Moxie Marlinspike d83a3d71bc Support for Signal calls.
Merge in RedPhone

// FREEBIE
2015-09-30 14:30:09 -07:00

127 lines
4.0 KiB
C

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include <stdlib.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
struct RealFFT {
int order;
};
struct RealFFT* WebRtcSpl_CreateRealFFTC(int order) {
struct RealFFT* self = NULL;
if (order > kMaxFFTOrder || order < 0) {
return NULL;
}
self = malloc(sizeof(struct RealFFT));
if (self == NULL) {
return NULL;
}
self->order = order;
return self;
}
void WebRtcSpl_FreeRealFFTC(struct RealFFT* self) {
if (self != NULL) {
free(self);
}
}
// The C version FFT functions (i.e. WebRtcSpl_RealForwardFFTC and
// WebRtcSpl_RealInverseFFTC) are real-valued FFT wrappers for complex-valued
// FFT implementation in SPL.
int WebRtcSpl_RealForwardFFTC(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out) {
int i = 0;
int j = 0;
int result = 0;
int n = 1 << self->order;
// The complex-value FFT implementation needs a buffer to hold 2^order
// 16-bit COMPLEX numbers, for both time and frequency data.
int16_t complex_buffer[2 << kMaxFFTOrder];
// Insert zeros to the imaginary parts for complex forward FFT input.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
complex_buffer[j] = real_data_in[i];
complex_buffer[j + 1] = 0;
};
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexFFT(complex_buffer, self->order, 1);
// For real FFT output, use only the first N + 2 elements from
// complex forward FFT.
memcpy(complex_data_out, complex_buffer, sizeof(int16_t) * (n + 2));
return result;
}
int WebRtcSpl_RealInverseFFTC(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out) {
int i = 0;
int j = 0;
int result = 0;
int n = 1 << self->order;
// Create the buffer specific to complex-valued FFT implementation.
int16_t complex_buffer[2 << kMaxFFTOrder];
// For n-point FFT, first copy the first n + 2 elements into complex
// FFT, then construct the remaining n - 2 elements by real FFT's
// conjugate-symmetric properties.
memcpy(complex_buffer, complex_data_in, sizeof(int16_t) * (n + 2));
for (i = n + 2; i < 2 * n; i += 2) {
complex_buffer[i] = complex_data_in[2 * n - i];
complex_buffer[i + 1] = -complex_data_in[2 * n - i + 1];
}
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexIFFT(complex_buffer, self->order, 1);
// Strip out the imaginary parts of the complex inverse FFT output.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
real_data_out[i] = complex_buffer[j];
}
return result;
}
#if defined(WEBRTC_DETECT_ARM_NEON) || defined(WEBRTC_ARCH_ARM_NEON)
// TODO(kma): Replace the following function bodies into optimized functions
// for ARM Neon.
struct RealFFT* WebRtcSpl_CreateRealFFTNeon(int order) {
return WebRtcSpl_CreateRealFFTC(order);
}
void WebRtcSpl_FreeRealFFTNeon(struct RealFFT* self) {
WebRtcSpl_FreeRealFFTC(self);
}
int WebRtcSpl_RealForwardFFTNeon(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out) {
return WebRtcSpl_RealForwardFFTC(self, real_data_in, complex_data_out);
}
int WebRtcSpl_RealInverseFFTNeon(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out) {
return WebRtcSpl_RealInverseFFTC(self, complex_data_in, real_data_out);
}
#endif // WEBRTC_DETECT_ARM_NEON || WEBRTC_ARCH_ARM_NEON