/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_coding/neteq/payload_splitter.h" #include #include "webrtc/modules/audio_coding/neteq/decoder_database.h" namespace webrtc { // The method loops through a list of packets {A, B, C, ...}. Each packet is // split into its corresponding RED payloads, {A1, A2, ...}, which is // temporarily held in the list |new_packets|. // When the first packet in |packet_list| has been processed, the orignal packet // is replaced by the new ones in |new_packets|, so that |packet_list| becomes: // {A1, A2, ..., B, C, ...}. The method then continues with B, and C, until all // the original packets have been replaced by their split payloads. int PayloadSplitter::SplitRed(PacketList* packet_list) { int ret = kOK; PacketList::iterator it = packet_list->begin(); while (it != packet_list->end()) { PacketList new_packets; // An empty list to store the split packets in. Packet* red_packet = (*it); assert(red_packet->payload); uint8_t* payload_ptr = red_packet->payload; // Read RED headers (according to RFC 2198): // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // |F| block PT | timestamp offset | block length | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Last RED header: // 0 1 2 3 4 5 6 7 // +-+-+-+-+-+-+-+-+ // |0| Block PT | // +-+-+-+-+-+-+-+-+ bool last_block = false; int sum_length = 0; while (!last_block) { Packet* new_packet = new Packet; new_packet->header = red_packet->header; // Check the F bit. If F == 0, this was the last block. last_block = ((*payload_ptr & 0x80) == 0); // Bits 1 through 7 are payload type. new_packet->header.payloadType = payload_ptr[0] & 0x7F; if (last_block) { // No more header data to read. ++sum_length; // Account for RED header size of 1 byte. new_packet->payload_length = red_packet->payload_length - sum_length; new_packet->primary = true; // Last block is always primary. payload_ptr += 1; // Advance to first payload byte. } else { // Bits 8 through 21 are timestamp offset. int timestamp_offset = (payload_ptr[1] << 6) + ((payload_ptr[2] & 0xFC) >> 2); new_packet->header.timestamp = red_packet->header.timestamp - timestamp_offset; // Bits 22 through 31 are payload length. new_packet->payload_length = ((payload_ptr[2] & 0x03) << 8) + payload_ptr[3]; new_packet->primary = false; payload_ptr += 4; // Advance to next RED header. } sum_length += new_packet->payload_length; sum_length += 4; // Account for RED header size of 4 bytes. // Store in new list of packets. new_packets.push_back(new_packet); } // Populate the new packets with payload data. // |payload_ptr| now points at the first payload byte. PacketList::iterator new_it; for (new_it = new_packets.begin(); new_it != new_packets.end(); ++new_it) { int payload_length = (*new_it)->payload_length; if (payload_ptr + payload_length > red_packet->payload + red_packet->payload_length) { // The block lengths in the RED headers do not match the overall packet // length. Something is corrupt. Discard this and the remaining // payloads from this packet. while (new_it != new_packets.end()) { // Payload should not have been allocated yet. assert(!(*new_it)->payload); delete (*new_it); new_it = new_packets.erase(new_it); } ret = kRedLengthMismatch; break; } (*new_it)->payload = new uint8_t[payload_length]; memcpy((*new_it)->payload, payload_ptr, payload_length); payload_ptr += payload_length; } // Reverse the order of the new packets, so that the primary payload is // always first. new_packets.reverse(); // Insert new packets into original list, before the element pointed to by // iterator |it|. packet_list->splice(it, new_packets, new_packets.begin(), new_packets.end()); // Delete old packet payload. delete [] (*it)->payload; delete (*it); // Remove |it| from the packet list. This operation effectively moves the // iterator |it| to the next packet in the list. Thus, we do not have to // increment it manually. it = packet_list->erase(it); } return ret; } int PayloadSplitter::SplitFec(PacketList* packet_list, DecoderDatabase* decoder_database) { PacketList::iterator it = packet_list->begin(); // Iterate through all packets in |packet_list|. while (it != packet_list->end()) { Packet* packet = (*it); // Just to make the notation more intuitive. // Get codec type for this