mirror of
https://github.com/oxen-io/session-android.git
synced 2025-01-04 22:27:47 +00:00
d83a3d71bc
Merge in RedPhone // FREEBIE
678 lines
15 KiB
Perl
678 lines
15 KiB
Perl
#!/usr/bin/env perl
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# July 2004
|
|
#
|
|
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
|
|
# "hand-coded assembler"] doesn't stand for the whole improvement
|
|
# coefficient. It turned out that eliminating RC4_CHAR from config
|
|
# line results in ~40% improvement (yes, even for C implementation).
|
|
# Presumably it has everything to do with AMD cache architecture and
|
|
# RAW or whatever penalties. Once again! The module *requires* config
|
|
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
|
|
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
|
|
# I simply 'inc %r8b'. Even though optimization manual discourages
|
|
# to operate on partial registers, it turned out to be the best bet.
|
|
# At least for AMD... How IA32E would perform remains to be seen...
|
|
|
|
# November 2004
|
|
#
|
|
# As was shown by Marc Bevand reordering of couple of load operations
|
|
# results in even higher performance gain of 3.3x:-) At least on
|
|
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
|
|
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
|
|
# Latter means that if you want to *estimate* what to expect from
|
|
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
|
|
|
|
# November 2004
|
|
#
|
|
# Intel P4 EM64T core was found to run the AMD64 code really slow...
|
|
# The only way to achieve comparable performance on P4 was to keep
|
|
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
|
|
# compose blended code, which would perform even within 30% marginal
|
|
# on either AMD and Intel platforms, I implement both cases. See
|
|
# rc4_skey.c for further details...
|
|
|
|
# April 2005
|
|
#
|
|
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
|
|
# those with add/sub results in 50% performance improvement of folded
|
|
# loop...
|
|
|
|
# May 2005
|
|
#
|
|
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
|
|
# performance by >30% [unlike P4 32-bit case that is]. But this is
|
|
# provided that loads are reordered even more aggressively! Both code
|
|
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
|
|
# as my IA-64 implementation. On Opteron this resulted in modest 5%
|
|
# improvement [I had to test it], while final Intel P4 performance
|
|
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
|
|
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
|
|
# RC4_INT code-path. While if executed on Opteron, it's only 25%
|
|
# slower than the RC4_INT one [meaning that if CPU µ-arch detection
|
|
# is not implemented, then this final RC4_CHAR code-path should be
|
|
# preferred, as it provides better *all-round* performance].
|
|
|
|
# March 2007
|
|
#
|
|
# Intel Core2 was observed to perform poorly on both code paths:-( It
|
|
# apparently suffers from some kind of partial register stall, which
|
|
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
|
|
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
|
|
# cloop1 boosts its performance by 80%! This loop appears to be optimal
|
|
# fit for Core2 and therefore the code was modified to skip cloop8 on
|
|
# this CPU.
|
|
|
|
# May 2010
|
|
#
|
|
# Intel Westmere was observed to perform suboptimally. Adding yet
|
|
