mirror of
https://github.com/oxen-io/session-android.git
synced 2025-01-03 21:57:44 +00:00
d83a3d71bc
Merge in RedPhone // FREEBIE
657 lines
18 KiB
C
657 lines
18 KiB
C
/*---------------------------------------------------------------------------*\
|
|
Original copyright
|
|
FILE........: lsp.c
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
Heavily modified by Jean-Marc Valin (c) 2002-2006 (fixed-point,
|
|
optimizations, additional functions, ...)
|
|
|
|
This file contains functions for converting Linear Prediction
|
|
Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
|
|
LSP coefficients are not in radians format but in the x domain of the
|
|
unit circle.
|
|
|
|
Speex License:
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
Introduction to Line Spectrum Pairs (LSPs)
|
|
------------------------------------------
|
|
|
|
LSPs are used to encode the LPC filter coefficients {ak} for
|
|
transmission over the channel. LSPs have several properties (like
|
|
less sensitivity to quantisation noise) that make them superior to
|
|
direct quantisation of {ak}.
|
|
|
|
A(z) is a polynomial of order lpcrdr with {ak} as the coefficients.
|
|
|
|
A(z) is transformed to P(z) and Q(z) (using a substitution and some
|
|
algebra), to obtain something like:
|
|
|
|
A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)] (1)
|
|
|
|
As you can imagine A(z) has complex zeros all over the z-plane. P(z)
|
|
and Q(z) have the very neat property of only having zeros _on_ the
|
|
unit circle. So to find them we take a test point z=exp(jw) and
|
|
evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0
|
|
and pi.
|
|
|
|
The zeros (roots) of P(z) also happen to alternate, which is why we
|
|
swap coefficients as we find roots. So the process of finding the
|
|
LSP frequencies is basically finding the roots of 5th order
|
|
polynomials.
|
|
|
|
The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence
|
|
the name Line Spectrum Pairs (LSPs).
|
|
|
|
To convert back to ak we just evaluate (1), "clocking" an impulse
|
|
thru it lpcrdr times gives us the impulse response of A(z) which is
|
|
{ak}.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "lsp.h"
|
|
#include "stack_alloc.h"
|
|
#include "math_approx.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846 /* pi */
|
|
#endif
|
|
|
|
#ifndef NULL
|
|
#define NULL 0
|
|
#endif
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
#define FREQ_SCALE 16384
|
|
|
|
/*#define ANGLE2X(a) (32768*cos(((a)/8192.)))*/
|
|
#define ANGLE2X(a) (SHL16(spx_cos(a),2))
|
|
|
|
/*#define X2ANGLE(x) (acos(.00006103515625*(x))*LSP_SCALING)*/
|
|
#define X2ANGLE(x) (spx_acos(x))
|
|
|
|
#ifdef BFIN_ASM
|
|
#include "lsp_bfin.h"
|
|
#endif
|
|
|
|
#else
|
|
|
|
/*#define C1 0.99940307
|
|
#define C2 -0.49558072
|
|
#define C3 0.03679168*/
|
|
|
|
#define FREQ_SCALE 1.
|
|
#define ANGLE2X(a) (spx_cos(a))
|
|
#define X2ANGLE(x) (acos(x))
|
|
|
|
#endif
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cheb_poly_eva()
|
|
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
This function evaluates a series of Chebyshev polynomials
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
#ifndef OVERRIDE_CHEB_POLY_EVA
|
|
static inline spx_word32_t cheb_poly_eva(
|
|
spx_word16_t *coef, /* P or Q coefs in Q13 format */
|
|
spx_word16_t x, /* cos of freq (-1.0 to 1.0) in Q14 format */
|
|
int m, /* LPC order/2 */
|
|
char *stack
|
|
)
|
|
{
|
|
int i;
|
|
spx_word16_t b0, b1;
|
|
spx_word32_t sum;
|
|
|
|
/*Prevents overflows*/
|
|
if (x>16383)
|
|
x = 16383;
|
|
if (x<-16383)
|
|
x = -16383;
|
|
|
|
/* Initialise values */
|
|
b1=16384;
|
|
b0=x;
|
|
|
|
/* Evaluate Chebyshev series formulation usin g iterative approach */
|
|
sum = ADD32(EXTEND32(coef[m]), EXTEND32(MULT16_16_P14(coef[m-1],x)));
|
|
for(i=2;i<=m;i++)
|
|
{
|
|
