/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Test to verify correct stereo and multi-channel operation. #include #include #include #include "gtest/gtest.h" #include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h" #include "webrtc/modules/audio_coding/neteq/interface/neteq.h" #include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h" #include "webrtc/modules/audio_coding/neteq/tools/rtp_generator.h" #include "webrtc/system_wrappers/interface/scoped_ptr.h" #include "webrtc/test/testsupport/fileutils.h" #include "webrtc/test/testsupport/gtest_disable.h" namespace webrtc { struct TestParameters { int frame_size; int sample_rate; int num_channels; }; // This is a parameterized test. The test parameters are supplied through a // TestParameters struct, which is obtained through the GetParam() method. // // The objective of the test is to create a mono input signal and a // multi-channel input signal, where each channel is identical to the mono // input channel. The two input signals are processed through their respective // NetEq instances. After that, the output signals are compared. The expected // result is that each channel in the multi-channel output is identical to the // mono output. class NetEqStereoTest : public ::testing::TestWithParam { protected: static const int kTimeStepMs = 10; static const int kMaxBlockSize = 480; // 10 ms @ 48 kHz. static const uint8_t kPayloadTypeMono = 95; static const uint8_t kPayloadTypeMulti = 96; NetEqStereoTest() : num_channels_(GetParam().num_channels), sample_rate_hz_(GetParam().sample_rate), samples_per_ms_(sample_rate_hz_ / 1000), frame_size_ms_(GetParam().frame_size), frame_size_samples_(frame_size_ms_ * samples_per_ms_), output_size_samples_(10 * samples_per_ms_), rtp_generator_mono_(samples_per_ms_), rtp_generator_(samples_per_ms_), payload_size_bytes_(0), multi_payload_size_bytes_(0), last_send_time_(0), last_arrival_time_(0) { NetEq::Config config; config.sample_rate_hz = sample_rate_hz_; neteq_mono_ = NetEq::Create(config); neteq_ = NetEq::Create(config); input_ = new int16_t[frame_size_samples_]; encoded_ = new uint8_t[2 * frame_size_samples_]; input_multi_channel_ = new int16_t[frame_size_samples_ * num_channels_]; encoded_multi_channel_ = new uint8_t[frame_size_samples_ * 2 * num_channels_]; output_multi_channel_ = new int16_t[kMaxBlockSize * num_channels_]; } ~NetEqStereoTest() { delete neteq_mono_; delete neteq_; delete [] input_; delete [] encoded_; delete [] input_multi_channel_; delete [] encoded_multi_channel_; delete [] output_multi_channel_; } virtual void SetUp() { const std::string file_name = webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"); input_file_.reset(new test::InputAudioFile(file_name)); NetEqDecoder mono_decoder; NetEqDecoder multi_decoder; switch (sample_rate_hz_) { case 8000: mono_decoder = kDecoderPCM16B; if (num_channels_ == 2) { multi_decoder = kDecoderPCM16B_2ch; } else if (num_channels_ == 5) { multi_decoder = kDecoderPCM16B_5ch; } else { FAIL() << "Only 2 and 5 channels supported for 8000 Hz."; } break; case 16000: mono_decoder = kDecoderPCM16Bwb; if (num_channels_ == 2) { multi_decoder = kDecoderPCM16Bwb_2ch; } else { FAIL() << "More than 2 channels is not supported for 16000 Hz."; } break; case 32000: mono_decoder = kDecoderPCM16Bswb32kHz; if (num_channels_ == 2) { multi_decoder = kDecoderPCM16Bswb32kHz_2ch; } else { FAIL() << "More than 2 channels is not supported for 32000 Hz."; } break; case 48000: mono_decoder = kDecoderPCM16Bswb48kHz; if (num_channels_ == 2) { multi_decoder = kDecoderPCM16Bswb48kHz_2ch; } else { FAIL() << "More than 2 channels is not supported for 48000 Hz."; } break; default: FAIL() << "We shouldn't get here."; } ASSERT_EQ(NetEq::kOK, neteq_mono_->RegisterPayloadType(mono_decoder, kPayloadTypeMono)); ASSERT_EQ(NetEq::kOK, neteq_->RegisterPayloadType(multi_decoder, kPayloadTypeMulti)); } virtual