# another movzb to cloop1 improved performance by almost 50%! Core2
|
|
# performance is improved too, but nominally...
|
|
|
|
# May 2011
|
|
#
|
|
# The only code path that was not modified is P4-specific one. Non-P4
|
|
# Intel code path optimization is heavily based on submission by Maxim
|
|
# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
|
|
# some of the ideas even in attempt to optmize the original RC4_INT
|
|
# code path... Current performance in cycles per processed byte (less
|
|
# is better) and improvement coefficients relative to previous
|
|
# version of this module are:
|
|
#
|
|
# Opteron 5.3/+0%(*)
|
|
# P4 6.5
|
|
# Core2 6.2/+15%(**)
|
|
# Westmere 4.2/+60%
|
|
# Sandy Bridge 4.2/+120%
|
|
# Atom 9.3/+80%
|
|
#
|
|
# (*) But corresponding loop has less instructions, which should have
|
|
# positive effect on upcoming Bulldozer, which has one less ALU.
|
|
# For reference, Intel code runs at 6.8 cpb rate on Opteron.
|
|
# (**) Note that Core2 result is ~15% lower than corresponding result
|
|
# for 32-bit code, meaning that it's possible to improve it,
|
|
# but more than likely at the cost of the others (see rc4-586.pl
|
|
# to get the idea)...
|
|
|
|
$flavour = shift;
|
|
$output = shift;
|
|
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
|
|
|
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
|
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
|
die "can't locate x86_64-xlate.pl";
|
|
|
|
open OUT,"| \"$^X\" $xlate $flavour $output";
|
|
*STDOUT=*OUT;
|
|
|
|
$dat="%rdi"; # arg1
|
|
$len="%rsi"; # arg2
|
|
$inp="%rdx"; # arg3
|
|
$out="%rcx"; # arg4
|
|
|
|
{
|
|
$code=<<___;
|
|
.text
|
|
.extern OPENSSL_ia32cap_P
|
|
|
|
.globl RC4
|
|
.type RC4,\@function,4
|
|
.align 16
|
|
RC4: or $len,$len
|
|
jne .Lentry
|
|
ret
|
|
.Lentry:
|
|
push %rbx
|
|
push %r12
|
|
push %r13
|
|
.Lprologue:
|
|
mov $len,%r11
|
|
mov $inp,%r12
|
|
mov $out,%r13
|
|
___
|
|
my $len="%r11"; # reassign input arguments
|
|
my $inp="%r12";
|
|
my $out="%r13";
|
|
|
|
my @XX=("%r10","%rsi");
|
|
my @TX=("%rax","%rbx");
|
|
my $YY="%rcx";
|
|
my $TY="%rdx";
|
|
|
|
$code.=<<___;
|
|
xor $XX[0],$XX[0]
|
|
xor $YY,$YY
|
|
|
|
lea 8($dat),$dat
|
|
mov -8($dat),$XX[0]#b
|
|
mov -4($dat),$YY#b
|
|
cmpl \$-1,256($dat)
|
|
je .LRC4_CHAR
|
|
mov OPENSSL_ia32cap_P(%rip),%r8d
|
|
xor $TX[1],$TX[1]
|
|
inc $XX[0]#b
|
|
sub $XX[0],$TX[1]
|
|
sub $inp,$out
|
|
movl ($dat,$XX[0],4),$TX[0]#d
|
|
test \$-16,$len
|
|
jz .Lloop1
|
|
bt \$30,%r8d # Intel CPU?
|
|
jc .Lintel
|
|
and \$7,$TX[1]
|
|
lea 1($XX[0]),$XX[1]
|
|
jz .Loop8
|
|
sub $TX[1],$len
|
|
.Loop8_warmup:
|
|
add $TX[0]#b,$YY#b
|
|
movl ($dat,$YY,4),$TY#d
|
|
movl $TX[0]#d,($dat,$YY,4)
|
|
movl $TY#d,($dat,$XX[0],4)
|
|
add $TY#b,$TX[0]#b
|
|
inc $XX[0]#b
|
|
movl ($dat,$TX[0],4),$TY#d
|
|
movl ($dat,$XX[0],4),$TX[0]#d
|
|
xorb ($inp),$TY#b
|
|
movb $TY#b,($out,$inp)
|
|
lea 1($inp),$inp
|
|
dec $TX[1]
|
|
jnz .Loop8_warmup
|
|
|
|
lea 1($XX[0]),$XX[1]
|
|
jmp .Loop8
|
|
.align 16
|
|
.Loop8:
|
|
___
|
|
for ($i=0;$i<8;$i++) {
|
|
$code.=<<___ if ($i==7);
|
|
add \$8,$XX[1]#b
|
|
___
|
|
$code.=<<___;
|
|
add $TX[0]#b,$YY#b
|
|
movl ($dat,$YY,4),$TY#d
|
|
movl $TX[0]#d,($dat,$YY,4)
|
|
movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
|
|
ror \$8,%r8 # ror is redundant when $i=0
|
|
movl $TY#d,4*$i($dat,$XX[0],4)
|
|
add $TX[0]#b,$TY#b
|
|
movb ($dat,$TY,4),%r8b
|
|
___
|
|
push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