spx_word16_t tmp=b0;
|
|
b0 = SUB16(MULT16_16_Q13(x,b0), b1);
|
|
b1 = tmp;
|
|
sum = ADD32(sum, EXTEND32(MULT16_16_P14(coef[m-i],b0)));
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
static float cheb_poly_eva(spx_word32_t *coef, spx_word16_t x, int m, char *stack)
|
|
{
|
|
int k;
|
|
float b0, b1, tmp;
|
|
|
|
/* Initial conditions */
|
|
b0=0; /* b_(m+1) */
|
|
b1=0; /* b_(m+2) */
|
|
|
|
x*=2;
|
|
|
|
/* Calculate the b_(k) */
|
|
for(k=m;k>0;k--)
|
|
{
|
|
tmp=b0; /* tmp holds the previous value of b0 */
|
|
b0=x*b0-b1+coef[m-k]; /* b0 holds its new value based on b0 and b1 */
|
|
b1=tmp; /* b1 holds the previous value of b0 */
|
|
}
|
|
|
|
return(-b1+.5*x*b0+coef[m]);
|
|
}
|
|
#endif
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: lpc_to_lsp()
|
|
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
This function converts LPC coefficients to LSP
|
|
coefficients.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#ifdef FIXED_POINT
|
|
#define SIGN_CHANGE(a,b) (((a)&0x70000000)^((b)&0x70000000)||(b==0))
|
|
#else
|
|
#define SIGN_CHANGE(a,b) (((a)*(b))<0.0)
|
|
#endif
|
|
|
|
|
|
int lpc_to_lsp (spx_coef_t *a,int lpcrdr,spx_lsp_t *freq,int nb,spx_word16_t delta, char *stack)
|
|
/* float *a lpc coefficients */
|
|
/* int lpcrdr order of LPC coefficients (10) */
|
|
/* float *freq LSP frequencies in the x domain */
|
|
/* int nb number of sub-intervals (4) */
|
|
/* float delta grid spacing interval (0.02) */
|
|
|
|
|
|
{
|
|
spx_word16_t temp_xr,xl,xr,xm=0;
|
|
spx_word32_t psuml,psumr,psumm,temp_psumr/*,temp_qsumr*/;
|
|
int i,j,m,flag,k;
|
|
VARDECL(spx_word32_t *Q); /* ptrs for memory allocation */
|
|
VARDECL(spx_word32_t *P);
|
|
VARDECL(spx_word16_t *Q16); /* ptrs for memory allocation */
|
|
VARDECL(spx_word16_t *P16);
|
|
spx_word32_t *px; /* ptrs of respective P'(z) & Q'(z) */
|
|
spx_word32_t *qx;
|
|
spx_word32_t *p;
|
|
spx_word32_t *q;
|
|
spx_word16_t *pt; /* ptr used for cheb_poly_eval()
|
|
whether P' or Q' */
|
|
int roots=0; /* DR 8/2/94: number of roots found */
|
|
flag = 1; /* program is searching for a root when,
|
|
1 else has found one */
|
|
m = lpcrdr/2; /* order of P'(z) & Q'(z) polynomials */
|
|
|
|
/* Allocate memory space for polynomials */
|
|
ALLOC(Q, (m+1), spx_word32_t);
|
|
ALLOC(P, (m+1), spx_word32_t);
|
|
|
|
/* determine P'(z)'s and Q'(z)'s coefficients where
|
|
P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
|
|
|
|
px = P; /* initialise ptrs */
|
|
qx = Q;
|
|
p = px;
|
|
q = qx;
|
|
|
|
#ifdef FIXED_POINT
|
|
*px++ = LPC_SCALING;
|
|
*qx++ = LPC_SCALING;
|
|
for(i=0;i<m;i++){
|
|
*px++ = SUB32(ADD32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *p++);
|
|
*qx++ = ADD32(SUB32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *q++);
|
|
}
|
|
px = P;
|
|
qx = Q;
|
|
for(i=0;i<m;i++)
|
|
{
|
|
/*if (fabs(*px)>=32768)
|
|
speex_warning_int("px", *px);
|
|
if (fabs(*qx)>=32768)
|
|
speex_warning_int("qx", *qx);*/
|
|
*px = PSHR32(*px,2);
|
|
*qx = PSHR32(*qx,2);
|
|
px++;
|
|
qx++;
|
|
}
|
|
/* The reason for this lies in the way cheb_poly_eva() is implemented for fixed-point */
|
|
P[m] = PSHR32(P[m],3);
|
|
Q[m] = PSHR32(Q[m],3);
|
|
#else
|
|
*px++ = LPC_SCALING;
|
|
*qx++ = LPC_SCALING;
|
|
for(i=0;i<m;i++){
|
|
*px++ = (a[i]+a[lpcrdr-1-i]) - *p++;
|
|
*qx++ = (a[i]-a[lpcrdr-1-i]) + *q++;
|
|
}
|
|
px = P;
|
|
qx = Q;
|
|
for(i=0;i<m;i++){
|
|
*px = 2**px;
|
|
*qx = 2**qx;
|
|
px++;
|
|
qx++;
|
|
}
|
|
#endif
|
|
|
|
px = P; /* re-initialise ptrs */
|
|
qx = Q;
|
|
|
|
/* now that we have computed P and Q convert to 16 bits to
|
|
speed up cheb_poly_eval */
|
|
|
|
ALLOC(P16, m+1, spx_word16_t);
|
|
ALLOC(Q16, m+1, spx_word16_t);
|
|
|
|
for (i=0;i<m+1;i++)
|
|
{
|
|
P16[i] = P[i];
|
|
Q16[i] = Q[i];
|
|
}
|
|
|
|
/* Search for a zero in P'(z) polynomial first and then alternate to Q'(z).