void TearDown() {} int GetNewPackets() { if (!input_file_->Read(frame_size_samples_, input_)) { return -1; } payload_size_bytes_ = WebRtcPcm16b_Encode(input_, frame_size_samples_, encoded_); if (frame_size_samples_ * 2 != payload_size_bytes_) { return -1; } int next_send_time = rtp_generator_mono_.GetRtpHeader(kPayloadTypeMono, frame_size_samples_, &rtp_header_mono_); test::InputAudioFile::DuplicateInterleaved(input_, frame_size_samples_, num_channels_, input_multi_channel_); multi_payload_size_bytes_ = WebRtcPcm16b_Encode( input_multi_channel_, frame_size_samples_ * num_channels_, encoded_multi_channel_); if (frame_size_samples_ * 2 * num_channels_ != multi_payload_size_bytes_) { return -1; } rtp_generator_.GetRtpHeader(kPayloadTypeMulti, frame_size_samples_, &rtp_header_); return next_send_time; } void VerifyOutput(size_t num_samples) { for (size_t i = 0; i < num_samples; ++i) { for (int j = 0; j < num_channels_; ++j) { ASSERT_EQ(output_[i], output_multi_channel_[i * num_channels_ + j]) << "Diff in sample " << i << ", channel " << j << "."; } } } virtual int GetArrivalTime(int send_time) { int arrival_time = last_arrival_time_ + (send_time - last_send_time_); last_send_time_ = send_time; last_arrival_time_ = arrival_time; return arrival_time; } virtual bool Lost() { return false; } void RunTest(int num_loops) { // Get next input packets (mono and multi-channel). int next_send_time; int next_arrival_time; do { next_send_time = GetNewPackets(); ASSERT_NE(-1, next_send_time); next_arrival_time = GetArrivalTime(next_send_time); } while (Lost()); // If lost, immediately read the next packet. int time_now = 0; for (int k = 0; k < num_loops; ++k) { while (time_now >= next_arrival_time) { // Insert packet in mono instance. ASSERT_EQ(NetEq::kOK, neteq_mono_->InsertPacket(rtp_header_mono_, encoded_, payload_size_bytes_, next_arrival_time)); // Insert packet in multi-channel instance. ASSERT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header_, encoded_multi_channel_, multi_payload_size_bytes_, next_arrival_time)); // Get next input packets (mono and multi-channel). do { next_send_time = GetNewPackets(); ASSERT_NE(-1, next_send_time); next_arrival_time = GetArrivalTime(next_send_time); } while (Lost()); // If lost, immediately read the next packet. } NetEqOutputType output_type; // Get audio from mono instance. int samples_per_channel; int num_channels; EXPECT_EQ(NetEq::kOK, neteq_mono_->GetAudio(kMaxBlockSize, output_, &samples_per_channel, &num_channels, &output_type)); EXPECT_EQ(1, num_channels); EXPECT_EQ(output_size_samples_, samples_per_channel); // Get audio from multi-channel instance. ASSERT_EQ(NetEq::kOK, neteq_->GetAudio(kMaxBlockSize * num_channels_, output_multi_channel_, &samples_per_channel, &num_channels, &output_type)); EXPECT_EQ(num_channels_, num_channels); EXPECT_EQ(output_size_samples_, samples_per_channel); std::ostringstream ss; ss << "Lap number " << k << "."; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. // Compare mono and multi-channel. ASSERT_NO_FATAL_FAILURE(VerifyOutput(output_size_samples_)); time_now += kTimeStepMs; } } const int num_channels_; const int sample_rate_hz_; const int samples_per_ms_; const int frame_size_ms_; const int frame_size_samples_; const int output_size_samples_; NetEq* neteq_mono_; NetEq* neteq_; test::RtpGenerator rtp_generator_mono_; test::RtpGenerator rtp_generator_; int16_t* input_; int16_t* input_multi_channel_; uint8_t* encoded_; uint8_t* encoded_multi_channel_; int16_t output_[kMaxBlockSize]; int16_t* output_multi_channel_; WebRtcRTPHeader rtp_header_mono_; WebRtcRTPHeader rtp_header_; int payload_size_bytes_; int multi_payload_size_bytes_; int last_send_time_; int last_arrival_time_; scoped_ptr input_file_; }; class NetEqStereoTestNoJitter : public NetEqStereoTest { protected: NetEqStereoTestNoJitter() : NetEqStereoTest() { // Start the sender 100 