|
|
}
|
|
$code.=<<___;
|
|
add \$8,$XX[0]#b
|
|
ror \$8,%r8
|
|
sub \$8,$len
|
|
|
|
xor ($inp),%r8
|
|
mov %r8,($out,$inp)
|
|
lea 8($inp),$inp
|
|
|
|
test \$-8,$len
|
|
jnz .Loop8
|
|
cmp \$0,$len
|
|
jne .Lloop1
|
|
jmp .Lexit
|
|
|
|
.align 16
|
|
.Lintel:
|
|
test \$-32,$len
|
|
jz .Lloop1
|
|
and \$15,$TX[1]
|
|
jz .Loop16_is_hot
|
|
sub $TX[1],$len
|
|
.Loop16_warmup:
|
|
add $TX[0]#b,$YY#b
|
|
movl ($dat,$YY,4),$TY#d
|
|
movl $TX[0]#d,($dat,$YY,4)
|
|
movl $TY#d,($dat,$XX[0],4)
|
|
add $TY#b,$TX[0]#b
|
|
inc $XX[0]#b
|
|
movl ($dat,$TX[0],4),$TY#d
|
|
movl ($dat,$XX[0],4),$TX[0]#d
|
|
xorb ($inp),$TY#b
|
|
movb $TY#b,($out,$inp)
|
|
lea 1($inp),$inp
|
|
dec $TX[1]
|
|
jnz .Loop16_warmup
|
|
|
|
mov $YY,$TX[1]
|
|
xor $YY,$YY
|
|
mov $TX[1]#b,$YY#b
|
|
|
|
.Loop16_is_hot:
|
|
lea ($dat,$XX[0],4),$XX[1]
|
|
___
|
|
sub RC4_loop {
|
|
my $i=shift;
|
|
my $j=$i<0?0:$i;
|
|
my $xmm="%xmm".($j&1);
|
|
|
|
$code.=" add \$16,$XX[0]#b\n" if ($i==15);
|
|
$code.=" movdqu ($inp),%xmm2\n" if ($i==15);
|
|
$code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
|
|
$code.=" movl ($dat,$YY,4),$TY#d\n";
|
|
$code.=" pxor %xmm0,%xmm2\n" if ($i==0);
|
|
$code.=" psllq \$8,%xmm1\n" if ($i==0);
|
|
$code.=" pxor $xmm,$xmm\n" if ($i<=1);
|
|
$code.=" movl $TX[0]#d,($dat,$YY,4)\n";
|
|
$code.=" add $TY#b,$TX[0]#b\n";
|
|
$code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
|
|
$code.=" movz $TX[0]#b,$TX[0]#d\n";
|
|
$code.=" movl $TY#d,4*$j($XX[1])\n";
|
|
$code.=" pxor %xmm1,%xmm2\n" if ($i==0);
|
|
$code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
|
|
$code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
|
|
$code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
|
|
$code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
|
|
$code.=" lea 16($inp),$inp\n" if ($i==0);
|
|
$code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
|
|
}
|
|
RC4_loop(-1);
|
|
$code.=<<___;
|
|
jmp .Loop16_enter
|
|
.align 16
|
|
.Loop16:
|
|
___
|
|
|
|
for ($i=0;$i<16;$i++) {
|
|
$code.=".Loop16_enter:\n" if ($i==1);
|
|
RC4_loop($i);
|
|
push(@TX,shift(@TX)); # "rotate" registers
|
|
}
|
|
$code.=<<___;
|
|
mov $YY,$TX[1]
|
|
xor $YY,$YY # keyword to partial register
|
|
sub \$16,$len
|
|
mov $TX[1]#b,$YY#b
|
|
test \$-16,$len
|
|
jnz .Loop16
|
|
|
|
psllq \$8,%xmm1
|
|
pxor %xmm0,%xmm2
|
|
pxor %xmm1,%xmm2
|
|
movdqu %xmm2,($out,$inp)
|
|
lea 16($inp),$inp
|
|
|
|
cmp \$0,$len
|
|
jne .Lloop1
|
|
jmp .Lexit
|
|
|
|
.align 16
|
|
.Lloop1:
|
|
add $TX[0]#b,$YY#b
|
|
movl ($dat,$YY,4),$TY#d
|
|
movl $TX[0]#d,($dat,$YY,4)
|
|
movl $TY#d,($dat,$XX[0],4)
|
|
add $TY#b,$TX[0]#b
|
|
inc $XX[0]#b
|
|
movl ($dat,$TX[0],4),$TY#d
|
|
movl ($dat,$XX[0],4),$TX[0]#d
|
|
xorb ($inp),$TY#b
|
|
movb $TY#b,($out,$inp)
|
|
lea 1($inp),$inp
|
|
dec $len
|
|
jnz .Lloop1
|
|
jmp .Lexit
|
|
|
|
.align 16
|
|
.LRC4_CHAR:
|
|
add \$1,$XX[0]#b
|
|
movzb ($dat,$XX[0]),$TX[0]#d
|
|
test \$-8,$len
|
|
jz .Lcloop1
|
|
jmp .Lcloop8
|
|
.align 16
|
|
.Lcloop8:
|
|
mov ($inp),%r8d
|
|
mov 4($inp),%r9d
|
|
___
|
|
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
|
|
for ($i=0;$i<4;$i++) {
|
|
$code.=<<___;
|
|
add $TX[0]#b,$YY#b
|
|
lea 1($XX[0]),$XX[1]
|
|
movzb ($dat,$YY),$TY#d
|
|
movzb $XX[1]#b,$XX[1]#d
|
|
movzb ($dat,$XX[1]),$TX[1]#d
|
|
movb $TX[0]#b,($dat,$YY)
|
|
cmp $XX[1],$YY
|
|
movb $TY#b,($dat,$XX[0])
|
|
jne .Lcmov$i # Intel cmov is sloooow...
