mirror of
https://github.com/oxen-io/session-android.git
synced 2025-01-07 17:57:43 +00:00
d83a3d71bc
Merge in RedPhone // FREEBIE
951 lines
21 KiB
C
951 lines
21 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 2005.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
/* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
|
|
* and PRIVATEKEYBLOB).
|
|
*/
|
|
|
|
#include "cryptlib.h"
|
|
#include <openssl/pem.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/bn.h>
|
|
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
|
|
#include <openssl/dsa.h>
|
|
#include <openssl/rsa.h>
|
|
|
|
/* Utility function: read a DWORD (4 byte unsigned integer) in little endian
|
|
* format
|
|
*/
|
|
|
|
static unsigned int read_ledword(const unsigned char **in)
|
|
{
|
|
const unsigned char *p = *in;
|
|
unsigned int ret;
|
|
ret = *p++;
|
|
ret |= (*p++ << 8);
|
|
ret |= (*p++ << 16);
|
|
ret |= (*p++ << 24);
|
|
*in = p;
|
|
return ret;
|
|
}
|
|
|
|
/* Read a BIGNUM in little endian format. The docs say that this should take up
|
|
* bitlen/8 bytes.
|
|
*/
|
|
|
|
static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
|
|
{
|
|
const unsigned char *p;
|
|
unsigned char *tmpbuf, *q;
|
|
unsigned int i;
|
|
p = *in + nbyte - 1;
|
|
tmpbuf = OPENSSL_malloc(nbyte);
|
|
if (!tmpbuf)
|
|
return 0;
|
|
q = tmpbuf;
|
|
for (i = 0; i < nbyte; i++)
|
|
*q++ = *p--;
|
|
*r = BN_bin2bn(tmpbuf, nbyte, NULL);
|
|
OPENSSL_free(tmpbuf);
|
|
if (*r)
|
|
{
|
|
*in += nbyte;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
|
|
|
|
#define MS_PUBLICKEYBLOB 0x6
|
|
#define MS_PRIVATEKEYBLOB 0x7
|
|
#define MS_RSA1MAGIC 0x31415352L
|
|
#define MS_RSA2MAGIC 0x32415352L
|
|
#define MS_DSS1MAGIC 0x31535344L
|
|
#define MS_DSS2MAGIC 0x32535344L
|
|
|
|
#define MS_KEYALG_RSA_KEYX 0xa400
|
|
#define MS_KEYALG_DSS_SIGN 0x2200
|
|
|
|
#define MS_KEYTYPE_KEYX 0x1
|
|
#define MS_KEYTYPE_SIGN 0x2
|
|
|
|
/* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
|
|
#define MS_PVKMAGIC 0xb0b5f11eL
|
|
/* Salt length for PVK files */
|
|
#define PVK_SALTLEN 0x10
|
|
|
|
static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
|
|
unsigned int bitlen, int ispub);
|
|
static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
|
|
unsigned int bitlen, int ispub);
|
|
|
|
static int do_blob_header(const unsigned char **in, unsigned int length,
|
|
unsigned int *pmagic, unsigned int *pbitlen,
|
|
int *pisdss, int *pispub)
|
|
{
|
|
const unsigned char *p = *in;
|
|
if (length < 16)
|
|
return 0;
|
|
/* bType */
|
|
if (*p == MS_PUBLICKEYBLOB)
|
|
{
|
|
if (*pispub == 0)
|
|
{
|
|
PEMerr(PEM_F_DO_BLOB_HEADER,
|
|
PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
|
|
return 0;
|
|
}
|
|
*pispub = 1;
|
|
}
|
|
else if (*p == MS_PRIVATEKEYBLOB)
|
|
{
|
|
if (*pispub == 1)
|
|
{
|
|
PEMerr(PEM_F_DO_BLOB_HEADER,
|
|
PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
|
|
return 0;
|
|
}
|
|
*pispub = 0;
|
|
}
|
|
else
|
|
return 0;
|
|
p++;
|
|
/* Version */
|
|
if (*p++ != 0x2)
|
|
{
|
|
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