|
|
Keep alternating between the two polynomials as each zero is found */
|
|
|
|
xr = 0; /* initialise xr to zero */
|
|
xl = FREQ_SCALE; /* start at point xl = 1 */
|
|
|
|
for(j=0;j<lpcrdr;j++){
|
|
if(j&1) /* determines whether P' or Q' is eval. */
|
|
pt = Q16;
|
|
else
|
|
pt = P16;
|
|
|
|
psuml = cheb_poly_eva(pt,xl,m,stack); /* evals poly. at xl */
|
|
flag = 1;
|
|
while(flag && (xr >= -FREQ_SCALE)){
|
|
spx_word16_t dd;
|
|
/* Modified by JMV to provide smaller steps around x=+-1 */
|
|
#ifdef FIXED_POINT
|
|
dd = MULT16_16_Q15(delta,SUB16(FREQ_SCALE, MULT16_16_Q14(MULT16_16_Q14(xl,xl),14000)));
|
|
if (psuml<512 && psuml>-512)
|
|
dd = PSHR16(dd,1);
|
|
#else
|
|
dd=delta*(1-.9*xl*xl);
|
|
if (fabs(psuml)<.2)
|
|
dd *= .5;
|
|
#endif
|
|
xr = SUB16(xl, dd); /* interval spacing */
|
|
psumr = cheb_poly_eva(pt,xr,m,stack);/* poly(xl-delta_x) */
|
|
temp_psumr = psumr;
|
|
temp_xr = xr;
|
|
|
|
/* if no sign change increment xr and re-evaluate poly(xr). Repeat til
|
|
sign change.
|
|
if a sign change has occurred the interval is bisected and then
|
|
checked again for a sign change which determines in which
|
|
interval the zero lies in.
|
|
If there is no sign change between poly(xm) and poly(xl) set interval
|
|
between xm and xr else set interval between xl and xr and repeat till
|
|
root is located within the specified limits */
|
|
|
|
if(SIGN_CHANGE(psumr,psuml))
|
|
{
|
|
roots++;
|
|
|
|
psumm=psuml;
|
|
for(k=0;k<=nb;k++){
|
|
#ifdef FIXED_POINT
|
|
xm = ADD16(PSHR16(xl,1),PSHR16(xr,1)); /* bisect the interval */
|
|
#else
|
|
xm = .5*(xl+xr); /* bisect the interval */
|
|
#endif
|
|
psumm=cheb_poly_eva(pt,xm,m,stack);
|
|
/*if(psumm*psuml>0.)*/
|
|
if(!SIGN_CHANGE(psumm,psuml))
|
|
{
|
|
psuml=psumm;
|
|
xl=xm;
|
|
} else {
|
|
psumr=psumm;
|
|
xr=xm;
|
|
}
|
|
}
|
|
|
|
/* once zero is found, reset initial interval to xr */
|
|
freq[j] = X2ANGLE(xm);
|
|
xl = xm;
|
|
flag = 0; /* reset flag for next search */
|
|
}
|
|
else{
|
|
psuml=temp_psumr;
|
|
xl=temp_xr;
|
|
}
|
|
}
|
|
}
|
|
return(roots);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: lsp_to_lpc()
|
|
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
Converts LSP coefficients to LPC coefficients.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
|
|
/* float *freq array of LSP frequencies in the x domain */
|
|
/* float *ak array of LPC coefficients */
|
|
/* int lpcrdr order of LPC coefficients */
|
|
{
|
|
int i,j;
|
|
spx_word32_t xout1,xout2,xin;
|
|
spx_word32_t mult, a;
|
|
VARDECL(spx_word16_t *freqn);
|
|
VARDECL(spx_word32_t **xp);
|
|
VARDECL(spx_word32_t *xpmem);
|
|
VARDECL(spx_word32_t **xq);
|
|
VARDECL(spx_word32_t *xqmem);
|
|
int m = lpcrdr>>1;
|
|
|
|
/*
|
|
|
|
Reconstruct P(z) and Q(z) by cascading second order polynomials
|
|
in form 1 - 2cos(w)z(-1) + z(-2), where w is the LSP frequency.