|
|
mov $TX[0],$TX[1]
|
|
.Lcmov$i:
|
|
add $TX[0]#b,$TY#b
|
|
xor ($dat,$TY),%r8b
|
|
ror \$8,%r8d
|
|
___
|
|
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
|
}
|
|
for ($i=4;$i<8;$i++) {
|
|
$code.=<<___;
|
|
add $TX[0]#b,$YY#b
|
|
lea 1($XX[0]),$XX[1]
|
|
movzb ($dat,$YY),$TY#d
|
|
movzb $XX[1]#b,$XX[1]#d
|
|
movzb ($dat,$XX[1]),$TX[1]#d
|
|
movb $TX[0]#b,($dat,$YY)
|
|
cmp $XX[1],$YY
|
|
movb $TY#b,($dat,$XX[0])
|
|
jne .Lcmov$i # Intel cmov is sloooow...
|
|
mov $TX[0],$TX[1]
|
|
.Lcmov$i:
|
|
add $TX[0]#b,$TY#b
|
|
xor ($dat,$TY),%r9b
|
|
ror \$8,%r9d
|
|
___
|
|
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
|
}
|
|
$code.=<<___;
|
|
lea -8($len),$len
|
|
mov %r8d,($out)
|
|
lea 8($inp),$inp
|
|
mov %r9d,4($out)
|
|
lea 8($out),$out
|
|
|
|
test \$-8,$len
|
|
jnz .Lcloop8
|
|
cmp \$0,$len
|
|
jne .Lcloop1
|
|
jmp .Lexit
|
|
___
|
|
$code.=<<___;
|
|
.align 16
|
|
.Lcloop1:
|
|
add $TX[0]#b,$YY#b
|
|
movzb $YY#b,$YY#d
|
|
movzb ($dat,$YY),$TY#d
|
|
movb $TX[0]#b,($dat,$YY)
|
|
movb $TY#b,($dat,$XX[0])
|
|
add $TX[0]#b,$TY#b
|
|
add \$1,$XX[0]#b
|
|
movzb $TY#b,$TY#d
|
|
movzb $XX[0]#b,$XX[0]#d
|
|
movzb ($dat,$TY),$TY#d
|
|
movzb ($dat,$XX[0]),$TX[0]#d
|
|
xorb ($inp),$TY#b
|
|
lea 1($inp),$inp
|
|
movb $TY#b,($out)
|
|
lea 1($out),$out
|
|
sub \$1,$len
|
|
jnz .Lcloop1
|
|
jmp .Lexit
|
|
|
|
.align 16
|
|
.Lexit:
|
|
sub \$1,$XX[0]#b
|
|
movl $XX[0]#d,-8($dat)
|
|
movl $YY#d,-4($dat)
|
|
|
|
mov (%rsp),%r13
|
|
mov 8(%rsp),%r12
|
|
mov 16(%rsp),%rbx
|
|
add \$24,%rsp
|
|
.Lepilogue:
|
|
ret
|
|
.size RC4,.-RC4
|
|
___
|
|
}
|
|
|
|
$idx="%r8";
|
|
$ido="%r9";
|
|
|
|
$code.=<<___;
|
|
.globl private_RC4_set_key
|
|
.type private_RC4_set_key,\@function,3
|
|
.align 16
|
|
private_RC4_set_key:
|
|
lea 8($dat),$dat
|
|
lea ($inp,$len),$inp
|
|
neg $len
|
|
mov $len,%rcx
|
|
xor %eax,%eax
|
|
xor $ido,$ido
|
|
xor %r10,%r10
|
|
xor %r11,%r11
|
|
|
|
mov OPENSSL_ia32cap_P(%rip),$idx#d
|
|
bt \$20,$idx#d # RC4_CHAR?