|
|
return 0;
|
|
}
|
|
/* Ignore reserved, aiKeyAlg */
|
|
p+= 6;
|
|
*pmagic = read_ledword(&p);
|
|
*pbitlen = read_ledword(&p);
|
|
*pisdss = 0;
|
|
switch (*pmagic)
|
|
{
|
|
|
|
case MS_DSS1MAGIC:
|
|
*pisdss = 1;
|
|
case MS_RSA1MAGIC:
|
|
if (*pispub == 0)
|
|
{
|
|
PEMerr(PEM_F_DO_BLOB_HEADER,
|
|
PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case MS_DSS2MAGIC:
|
|
*pisdss = 1;
|
|
case MS_RSA2MAGIC:
|
|
if (*pispub == 1)
|
|
{
|
|
PEMerr(PEM_F_DO_BLOB_HEADER,
|
|
PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
|
|
return -1;
|
|
}
|
|
*in = p;
|
|
return 1;
|
|
}
|
|
|
|
static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
|
|
{
|
|
unsigned int nbyte, hnbyte;
|
|
nbyte = (bitlen + 7) >> 3;
|
|
hnbyte = (bitlen + 15) >> 4;
|
|
if (isdss)
|
|
{
|
|
|
|
/* Expected length: 20 for q + 3 components bitlen each + 24
|
|
* for seed structure.
|
|
*/
|
|
if (ispub)
|
|
return 44 + 3 * nbyte;
|
|
/* Expected length: 20 for q, priv, 2 bitlen components + 24
|
|
* for seed structure.
|
|
*/
|
|
else
|
|
return 64 + 2 * nbyte;
|
|
}
|
|
else
|
|
{
|
|
/* Expected length: 4 for 'e' + 'n' */
|
|
if (ispub)
|
|
return 4 + nbyte;
|
|
else
|
|
/* Expected length: 4 for 'e' and 7 other components.
|
|
* 2 components are bitlen size, 5 are bitlen/2
|
|
*/
|
|
return 4 + 2*nbyte + 5*hnbyte;
|
|
}
|
|
|
|
}
|
|
|
|
static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
|
|
int ispub)
|
|
{
|
|
const unsigned char *p = *in;
|
|
unsigned int bitlen, magic;
|
|
int isdss;
|
|
if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0)
|
|
{
|
|
PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
|
|
return NULL;
|
|
}
|
|
length -= 16;
|
|
if (length < blob_length(bitlen, isdss, ispub))
|
|
{
|
|
PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
|
|
return NULL;
|
|
}
|
|
if (isdss)
|
|
return b2i_dss(&p, length, bitlen, ispub);
|
|
else
|
|
return b2i_rsa(&p, length, bitlen, ispub);
|
|
}
|
|
|
|
static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
|
|
{
|
|
const unsigned char *p;
|
|
unsigned char hdr_buf[16], *buf = NULL;
|
|
unsigned int bitlen, magic, length;
|
|
int isdss;
|
|
EVP_PKEY *ret = NULL;
|
|
if (BIO_read(in, hdr_buf, 16) != 16)
|
|
{
|
|
PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
|
|
return NULL;
|
|
}
|
|
p = hdr_buf;
|
|
if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
|
|
return NULL;
|
|
|
|
length = blob_length(bitlen, isdss, ispub);
|
|
buf = OPENSSL_malloc(length);
|
|
if (!buf)
|
|
{
|
|
PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
p = buf;
|
|
if (BIO_read(in, buf, length) != (int)length)
|
|
{
|
|
PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
|
|
goto err;
|
|
}
|
|
|
|
if (isdss)
|
|
ret = b2i_dss(&p, length, bitlen, ispub);
|
|
else
|
|
ret = b2i_rsa(&p, length, bitlen, ispub);
|
|
|
|
err:
|
|
if (buf)
|
|
OPENSSL_free(buf);
|
|
return ret;
|
|
}
|
|
|
|
static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
|
|
unsigned int bitlen, int ispub)
|
|
{
|
|
const unsigned char *p = *in;
|
|
