mirror of
https://github.com/oxen-io/session-android.git
synced 2024-12-21 07:27:30 +00:00
d83a3d71bc
Merge in RedPhone // FREEBIE
1467 lines
54 KiB
C++
1467 lines
54 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
/*
|
|
* This file includes unit tests for NetEQ.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_coding/neteq/interface/neteq.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h> // memset
|
|
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "gflags/gflags.h"
|
|
#include "gtest/gtest.h"
|
|
#include "webrtc/modules/audio_coding/neteq/test/NETEQTEST_RTPpacket.h"
|
|
#include "webrtc/modules/audio_coding/neteq/tools/audio_loop.h"
|
|
#include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h"
|
|
#include "webrtc/test/testsupport/fileutils.h"
|
|
#include "webrtc/test/testsupport/gtest_disable.h"
|
|
#include "webrtc/typedefs.h"
|
|
|
|
DEFINE_bool(gen_ref, false, "Generate reference files.");
|
|
|
|
namespace webrtc {
|
|
|
|
static bool IsAllZero(const int16_t* buf, int buf_length) {
|
|
bool all_zero = true;
|
|
for (int n = 0; n < buf_length && all_zero; ++n)
|
|
all_zero = buf[n] == 0;
|
|
return all_zero;
|
|
}
|
|
|
|
static bool IsAllNonZero(const int16_t* buf, int buf_length) {
|
|
bool all_non_zero = true;
|
|
for (int n = 0; n < buf_length && all_non_zero; ++n)
|
|
all_non_zero = buf[n] != 0;
|
|
return all_non_zero;
|
|
}
|
|
|
|
class RefFiles {
|
|
public:
|
|
RefFiles(const std::string& input_file, const std::string& output_file);
|
|
~RefFiles();
|
|
template<class T> void ProcessReference(const T& test_results);
|
|
template<typename T, size_t n> void ProcessReference(
|
|
const T (&test_results)[n],
|
|
size_t length);
|
|
template<typename T, size_t n> void WriteToFile(
|
|
const T (&test_results)[n],
|
|
size_t length);
|
|
template<typename T, size_t n> void ReadFromFileAndCompare(
|
|
const T (&test_results)[n],
|
|
size_t length);
|
|
void WriteToFile(const NetEqNetworkStatistics& stats);
|
|
void ReadFromFileAndCompare(const NetEqNetworkStatistics& stats);
|
|
void WriteToFile(const RtcpStatistics& stats);
|
|
void ReadFromFileAndCompare(const RtcpStatistics& stats);
|
|
|
|
FILE* input_fp_;
|
|
FILE* output_fp_;
|
|
};
|
|
|
|
RefFiles::RefFiles(const std::string &input_file,
|
|
const std::string &output_file)
|
|
: input_fp_(NULL),
|
|
output_fp_(NULL) {
|
|
if (!input_file.empty()) {
|
|
input_fp_ = fopen(input_file.c_str(), "rb");
|
|
EXPECT_TRUE(input_fp_ != NULL);
|
|
}
|
|
if (!output_file.empty()) {
|
|
output_fp_ = fopen(output_file.c_str(), "wb");
|
|
EXPECT_TRUE(output_fp_ != NULL);
|
|
}
|
|
}
|
|
|
|
RefFiles::~RefFiles() {
|
|
if (input_fp_) {
|
|
EXPECT_EQ(EOF, fgetc(input_fp_)); // Make sure that we reached the end.
|
|
fclose(input_fp_);
|
|
}
|
|
if (output_fp_) fclose(output_fp_);
|
|
}
|
|
|
|
template<class T>
|
|
void RefFiles::ProcessReference(const T& test_results) {
|
|
WriteToFile(test_results);
|
|
ReadFromFileAndCompare(test_results);
|
|
}
|
|
|
|
template<typename T, size_t n>
|
|
void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) {
|
|
WriteToFile(test_results, length);
|
|
ReadFromFileAndCompare(test_results, length);
|
|
}
|
|
|
|
template<typename T, size_t n>
|
|
void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) {
|
|
if (output_fp_) {
|
|
ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_));
|
|
}
|
|
}
|
|
|
|
template<typename T, size_t n>
|
|
void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n],
|
|
size_t length) {
|
|
if (input_fp_) {
|
|
// Read from ref file.
|
|
T* ref = new T[length];
|
|
ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_));
|
|
// Compare
|
|
ASSERT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length));
|
|
delete [] ref;
|
|
}
|
|
}
|
|
|
|
void RefFiles::WriteToFile(const NetEqNetworkStatistics& stats) {
|
|
if (output_fp_) {
|
|
ASSERT_EQ(1u, fwrite(&stats, sizeof(NetEqNetworkStatistics), 1,
|
|
output_fp_));
|
|
}
|
|
}
|
|
|
|
void RefFiles::ReadFromFileAndCompare(
|
|
const NetEqNetworkStatistics& stats) {
|
|
if (input_fp_) {
|
|
// Read from ref file.