|
|
jc .Lc1stloop
|
|
jmp .Lw1stloop
|
|
|
|
.align 16
|
|
.Lw1stloop:
|
|
mov %eax,($dat,%rax,4)
|
|
add \$1,%al
|
|
jnc .Lw1stloop
|
|
|
|
xor $ido,$ido
|
|
xor $idx,$idx
|
|
.align 16
|
|
.Lw2ndloop:
|
|
mov ($dat,$ido,4),%r10d
|
|
add ($inp,$len,1),$idx#b
|
|
add %r10b,$idx#b
|
|
add \$1,$len
|
|
mov ($dat,$idx,4),%r11d
|
|
cmovz %rcx,$len
|
|
mov %r10d,($dat,$idx,4)
|
|
mov %r11d,($dat,$ido,4)
|
|
add \$1,$ido#b
|
|
jnc .Lw2ndloop
|
|
jmp .Lexit_key
|
|
|
|
.align 16
|
|
.Lc1stloop:
|
|
mov %al,($dat,%rax)
|
|
add \$1,%al
|
|
jnc .Lc1stloop
|
|
|
|
xor $ido,$ido
|
|
xor $idx,$idx
|
|
.align 16
|
|
.Lc2ndloop:
|
|
mov ($dat,$ido),%r10b
|
|
add ($inp,$len),$idx#b
|
|
add %r10b,$idx#b
|
|
add \$1,$len
|
|
mov ($dat,$idx),%r11b
|
|
jnz .Lcnowrap
|
|
mov %rcx,$len
|
|
.Lcnowrap:
|
|
mov %r10b,($dat,$idx)
|
|
mov %r11b,($dat,$ido)
|
|
add \$1,$ido#b
|
|
jnc .Lc2ndloop
|
|
movl \$-1,256($dat)
|
|
|
|
.align 16
|
|
.Lexit_key:
|
|
xor %eax,%eax
|
|
mov %eax,-8($dat)
|
|
mov %eax,-4($dat)
|
|
ret
|
|
.size private_RC4_set_key,.-private_RC4_set_key
|
|
|
|
.globl RC4_options
|
|
.type RC4_options,\@abi-omnipotent
|
|
.align 16
|
|
RC4_options:
|
|
lea .Lopts(%rip),%rax
|
|
mov OPENSSL_ia32cap_P(%rip),%edx
|
|
bt \$20,%edx
|
|
jc .L8xchar
|
|
bt \$30,%edx
|
|
jnc .Ldone
|
|
add \$25,%rax
|
|
ret
|
|
.L8xchar:
|
|
add \$12,%rax
|
|
.Ldone:
|
|
ret
|
|
.align 64
|
|
.Lopts:
|
|
.asciz "rc4(8x,int)"
|
|
.asciz "rc4(8x,char)"
|
|
.asciz "rc4(16x,int)"
|
|
.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 64
|
|
.size RC4_options,.-RC4_options
|
|
___
|
|
|
|
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
|
|
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
|
|
if ($win64) {
|
|
$rec="%rcx";
|
|
$frame="%rdx";
|
|
$context="%r8";
|
|
$disp="%r9";
|
|
|
|
$code.=<<___;
|
|
.extern __imp_RtlVirtualUnwind
|
|
.type stream_se_handler,\@abi-omnipotent
|
|
.align 16
|
|
stream_se_handler:
|
|
push %rsi
|
|
push %rdi
|
|
push %rbx
|
|
push %rbp
|
|
push %r12
|
|
push %r13
|
|
push %r14
|
|
push %r15
|
|
pushfq
|
|
sub \$64,%rsp
|
|
|
|
mov 120($context),%rax # pull context->Rax
|
|
mov 248($context),%rbx # pull context->Rip
|
|
|
|
lea .Lprologue(%rip),%r10
|
|
cmp %r10,%rbx # context->Rip<prologue label
|
|
jb .Lin_prologue
|
|
|
|
mov 152($context),%rax # pull context->Rsp
|
|
|
|
lea .Lepilogue(%rip),%r10
|
|
cmp %r10,%rbx # context->Rip>=epilogue label
|
|
jae .Lin_prologue
|
|
|
|
lea 24(%rax),%rax
|
|
|
|
mov -8(%rax),%rbx
|
|
mov -16(%rax),%r12
|
|
mov -24(%rax),%r13
|
|
mov %rbx,144($context) # restore context->Rbx
|
|
mov %r12,216($context) # restore context->R12