EVP_PKEY *ret = NULL;
|
|
DSA *dsa = NULL;
|
|
BN_CTX *ctx = NULL;
|
|
unsigned int nbyte;
|
|
nbyte = (bitlen + 7) >> 3;
|
|
|
|
dsa = DSA_new();
|
|
ret = EVP_PKEY_new();
|
|
if (!dsa || !ret)
|
|
goto memerr;
|
|
if (!read_lebn(&p, nbyte, &dsa->p))
|
|
goto memerr;
|
|
if (!read_lebn(&p, 20, &dsa->q))
|
|
goto memerr;
|
|
if (!read_lebn(&p, nbyte, &dsa->g))
|
|
goto memerr;
|
|
if (ispub)
|
|
{
|
|
if (!read_lebn(&p, nbyte, &dsa->pub_key))
|
|
goto memerr;
|
|
}
|
|
else
|
|
{
|
|
if (!read_lebn(&p, 20, &dsa->priv_key))
|
|
goto memerr;
|
|
/* Calculate public key */
|
|
if (!(dsa->pub_key = BN_new()))
|
|
goto memerr;
|
|
if (!(ctx = BN_CTX_new()))
|
|
goto memerr;
|
|
|
|
if (!BN_mod_exp(dsa->pub_key, dsa->g,
|
|
dsa->priv_key, dsa->p, ctx))
|
|
|
|
goto memerr;
|
|
BN_CTX_free(ctx);
|
|
}
|
|
|
|
EVP_PKEY_set1_DSA(ret, dsa);
|
|
DSA_free(dsa);
|
|
*in = p;
|
|
return ret;
|
|
|
|
memerr:
|
|
PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
|
|
if (dsa)
|
|
DSA_free(dsa);
|
|
if (ret)
|
|
EVP_PKEY_free(ret);
|
|
if (ctx)
|
|
BN_CTX_free(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
|
|
unsigned int bitlen, int ispub)
|
|
|
|
{
|
|
const unsigned char *p = *in;
|
|
EVP_PKEY *ret = NULL;
|
|
RSA *rsa = NULL;
|
|
unsigned int nbyte, hnbyte;
|
|
nbyte = (bitlen + 7) >> 3;
|
|
hnbyte = (bitlen + 15) >> 4;
|
|
rsa = RSA_new();
|
|
ret = EVP_PKEY_new();
|
|
if (!rsa || !ret)
|
|
goto memerr;
|
|
rsa->e = BN_new();
|
|
if (!rsa->e)
|
|
goto memerr;
|
|
if (!BN_set_word(rsa->e, read_ledword(&p)))
|
|
goto memerr;
|
|
if (!read_lebn(&p, nbyte, &rsa->n))
|
|
goto memerr;
|
|
if (!ispub)
|
|
{
|
|
if (!read_lebn(&p, hnbyte, &rsa->p))
|
|
goto memerr;
|
|
if (!read_lebn(&p, hnbyte, &rsa->q))
|
|
goto memerr;
|
|
if (!read_lebn(&p, hnbyte, &rsa->dmp1))
|
|
goto memerr;
|
|
if (!read_lebn(&p, hnbyte, &rsa->dmq1))
|
|
goto memerr;
|
|
if (!read_lebn(&p, hnbyte, &rsa->iqmp))
|
|
goto memerr;
|
|
if (!read_lebn(&p, nbyte, &rsa->d))
|
|
goto memerr;
|
|
}
|
|
|
|
EVP_PKEY_set1_RSA(ret, rsa);
|
|
RSA_free(rsa);
|
|
*in = p;
|
|
return ret;
|
|
memerr:
|
|
PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
|
|
if (rsa)
|
|
RSA_free(rsa);
|
|
if (ret)
|
|
EVP_PKEY_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
|
|
{
|
|
return do_b2i(in, length, 0);
|
|
}
|
|
|
|
EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
|
|
{
|
|
return do_b2i(in, length, 1);
|
|
}
|
|
|
|
|
|
EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
|
|
{
|
|
return do_b2i_bio(in, 0);
|
|
}
|
|
|
|
EVP_PKEY *b2i_PublicKey_bio(BIO *in)
|
|
{
|
|
return do_b2i_bio(in, 1);
|
|
}
|
|
|
|
static void write_ledword(unsigned char **out, unsigned int dw)
|
|
{
|
|
unsigned char *p = *out;
|
|
*p++ = dw & 0xff;
|
|
*p++ = (dw>>8) & 0xff;
|
|
*p++ = (dw>>16) & 0xff;
|
|
*p++ = (dw>>24) & 0xff;
|
|
*out = p;
|
|
}
|
|
|
|
static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
|
|
{
|
|
int nb, i;
|
|
unsigned char *p = *out, *q, c;
|
|
nb = BN_num_bytes(bn);
|
|
BN_bn2bin(bn, p);
|
|
q = p + nb - 1;
|
|
/* In place byte order reversal */