|
|
In the time domain this is:
|
|
|
|
y(n) = x(n) - 2cos(w)x(n-1) + x(n-2)
|
|
|
|
This is what the ALLOCS below are trying to do:
|
|
|
|
int xp[m+1][lpcrdr+1+2]; // P matrix in QIMP
|
|
int xq[m+1][lpcrdr+1+2]; // Q matrix in QIMP
|
|
|
|
These matrices store the output of each stage on each row. The
|
|
final (m-th) row has the output of the final (m-th) cascaded
|
|
2nd order filter. The first row is the impulse input to the
|
|
system (not written as it is known).
|
|
|
|
The version below takes advantage of the fact that a lot of the
|
|
outputs are zero or known, for example if we put an inpulse
|
|
into the first section the "clock" it 10 times only the first 3
|
|
outputs samples are non-zero (it's an FIR filter).
|
|
*/
|
|
|
|
ALLOC(xp, (m+1), spx_word32_t*);
|
|
ALLOC(xpmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
|
|
|
|
ALLOC(xq, (m+1), spx_word32_t*);
|
|
ALLOC(xqmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
|
|
|
|
for(i=0; i<=m; i++) {
|
|
xp[i] = xpmem + i*(lpcrdr+1+2);
|
|
xq[i] = xqmem + i*(lpcrdr+1+2);
|
|
}
|
|
|
|
/* work out 2cos terms in Q14 */
|
|
|
|
ALLOC(freqn, lpcrdr, spx_word16_t);
|
|
for (i=0;i<lpcrdr;i++)
|
|
freqn[i] = ANGLE2X(freq[i]);
|
|
|
|
#define QIMP 21 /* scaling for impulse */
|
|
|
|
xin = SHL32(EXTEND32(1), (QIMP-1)); /* 0.5 in QIMP format */
|
|
|
|
/* first col and last non-zero values of each row are trivial */
|
|
|
|
for(i=0;i<=m;i++) {
|
|
xp[i][1] = 0;
|
|
xp[i][2] = xin;
|
|
xp[i][2+2*i] = xin;
|
|
xq[i][1] = 0;
|
|
xq[i][2] = xin;
|
|
xq[i][2+2*i] = xin;
|
|
}
|
|
|
|
/* 2nd row (first output row) is trivial */
|
|
|
|
xp[1][3] = -MULT16_32_Q14(freqn[0],xp[0][2]);
|
|
xq[1][3] = -MULT16_32_Q14(freqn[1],xq[0][2]);
|
|
|
|
xout1 = xout2 = 0;
|
|
|
|
/* now generate remaining rows */
|
|
|
|
for(i=1;i<m;i++) {
|
|
|
|
for(j=1;j<2*(i+1)-1;j++) {
|
|
mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
|
|
xp[i+1][j+2] = ADD32(SUB32(xp[i][j+2], mult), xp[i][j]);
|
|
mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
|
|
xq[i+1][j+2] = ADD32(SUB32(xq[i][j+2], mult), xq[i][j]);
|
|
}
|
|
|
|
/* for last col xp[i][j+2] = xq[i][j+2] = 0 */
|
|
|
|
mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
|
|
xp[i+1][j+2] = SUB32(xp[i][j], mult);
|
|
mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
|
|
xq[i+1][j+2] = SUB32(xq[i][j], mult);
|
|
}
|
|
|
|
/* process last row to extra a{k} */
|
|
|
|
for(j=1;j<=lpcrdr;j++) {
|
|
int shift = QIMP-13;
|
|
|
|
/* final filter sections */
|
|
a = PSHR32(xp[m][j+2] + xout1 + xq[m][j+2] - xout2, shift);
|
|
xout1 = xp[m][j+2];
|
|
xout2 = xq[m][j+2];
|
|
|
|
/* hard limit ak's to +/- 32767 */
|
|
|
|
if (a < -32767) a = -32767;
|
|
if (a > 32767) a = 32767;
|
|
ak[j-1] = (short)a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
|
|
/* float *freq array of LSP frequencies in the x domain */
|
|
/* float *ak array of LPC coefficients */