|
|
mov %r13,224($context) # restore context->R13
|
|
|
|
.Lin_prologue:
|
|
mov 8(%rax),%rdi
|
|
mov 16(%rax),%rsi
|
|
mov %rax,152($context) # restore context->Rsp
|
|
mov %rsi,168($context) # restore context->Rsi
|
|
mov %rdi,176($context) # restore context->Rdi
|
|
|
|
jmp .Lcommon_seh_exit
|
|
.size stream_se_handler,.-stream_se_handler
|
|
|
|
.type key_se_handler,\@abi-omnipotent
|
|
.align 16
|
|
key_se_handler:
|
|
push %rsi
|
|
push %rdi
|
|
push %rbx
|
|
push %rbp
|
|
push %r12
|
|
push %r13
|
|
push %r14
|
|
push %r15
|
|
pushfq
|
|
sub \$64,%rsp
|
|
|
|
mov 152($context),%rax # pull context->Rsp
|
|
mov 8(%rax),%rdi
|
|
mov 16(%rax),%rsi
|
|
mov %rsi,168($context) # restore context->Rsi
|
|
mov %rdi,176($context) # restore context->Rdi
|
|
|
|
.Lcommon_seh_exit:
|
|
|
|
mov 40($disp),%rdi # disp->ContextRecord
|
|
mov $context,%rsi # context
|
|
mov \$154,%ecx # sizeof(CONTEXT)
|
|
.long 0xa548f3fc # cld; rep movsq
|
|
|
|
mov $disp,%rsi
|
|
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
|
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
|
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
|
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
|
mov 40(%rsi),%r10 # disp->ContextRecord
|
|
lea 56(%rsi),%r11 # &disp->HandlerData
|
|
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
|
mov %r10,32(%rsp) # arg5
|
|
mov %r11,40(%rsp) # arg6
|
|
mov %r12,48(%rsp) # arg7
|
|
mov %rcx,56(%rsp) # arg8, (NULL)
|
|
call *__imp_RtlVirtualUnwind(%rip)
|
|
|
|
mov \$1,%eax # ExceptionContinueSearch
|
|
add \$64,%rsp
|
|
popfq
|
|
pop %r15
|
|
pop %r14
|
|
pop %r13
|
|
pop %r12
|
|
pop %rbp
|
|
pop %rbx
|
|
pop %rdi
|
|
pop %rsi
|
|
ret
|
|
.size key_se_handler,.-key_se_handler
|
|
|
|
.section .pdata
|
|
.align 4
|
|
.rva .LSEH_begin_RC4
|
|
.rva .LSEH_end_RC4
|
|
.rva .LSEH_info_RC4
|
|
|
|
.rva .LSEH_begin_private_RC4_set_key
|
|
.rva .LSEH_end_private_RC4_set_key
|
|
.rva .LSEH_info_private_RC4_set_key
|
|
|
|
.section .xdata
|
|
.align 8
|
|
.LSEH_info_RC4:
|
|
.byte 9,0,0,0
|
|
.rva stream_se_handler
|
|
.LSEH_info_private_RC4_set_key:
|
|
.byte 9,0,0,0
|
|
.rva key_se_handler
|
|
___
|
|
}
|
|
|
|
sub reg_part {
|
|
my ($reg,$conv)=@_;
|
|
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
|
|
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
|
|
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
|
|
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
|
|
return $reg;
|
|
}
|
|
|
|
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
|
|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
|
|
|
print $code;
|
|
|
|
close STDOUT;
|