payload. uint8_t payload_type = packet->header.payloadType; const DecoderDatabase::DecoderInfo* info = decoder_database->GetDecoderInfo(payload_type); if (!info) { return kUnknownPayloadType; } // No splitting for a sync-packet. if (packet->sync_packet) { ++it; continue; } // Not an FEC packet. AudioDecoder* decoder = decoder_database->GetDecoder(payload_type); // decoder should not return NULL. assert(decoder != NULL); if (!decoder || !decoder->PacketHasFec(packet->payload, packet->payload_length)) { ++it; continue; } switch (info->codec_type) { case kDecoderOpus: case kDecoderOpus_2ch: { Packet* new_packet = new Packet; new_packet->header = packet->header; int duration = decoder-> PacketDurationRedundant(packet->payload, packet->payload_length); new_packet->header.timestamp -= duration; new_packet->payload = new uint8_t[packet->payload_length]; memcpy(new_packet->payload, packet->payload, packet->payload_length); new_packet->payload_length = packet->payload_length; new_packet->primary = false; new_packet->waiting_time = packet->waiting_time; new_packet->sync_packet = packet->sync_packet; packet_list->insert(it, new_packet); break; } default: { return kFecSplitError; } } ++it; } return kOK; } int PayloadSplitter::CheckRedPayloads(PacketList* packet_list, const DecoderDatabase& decoder_database) { PacketList::iterator it = packet_list->begin(); int main_payload_type = -1; int num_deleted_packets = 0; while (it != packet_list->end()) { uint8_t this_payload_type = (*it)->header.payloadType; if (!decoder_database.IsDtmf(this_payload_type) && !decoder_database.IsComfortNoise(this_payload_type)) { if (main_payload_type == -1) { // This is the first packet in the list which is non-DTMF non-CNG. main_payload_type = this_payload_type; } else { if (this_payload_type != main_payload_type) { // We do not allow redundant payloads of a different type. // Discard this payload. delete [] (*it)->payload; delete (*it); // Remove |it| from the packet list. This operation effectively // moves the iterator |it| to the next packet in the list. Thus, we // do not have to increment it manually. it = packet_list->erase(it); ++num_deleted_packets; continue; } } } ++it; } return num_deleted_packets; } int PayloadSplitter::SplitAudio(PacketList* packet_list, const DecoderDatabase& decoder_database) { PacketList::iterator it = packet_list->begin(); // Iterate through all packets in |packet_list|. while (it != packet_list->end()) { Packet* packet = (*it); // Just to make the notation more intuitive. // Get codec type for this payload. const DecoderDatabase::DecoderInfo* info = decoder_database.GetDecoderInfo(packet->header.payloadType); if (!info) { return kUnknownPayloadType; } // No splitting for a sync-packet. if (packet->sync_packet) { ++it; continue; } PacketList new_packets; switch (info->codec_type) { case kDecoderPCMu: case kDecoderPCMa: { // 8 bytes per ms; 8 timestamps per ms. SplitBySamples(packet, 8, 8, &new_packets); break; } case kDecoderPCMu_2ch: case kDecoderPCMa_2ch: { // 2 * 8 bytes per ms; 8 timestamps per ms. SplitBySamples(packet, 2 * 8, 8, &new_packets); break; } case kDecoderG722: { // 8 bytes per ms; 16 timestamps per ms. SplitBySamples(packet, 8, 16, &new_packets); break; } case kDecoderPCM16B: { // 16 bytes per ms; 8 timestamps per ms. SplitBySamples(packet, 16, 8, &new_packets); break; } case kDecoderPCM16Bwb: { // 32 bytes per ms; 16 timestamps per ms. SplitBySamples(packet, 32, 16, &new_packets); break; } case kDecoderPCM16Bswb32kHz: { // 64 bytes per ms; 32 timestamps per ms. SplitBySamples(packet, 64, 32, &new_packets); break; } case kDecoderPCM16Bswb48kHz: { // 96 bytes per ms; 48 timestamps per ms. SplitBySamples(packet, 96, 48, &new_packets); break; } case kDecoderPCM16B_2ch: { // 2 * 16 bytes per ms; 8 timestamps per ms. SplitBySamples(packet, 2 * 16, 8, &new_packets); break; } case kDecoderPCM16Bwb_2ch: { // 2 * 32 bytes per ms; 16 timestamps per ms. SplitBySamples(packet, 2 * 32, 16, &new_packets); break; } case kDecoderPCM16Bswb32kHz_2ch: { // 2 * 64 bytes per ms; 32 timestamps per ms. SplitBySamples(packet, 2 * 64, 32, &new_packets); break; } case kDecoderPCM16Bswb48kHz_2ch: { // 2 * 96 bytes per ms; 48 timestamps per ms. SplitBySamples(packet, 2 * 96, 48, &new_packets); break; } case