|
|
for (i = 0; i < nb/2; i++)
|
|
{
|
|
c = *p;
|
|
*p++ = *q;
|
|
*q-- = c;
|
|
}
|
|
*out += nb;
|
|
/* Pad with zeroes if we have to */
|
|
if (len > 0)
|
|
{
|
|
len -= nb;
|
|
if (len > 0)
|
|
{
|
|
memset(*out, 0, len);
|
|
*out += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
|
|
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
|
|
|
|
static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
|
|
static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
|
|
|
|
static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
|
|
{
|
|
unsigned char *p;
|
|
unsigned int bitlen, magic = 0, keyalg;
|
|
int outlen, noinc = 0;
|
|
if (pk->type == EVP_PKEY_DSA)
|
|
{
|
|
bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
|
|
keyalg = MS_KEYALG_DSS_SIGN;
|
|
}
|
|
else if (pk->type == EVP_PKEY_RSA)
|
|
{
|
|
bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
|
|
keyalg = MS_KEYALG_RSA_KEYX;
|
|
}
|
|
else
|
|
return -1;
|
|
if (bitlen == 0)
|
|
return -1;
|
|
outlen = 16 + blob_length(bitlen,
|
|
keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
|
|
if (out == NULL)
|
|
return outlen;
|
|
if (*out)
|
|
p = *out;
|
|
else
|
|
{
|
|
p = OPENSSL_malloc(outlen);
|
|
if (!p)
|
|
return -1;
|
|
*out = p;
|
|
noinc = 1;
|
|
}
|
|
if (ispub)
|
|
*p++ = MS_PUBLICKEYBLOB;
|
|
else
|
|
*p++ = MS_PRIVATEKEYBLOB;
|
|
*p++ = 0x2;
|
|
*p++ = 0;
|
|
*p++ = 0;
|
|
write_ledword(&p, keyalg);
|
|
write_ledword(&p, magic);
|
|
write_ledword(&p, bitlen);
|
|
if (keyalg == MS_KEYALG_DSS_SIGN)
|
|
write_dsa(&p, pk->pkey.dsa, ispub);
|
|
else
|
|
write_rsa(&p, pk->pkey.rsa, ispub);
|
|
if (!noinc)
|
|
*out += outlen;
|
|
return outlen;
|
|
}
|
|
|
|
static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
|
|
{
|
|
unsigned char *tmp = NULL;
|
|
int outlen, wrlen;
|
|
outlen = do_i2b(&tmp, pk, ispub);
|
|
if (outlen < 0)
|
|
return -1;
|
|
wrlen = BIO_write(out, tmp, outlen);
|
|
OPENSSL_free(tmp);
|
|
if (wrlen == outlen)
|
|
return outlen;
|
|
return -1;
|
|
}
|
|
|
|
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
|
|
{
|
|
int bitlen;
|
|
bitlen = BN_num_bits(dsa->p);
|
|
if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
|
|
|| (BN_num_bits(dsa->g) > bitlen))
|
|
goto badkey;
|
|
if (ispub)
|
|
{
|
|
if (BN_num_bits(dsa->pub_key) > bitlen)
|
|
goto badkey;
|
|
*pmagic = MS_DSS1MAGIC;
|
|
}
|
|
else
|
|
{
|
|
if (BN_num_bits(dsa->priv_key) > 160)
|
|
goto badkey;
|
|
*pmagic = MS_DSS2MAGIC;
|
|
}
|
|
|
|
return bitlen;
|
|
badkey:
|
|
PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
|
|
return 0;
|
|
}
|
|
|
|
static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
|
|
{
|
|
int nbyte, hnbyte, bitlen;
|
|
if (BN_num_bits(rsa->e) > 32)
|
|
goto badkey;
|
|
bitlen = BN_num_bits(rsa->n);
|
|
nbyte = BN_num_bytes(rsa->n);
|
|
hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
|
|
if (ispub)
|
|
{
|
|
*pmagic = MS_RSA1MAGIC;
|
|
return bitlen;
|
|
}
|
|
else
|
|
{
|
|
*pmagic = MS_RSA2MAGIC;
|
|
/* For private key each component must fit within nbyte or
|
|
* hnbyte.
