSearch( iLBC_Enc_Inst_t *iLBCenc_inst, /* (i) Encoder instance */ iLBC_bits *iLBC_encbits,/* (i/o) Encoded bits (output idxForMax and idxVec, input state_first) */ int16_t *residual, /* (i) target residual vector */ int16_t *syntDenum, /* (i) lpc synthesis filter */ int16_t *weightDenum /* (i) weighting filter denuminator */ ) { int16_t k, index; int16_t maxVal; int16_t scale, shift; int32_t maxValsq; int16_t scaleRes; int16_t max; int i; /* Stack based */ int16_t numerator[1+LPC_FILTERORDER]; int16_t residualLongVec[2*STATE_SHORT_LEN_30MS+LPC_FILTERORDER]; int16_t sampleMa[2*STATE_SHORT_LEN_30MS]; int16_t *residualLong = &residualLongVec[LPC_FILTERORDER]; int16_t *sampleAr = residualLong; /* Scale to maximum 12 bits to avoid saturation in circular convolution filter */ max = WebRtcSpl_MaxAbsValueW16(residual, iLBCenc_inst->state_short_len); scaleRes = WebRtcSpl_GetSizeInBits(max)-12; scaleRes = WEBRTC_SPL_MAX(0, scaleRes); /* Set up the filter coefficients for the circular convolution */ for (i=0; i>scaleRes); } /* Copy the residual to a temporary buffer that we can filter * and set the remaining samples to zero. */ WEBRTC_SPL_MEMCPY_W16(residualLong, residual, iLBCenc_inst->state_short_len); WebRtcSpl_MemSetW16(residualLong + iLBCenc_inst->state_short_len, 0, iLBCenc_inst->state_short_len); /* Run the Zero-Pole filter (Ciurcular convolution) */ WebRtcSpl_MemSetW16(residualLongVec, 0, LPC_FILTERORDER); WebRtcSpl_FilterMAFastQ12( residualLong, sampleMa, numerator, LPC_FILTERORDER+1, (int16_t)(iLBCenc_inst->state_short_len + LPC_FILTERORDER)); WebRtcSpl_MemSetW16(&sampleMa[iLBCenc_inst->state_short_len + LPC_FILTERORDER], 0, iLBCenc_inst->state_short_len - LPC_FILTERORDER); WebRtcSpl_FilterARFastQ12( sampleMa, sampleAr, syntDenum, LPC_FILTERORDER+1, (int16_t)(2*iLBCenc_inst->state_short_len)); for(k=0;kstate_short_len;k++){ sampleAr[k] += sampleAr[k+iLBCenc_inst->state_short_len]; } /* Find maximum absolute value in the vector */ maxVal=WebRtcSpl_MaxAbsValueW16(sampleAr, iLBCenc_inst->state_short_len); /* Find the best index */ if ((((int32_t)maxVal)<=WebRtcIlbcfix_kChooseFrgQuant[i]) { index=i+1; } else { i=63; } } iLBC_encbits->idxForMax=index; /* Rescale the vector before quantization */ scale=WebRtcIlbcfix_kScale[index]; if (index<27) { /* scale table is in Q16, fout[] is in Q(-1) and we want the result to be in Q11 */ shift=4; } else { /* scale table is in Q21, fout[] is in Q(-1) and we want the result to be in Q11 */ shift=9; } /* Set up vectors for AbsQuant and rescale it with the scale factor */ WebRtcSpl_ScaleVectorWithSat(sampleAr, sampleAr, scale, iLBCenc_inst->state_short_len, (int16_t)(shift-scaleRes)); /* Quantize the values in fout[] */ WebRtcIlbcfix_AbsQuant(iLBCenc_inst, iLBC_encbits, sampleAr, weightDenum); return; }