kDecoderPCM16B_5ch: { // 5 * 16 bytes per ms; 8 timestamps per ms. SplitBySamples(packet, 5 * 16, 8, &new_packets); break; } case kDecoderILBC: { int bytes_per_frame; int timestamps_per_frame; if (packet->payload_length >= 950) { return kTooLargePayload; } else if (packet->payload_length % 38 == 0) { // 20 ms frames. bytes_per_frame = 38; timestamps_per_frame = 160; } else if (packet->payload_length % 50 == 0) { // 30 ms frames. bytes_per_frame = 50; timestamps_per_frame = 240; } else { return kFrameSplitError; } int ret = SplitByFrames(packet, bytes_per_frame, timestamps_per_frame, &new_packets); if (ret < 0) { return ret; } else if (ret == kNoSplit) { // Do not split at all. Simply advance to the next packet in the list. ++it; // We do not have any new packets to insert, and should not delete the // old one. Skip the code after the switch case, and jump straight to // the next packet in the while loop. continue; } break; } default: { // Do not split at all. Simply advance to the next packet in the list. ++it; // We do not have any new packets to insert, and should not delete the // old one. Skip the code after the switch case, and jump straight to // the next packet in the while loop. continue; } } // Insert new packets into original list, before the element pointed to by // iterator |it|. packet_list->splice(it, new_packets, new_packets.begin(), new_packets.end()); // Delete old packet payload. delete [] (*it)->payload; delete (*it); // Remove |it| from the packet list. This operation effectively moves the // iterator |it| to the next packet in the list. Thus, we do not have to // increment it manually. it = packet_list->erase(it); } return kOK; } void PayloadSplitter::SplitBySamples(const Packet* packet, int bytes_per_ms, int timestamps_per_ms, PacketList* new_packets) { assert(packet); assert(new_packets); int split_size_bytes = packet->payload_length; // Find a "chunk size" >= 20 ms and < 40 ms. int min_chunk_size = bytes_per_ms * 20; // Reduce the split size by half as long as |split_size_bytes| is at least // twice the minimum chunk size (so that the resulting size is at least as // large as the minimum chunk size). while (split_size_bytes >= 2 * min_chunk_size) { split_size_bytes >>= 1; } int timestamps_per_chunk = split_size_bytes * timestamps_per_ms / bytes_per_ms; uint32_t timestamp = packet->header.timestamp; uint8_t* payload_ptr = packet->payload; int len = packet->payload_length; while (len >= (2 * split_size_bytes)) { Packet* new_packet = new Packet; new_packet->payload_length = split_size_bytes; new_packet->header = packet->header; new_packet->header.timestamp = timestamp; timestamp += timestamps_per_chunk; new_packet->primary = packet->primary; new_packet->payload = new uint8_t[split_size_bytes]; memcpy(new_packet->payload, payload_ptr, split_size_bytes); payload_ptr += split_size_bytes; new_packets->push_back(new_packet); len -= split_size_bytes; } if (len > 0) { Packet* new_packet = new Packet; new_packet->payload_length = len; new_packet->header = packet->header; new_packet->header.timestamp = timestamp; new_packet->primary = packet->primary; new_packet->payload = new uint8_t[len]; memcpy(new_packet->payload, payload_ptr, len); new_packets->push_back(new_packet); } } int PayloadSplitter::SplitByFrames(const Packet* packet, int bytes_per_frame, int timestamps_per_frame, PacketList* new_packets) { if (packet->payload_length % bytes_per_frame != 0) { return kFrameSplitError; } int num_frames = packet->payload_length / bytes_per_frame; if (num_frames == 1) { // Special case. Do not split the payload. return kNoSplit; } uint32_t timestamp = packet->header.timestamp; uint8_t* payload_ptr = packet->payload; int len = packet->payload_length; while (len > 0) { assert(len >= bytes_per_frame); Packet* new_packet = new Packet; new_packet->payload_length = bytes_per_frame; new_packet->header = packet->header; new_packet->header.timestamp = timestamp; timestamp += timestamps_per_frame; new_packet->primary = packet->primary; new_packet->payload = new uint8_t[bytes_per_frame]; memcpy(new_packet->payload, payload_ptr, bytes_per_frame); payload_ptr += bytes_per_frame; new_packets->push_back(new_packet); len -= bytes_per_frame; } return kOK; } } // namespace webrtc