|
|
*/
|
|
if (BN_num_bytes(rsa->d) > nbyte)
|
|
goto badkey;
|
|
if ((BN_num_bytes(rsa->iqmp) > hnbyte)
|
|
|| (BN_num_bytes(rsa->p) > hnbyte)
|
|
|| (BN_num_bytes(rsa->q) > hnbyte)
|
|
|| (BN_num_bytes(rsa->dmp1) > hnbyte)
|
|
|| (BN_num_bytes(rsa->dmq1) > hnbyte))
|
|
goto badkey;
|
|
}
|
|
return bitlen;
|
|
badkey:
|
|
PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
|
|
{
|
|
int nbyte, hnbyte;
|
|
nbyte = BN_num_bytes(rsa->n);
|
|
hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
|
|
write_lebn(out, rsa->e, 4);
|
|
write_lebn(out, rsa->n, -1);
|
|
if (ispub)
|
|
return;
|
|
write_lebn(out, rsa->p, hnbyte);
|
|
write_lebn(out, rsa->q, hnbyte);
|
|
write_lebn(out, rsa->dmp1, hnbyte);
|
|
write_lebn(out, rsa->dmq1, hnbyte);
|
|
write_lebn(out, rsa->iqmp, hnbyte);
|
|
write_lebn(out, rsa->d, nbyte);
|
|
}
|
|
|
|
|
|
static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
|
|
{
|
|
int nbyte;
|
|
nbyte = BN_num_bytes(dsa->p);
|
|
write_lebn(out, dsa->p, nbyte);
|
|
write_lebn(out, dsa->q, 20);
|
|
write_lebn(out, dsa->g, nbyte);
|
|
if (ispub)
|
|
write_lebn(out, dsa->pub_key, nbyte);
|
|
else
|
|
write_lebn(out, dsa->priv_key, 20);
|
|
/* Set "invalid" for seed structure values */
|
|
memset(*out, 0xff, 24);
|
|
*out += 24;
|
|
return;
|
|
}
|
|
|
|
|
|
int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
|
|
{
|
|
return do_i2b_bio(out, pk, 0);
|
|
}
|
|
|
|
int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
|
|
{
|
|
return do_i2b_bio(out, pk, 1);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_RC4
|
|
|
|
static int do_PVK_header(const unsigned char **in, unsigned int length,
|
|
int skip_magic,
|
|
unsigned int *psaltlen, unsigned int *pkeylen)
|
|
|
|
{
|
|
const unsigned char *p = *in;
|
|
unsigned int pvk_magic, is_encrypted;
|
|
if (skip_magic)
|
|
{
|
|
if (length < 20)
|
|
{
|
|
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
|
|
return 0;
|
|
}
|
|
length -= 20;
|
|
}
|
|
else
|
|
{
|
|
if (length < 24)
|
|
{
|
|
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
|
|
return 0;
|
|
}
|
|
length -= 24;
|
|
pvk_magic = read_ledword(&p);
|
|
if (pvk_magic != MS_PVKMAGIC)
|
|
{
|
|
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
|
|
return 0;
|
|
}
|
|
}
|
|
/* Skip reserved */
|
|
p += 4;
|
|
/*keytype = */read_ledword(&p);
|
|
is_encrypted = read_ledword(&p);
|
|
*psaltlen = read_ledword(&p);
|
|
*pkeylen = read_ledword(&p);
|
|
|
|
if (is_encrypted && !*psaltlen)
|
|
{
|
|
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
|
|
return 0;
|
|
}
|
|
|
|
*in = p;
|
|
return 1;
|
|
}
|
|
|
|
static int derive_pvk_key(unsigned char *key,
|
|
const unsigned char *salt, unsigned int saltlen,
|
|
const unsigned char *pass, int passlen)
|
|
{
|
|
EVP_MD_CTX mctx;
|
|
int rv = 1;
|
|
EVP_MD_CTX_init(&mctx);
|
|
if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL)