ms before the receiver to pre-fill the buffer. // This is to avoid doing preemptive expand early in the test. // TODO(hlundin): Mock the decision making instead to control the modes. last_arrival_time_ = -100; } }; TEST_P(NetEqStereoTestNoJitter, DISABLED_ON_ANDROID(RunTest)) { RunTest(8); } class NetEqStereoTestPositiveDrift : public NetEqStereoTest { protected: NetEqStereoTestPositiveDrift() : NetEqStereoTest(), drift_factor(0.9) { // Start the sender 100 ms before the receiver to pre-fill the buffer. // This is to avoid doing preemptive expand early in the test. // TODO(hlundin): Mock the decision making instead to control the modes. last_arrival_time_ = -100; } virtual int GetArrivalTime(int send_time) { int arrival_time = last_arrival_time_ + drift_factor * (send_time - last_send_time_); last_send_time_ = send_time; last_arrival_time_ = arrival_time; return arrival_time; } double drift_factor; }; TEST_P(NetEqStereoTestPositiveDrift, DISABLED_ON_ANDROID(RunTest)) { RunTest(100); } class NetEqStereoTestNegativeDrift : public NetEqStereoTestPositiveDrift { protected: NetEqStereoTestNegativeDrift() : NetEqStereoTestPositiveDrift() { drift_factor = 1.1; last_arrival_time_ = 0; } }; TEST_P(NetEqStereoTestNegativeDrift, DISABLED_ON_ANDROID(RunTest)) { RunTest(100); } class NetEqStereoTestDelays : public NetEqStereoTest { protected: static const int kDelayInterval = 10; static const int kDelay = 1000; NetEqStereoTestDelays() : NetEqStereoTest(), frame_index_(0) { } virtual int GetArrivalTime(int send_time) { // Deliver immediately, unless we have a back-log. int arrival_time = std::min(last_arrival_time_, send_time); if (++frame_index_ % kDelayInterval == 0) { // Delay this packet. arrival_time += kDelay; } last_send_time_ = send_time; last_arrival_time_ = arrival_time; return arrival_time; } int frame_index_; }; TEST_P(NetEqStereoTestDelays, DISABLED_ON_ANDROID(RunTest)) { RunTest(1000); } class NetEqStereoTestLosses : public NetEqStereoTest { protected: static const int kLossInterval = 10; NetEqStereoTestLosses() : NetEqStereoTest(), frame_index_(0) { } virtual bool Lost() { return (++frame_index_) % kLossInterval == 0; } int frame_index_; }; TEST_P(NetEqStereoTestLosses, DISABLED_ON_ANDROID(RunTest)) { RunTest(100); } // Creates a list of parameter sets. std::list GetTestParameters() { std::list l; const int sample_rates[] = {8000, 16000, 32000}; const int num_rates = sizeof(sample_rates) / sizeof(sample_rates[0]); // Loop through sample rates. for (int rate_index = 0; rate_index < num_rates; ++rate_index) { int sample_rate = sample_rates[rate_index]; // Loop through all frame sizes between 10 and 60 ms. for (int frame_size = 10; frame_size <= 60; frame_size += 10) { TestParameters p; p.frame_size = frame_size; p.sample_rate = sample_rate; p.num_channels = 2; l.push_back(p); if (sample_rate == 8000) { // Add a five-channel test for 8000 Hz. p.num_channels = 5; l.push_back(p); } } } return l; } // Pretty-printing the test parameters in case of an error. void PrintTo(const TestParameters& p, ::std::ostream* os) { *os << "{frame_size = " << p.frame_size << ", num_channels = " << p.num_channels << ", sample_rate = " << p.sample_rate << "}"; } // Instantiate the tests. Each test is instantiated using the function above, // so that all different parameter combinations are tested. INSTANTIATE_TEST_CASE_P(MultiChannel, NetEqStereoTestNoJitter, ::testing::ValuesIn(GetTestParameters())); INSTANTIATE_TEST_CASE_P(MultiChannel, NetEqStereoTestPositiveDrift, ::testing::ValuesIn(GetTestParameters())); INSTANTIATE_TEST_CASE_P(MultiChannel, NetEqStereoTestNegativeDrift, ::testing::ValuesIn(GetTestParameters())); INSTANTIATE_TEST_CASE_P(MultiChannel, NetEqStereoTestDelays, ::testing::ValuesIn(GetTestParameters())); INSTANTIATE_TEST_CASE_P(MultiChannel, NetEqStereoTestLosses, ::testing::ValuesIn(GetTestParameters())); } // namespace webrtc