|
|
/* int lpcrdr order of LPC coefficients */
|
|
|
|
|
|
{
|
|
int i,j;
|
|
float xout1,xout2,xin1,xin2;
|
|
VARDECL(float *Wp);
|
|
float *pw,*n1,*n2,*n3,*n4=NULL;
|
|
VARDECL(float *x_freq);
|
|
int m = lpcrdr>>1;
|
|
|
|
ALLOC(Wp, 4*m+2, float);
|
|
pw = Wp;
|
|
|
|
/* initialise contents of array */
|
|
|
|
for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */
|
|
*pw++ = 0.0;
|
|
}
|
|
|
|
/* Set pointers up */
|
|
|
|
pw = Wp;
|
|
xin1 = 1.0;
|
|
xin2 = 1.0;
|
|
|
|
ALLOC(x_freq, lpcrdr, float);
|
|
for (i=0;i<lpcrdr;i++)
|
|
x_freq[i] = ANGLE2X(freq[i]);
|
|
|
|
/* reconstruct P(z) and Q(z) by cascading second order
|
|
polynomials in form 1 - 2xz(-1) +z(-2), where x is the
|
|
LSP coefficient */
|
|
|
|
for(j=0;j<=lpcrdr;j++){
|
|
int i2=0;
|
|
for(i=0;i<m;i++,i2+=2){
|
|
n1 = pw+(i*4);
|
|
n2 = n1 + 1;
|
|
n3 = n2 + 1;
|
|
n4 = n3 + 1;
|
|
xout1 = xin1 - 2.f*x_freq[i2] * *n1 + *n2;
|
|
xout2 = xin2 - 2.f*x_freq[i2+1] * *n3 + *n4;
|
|
*n2 = *n1;
|
|
*n4 = *n3;
|
|
*n1 = xin1;
|
|
*n3 = xin2;
|
|
xin1 = xout1;
|
|
xin2 = xout2;
|
|
}
|
|
xout1 = xin1 + *(n4+1);
|
|
xout2 = xin2 - *(n4+2);
|
|
if (j>0)
|
|
ak[j-1] = (xout1 + xout2)*0.5f;
|
|
*(n4+1) = xin1;
|
|
*(n4+2) = xin2;
|
|
|
|
xin1 = 0.0;
|
|
xin2 = 0.0;
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
/*Makes sure the LSPs are stable*/
|
|
void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin)
|
|
{
|
|
int i;
|
|
spx_word16_t m = margin;
|
|
spx_word16_t m2 = 25736-margin;
|
|
|
|
if (lsp[0]<m)
|
|
lsp[0]=m;
|
|
if (lsp[len-1]>m2)
|
|
lsp[len-1]=m2;
|
|
for (i=1;i<len-1;i++)
|
|
{
|
|
if (lsp[i]<lsp[i-1]+m)
|
|
lsp[i]=lsp[i-1]+m;
|
|
|
|
if (lsp[i]>lsp[i+1]-m)
|
|
lsp[i]= SHR16(lsp[i],1) + SHR16(lsp[i+1]-m,1);
|
|
}
|
|
}
|
|
|
|
|
|
void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes)
|
|
{
|
|
int i;
|
|
spx_word16_t tmp = DIV32_16(SHL32(EXTEND32(1 + subframe),14),nb_subframes);
|
|
spx_word16_t tmp2 = 16384-tmp;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
interp_lsp[i] = MULT16_16_P14(tmp2,old_lsp[i]) + MULT16_16_P14(tmp,new_lsp[i]);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
/*Makes sure the LSPs are stable*/
|
|
void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin)
|
|
{
|
|
int i;
|
|
if (lsp[0]<LSP_SCALING*margin)
|
|
lsp[0]=LSP_SCALING*margin;
|
|
if (lsp[len-1]>LSP_SCALING*(M_PI-margin))
|
|
lsp[len-1]=LSP_SCALING*(M_PI-margin);
|
|
for (i=1;i<len-1;i++)
|
|
{
|
|
if (lsp[i]<lsp[i-1]+LSP_SCALING*margin)
|
|
lsp[i]=lsp[i-1]+LSP_SCALING*margin;
|
|
|
|
if (lsp[i]>lsp[i+1]-LSP_SCALING*margin)
|
|
lsp[i]= .5f* (lsp[i] + lsp[i+1]-LSP_SCALING*margin);
|
|
}
|
|
}
|
|
|
|
|
|
void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes)
|
|
{
|
|
int i;
|
|
float tmp = (1.0f + subframe)/nb_subframes;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
interp_lsp[i] = (1-tmp)*old_lsp[i] + tmp*new_lsp[i];
|
|
}
|
|
}
|
|
|
|
#endif
|