|
|
|| !EVP_DigestUpdate(&mctx, salt, saltlen)
|
|
|| !EVP_DigestUpdate(&mctx, pass, passlen)
|
|
|| !EVP_DigestFinal_ex(&mctx, key, NULL))
|
|
rv = 0;
|
|
|
|
EVP_MD_CTX_cleanup(&mctx);
|
|
return rv;
|
|
}
|
|
|
|
|
|
static EVP_PKEY *do_PVK_body(const unsigned char **in,
|
|
unsigned int saltlen, unsigned int keylen,
|
|
pem_password_cb *cb, void *u)
|
|
{
|
|
EVP_PKEY *ret = NULL;
|
|
const unsigned char *p = *in;
|
|
unsigned int magic;
|
|
unsigned char *enctmp = NULL, *q;
|
|
EVP_CIPHER_CTX cctx;
|
|
EVP_CIPHER_CTX_init(&cctx);
|
|
if (saltlen)
|
|
{
|
|
char psbuf[PEM_BUFSIZE];
|
|
unsigned char keybuf[20];
|
|
int enctmplen, inlen;
|
|
if (cb)
|
|
inlen=cb(psbuf,PEM_BUFSIZE,0,u);
|
|
else
|
|
inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
|
|
if (inlen <= 0)
|
|
{
|
|
PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ);
|
|
return NULL;
|
|
}
|
|
enctmp = OPENSSL_malloc(keylen + 8);
|
|
if (!enctmp)
|
|
{
|
|
PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
if (!derive_pvk_key(keybuf, p, saltlen,
|
|
(unsigned char *)psbuf, inlen))
|
|
return NULL;
|
|
p += saltlen;
|
|
/* Copy BLOBHEADER across, decrypt rest */
|
|
memcpy(enctmp, p, 8);
|
|
p += 8;
|
|
inlen = keylen - 8;
|
|
q = enctmp + 8;
|
|
if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
|
|
goto err;
|
|
if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
|
|
goto err;
|
|
if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
|
|
goto err;
|
|
magic = read_ledword((const unsigned char **)&q);
|
|
if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
|
|
{
|
|
q = enctmp + 8;
|
|
memset(keybuf + 5, 0, 11);
|
|
if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
|
|
NULL))
|
|
goto err;
|
|
OPENSSL_cleanse(keybuf, 20);
|
|
if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
|
|
goto err;
|
|
if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen,
|
|
&enctmplen))
|
|
goto err;
|
|
magic = read_ledword((const unsigned char **)&q);
|
|
if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
|
|
{
|
|
PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
|
|
goto err;
|
|
}
|
|
}
|
|
else
|
|
OPENSSL_cleanse(keybuf, 20);
|
|
p = enctmp;
|
|
}
|
|
|
|
ret = b2i_PrivateKey(&p, keylen);
|
|
err:
|
|
EVP_CIPHER_CTX_cleanup(&cctx);
|
|
if (enctmp && saltlen)
|
|
OPENSSL_free(enctmp);
|
|
return ret;
|
|
}
|
|
|
|
|
|
EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
|
|
{
|
|
unsigned char pvk_hdr[24], *buf = NULL;
|
|
const unsigned char *p;
|
|
int buflen;
|
|
EVP_PKEY *ret = NULL;
|
|
unsigned int saltlen, keylen;
|
|
if (BIO_read(in, pvk_hdr, 24) != 24)
|
|
{
|
|
PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
|
|
return NULL;
|
|
}
|
|
p = pvk_hdr;
|
|
|
|
if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
|
|
return 0;
|
|
buflen = (int) keylen + saltlen;
|
|
buf = OPENSSL_malloc(buflen);
|
|
if (!buf)
|
|
{
|
|
PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
p = buf;
|
|
if (BIO_read(in, buf, buflen) != buflen)
|
|
{
|
|
PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
|
|
goto err;
|
|
}
|
|
ret = do_PVK_body(&p, saltlen, keylen, cb, u);
|
|
|
|
err:
|
|
if (buf)
|
|
{
|
|
OPENSSL_cleanse(buf, buflen);
|
|
OPENSSL_free(buf);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel,
|
|
pem_password_cb *cb, void *u)
|
|
{
|
|
int outlen = 24, pklen;
|
|
unsigned char *p, *salt = NULL;
|
|
EVP_CIPHER_CTX cctx;
|
|
EVP_CIPHER_CTX_init(&cctx);
|
|
if (enclevel)
|
|
outlen += PVK_SALTLEN;
|
|
pklen = do_i2b(NULL, pk, 0);
|
|
if (pklen < 0)
|
|
return -1;
|
|
outlen += pklen;
|
|
if (!out)
|
|
return outlen;
|
|
if (*out)
|
|
p = *out;
|
|
else
|
|
{
|
|
p = OPENSSL_malloc(outlen);
|
|
if (!p)
|
|
{
|
|
PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE);
|
|
return -1;
|
|
}
|
|
*out = p;
|
|
}
|
|
|
|
write_ledword(&p, MS_PVKMAGIC);
|
|
write_ledword(&p, 0);
|
|
if (pk->type == EVP_PKEY_DSA)
|
|
write_ledword(&p, MS_KEYTYPE_SIGN);
|
|
else
|
|
write_ledword(&p, MS_KEYTYPE_KEYX);
|
|
write_ledword(&p, enclevel ? 1 : 0);
|
|
write_ledword(&p, enclevel ? PVK_SALTLEN: 0);
|
|
write_ledword(&p, pklen);
|
|
if (enclevel)
|
|
{
|
|
if (RAND_bytes(p, PVK_SALTLEN) <= 0)
|
|
goto error;
|
|
salt = p;
|
|
p += PVK_SALTLEN;
|
|
}
|
|
do_i2b(&p, pk, 0);
|
|
if (enclevel == 0)
|
|
return outlen;
|
|
else
|
|
{
|
|
char psbuf[PEM_BUFSIZE];
|
|
unsigned char keybuf[20];
|
|
int enctmplen, inlen;
|
|
if (cb)
|
|
inlen=cb(psbuf,PEM_BUFSIZE,1,u);
|
|
else
|
|
inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u);
|
|
if (inlen <= 0)
|
|
{
|
|
PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ);
|
|
goto error;
|
|
}
|
|
if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
|
|
(unsigned char *)psbuf, inlen))
|
|
goto error;
|
|
if (enclevel == 1)
|
|
memset(keybuf + 5, 0, 11);
|
|
p = salt + PVK_SALTLEN + 8;
|
|
if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
|
|
goto error;
|
|
OPENSSL_cleanse(keybuf, 20);
|
|
if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
|
|
goto error;
|
|
if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))
|
|
goto error;
|
|
}
|
|
EVP_CIPHER_CTX_cleanup(&cctx);
|
|
return outlen;
|
|
|
|
error:
|
|
EVP_CIPHER_CTX_cleanup(&cctx);
|
|
return -1;
|
|
}
|
|
|
|
int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
|
|
pem_password_cb *cb, void *u)
|
|
{
|
|
unsigned char *tmp = NULL;
|
|
int outlen, wrlen;
|
|
outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
|
|
if (outlen < 0)
|
|
return -1;
|
|
wrlen = BIO_write(out, tmp, outlen);
|
|
OPENSSL_free(tmp);
|
|
if (wrlen == outlen)
|
|
{
|
|
PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
|
|
return outlen;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|