|
|
size_t stat_size = sizeof(NetEqNetworkStatistics);
|
|
NetEqNetworkStatistics ref_stats;
|
|
ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_));
|
|
// Compare
|
|
ASSERT_EQ(0, memcmp(&stats, &ref_stats, stat_size));
|
|
}
|
|
}
|
|
|
|
void RefFiles::WriteToFile(const RtcpStatistics& stats) {
|
|
if (output_fp_) {
|
|
ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1,
|
|
output_fp_));
|
|
ASSERT_EQ(1u, fwrite(&(stats.cumulative_lost),
|
|
sizeof(stats.cumulative_lost), 1, output_fp_));
|
|
ASSERT_EQ(1u, fwrite(&(stats.extended_max_sequence_number),
|
|
sizeof(stats.extended_max_sequence_number), 1,
|
|
output_fp_));
|
|
ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1,
|
|
output_fp_));
|
|
}
|
|
}
|
|
|
|
void RefFiles::ReadFromFileAndCompare(
|
|
const RtcpStatistics& stats) {
|
|
if (input_fp_) {
|
|
// Read from ref file.
|
|
RtcpStatistics ref_stats;
|
|
ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost),
|
|
sizeof(ref_stats.fraction_lost), 1, input_fp_));
|
|
ASSERT_EQ(1u, fread(&(ref_stats.cumulative_lost),
|
|
sizeof(ref_stats.cumulative_lost), 1, input_fp_));
|
|
ASSERT_EQ(1u, fread(&(ref_stats.extended_max_sequence_number),
|
|
sizeof(ref_stats.extended_max_sequence_number), 1,
|
|
input_fp_));
|
|
ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1,
|
|
input_fp_));
|
|
// Compare
|
|
ASSERT_EQ(ref_stats.fraction_lost, stats.fraction_lost);
|
|
ASSERT_EQ(ref_stats.cumulative_lost, stats.cumulative_lost);
|
|
ASSERT_EQ(ref_stats.extended_max_sequence_number,
|
|
stats.extended_max_sequence_number);
|
|
ASSERT_EQ(ref_stats.jitter, stats.jitter);
|
|
}
|
|
}
|
|
|
|
class NetEqDecodingTest : public ::testing::Test {
|
|
protected:
|
|
// NetEQ must be polled for data once every 10 ms. Thus, neither of the
|
|
// constants below can be changed.
|
|
static const int kTimeStepMs = 10;
|
|
static const int kBlockSize8kHz = kTimeStepMs * 8;
|
|
static const int kBlockSize16kHz = kTimeStepMs * 16;
|
|
static const int kBlockSize32kHz = kTimeStepMs * 32;
|
|
static const int kMaxBlockSize = kBlockSize32kHz;
|
|
static const int kInitSampleRateHz = 8000;
|
|
|
|
NetEqDecodingTest();
|
|
virtual void SetUp();
|
|
virtual void TearDown();
|
|
void SelectDecoders(NetEqDecoder* used_codec);
|
|
void LoadDecoders();
|
|
void OpenInputFile(const std::string &rtp_file);
|
|
void Process(NETEQTEST_RTPpacket* rtp_ptr, int* out_len);
|
|
void DecodeAndCompare(const std::string& rtp_file,
|
|
const std::string& ref_file,
|
|
const std::string& stat_ref_file,
|
|
const std::string& rtcp_ref_file);
|
|
static void PopulateRtpInfo(int frame_index,
|
|
int timestamp,
|
|
WebRtcRTPHeader* rtp_info);
|
|
static void PopulateCng(int frame_index,
|
|
int timestamp,
|
|
WebRtcRTPHeader* rtp_info,
|
|
uint8_t* payload,
|
|
int* payload_len);
|
|
|
|
void WrapTest(uint16_t start_seq_no, uint32_t start_timestamp,
|
|
const std::set<uint16_t>& drop_seq_numbers,
|
|
bool expect_seq_no_wrap, bool expect_timestamp_wrap);
|
|
|
|
void LongCngWithClockDrift(double drift_factor,
|
|
double network_freeze_ms,
|
|
bool pull_audio_during_freeze,
|
|
int delay_tolerance_ms,
|
|
int max_time_to_speech_ms);
|
|
|
|
void DuplicateCng();
|
|
|
|
uint32_t PlayoutTimestamp();
|
|
|
|
NetEq* neteq_;
|
|
NetEq::Config config_;
|
|
FILE* rtp_fp_;
|
|
unsigned int sim_clock_;
|
|
int16_t out_data_[kMaxBlockSize];
|
|
int output_sample_rate_;
|
|
int algorithmic_delay_ms_;
|
|
};
|
|
|
|
// Allocating the static const so that it can be passed by reference.
|
|
const int NetEqDecodingTest::kTimeStepMs;
|
|
const int NetEqDecodingTest::kBlockSize8kHz;
|
|
const int NetEqDecodingTest::kBlockSize16kHz;
|
|
const int NetEqDecodingTest::kBlockSize32kHz;
|
|
const int NetEqDecodingTest::kMaxBlockSize;
|
|
const int NetEqDecodingTest::kInitSampleRateHz;
|
|
|
|
NetEqDecodingTest::NetEqDecodingTest()
|
|
: neteq_(NULL),
|
|
config_(),
|
|
rtp_fp_(NULL),
|
|
sim_clock_(0),
|
|
output_sample_rate_(kInitSampleRateHz),
|
|
algorithmic_delay_ms_(0) {
|
|
config_.sample_rate_hz = kInitSampleRateHz;
|
|
memset(out_data_, 0, sizeof(out_data_));
|
|
}
|
|
|
|
void NetEqDecodingTest::SetUp() {
|
|
neteq_ = NetEq::Create(config_);
|
|
NetEqNetworkStatistics stat;
|
|
ASSERT_EQ(0, neteq_->NetworkStatistics(&stat));
|
|
algorithmic_delay_ms_ = stat.current_buffer_size_ms;
|
|
ASSERT_TRUE(neteq_);
|
|
LoadDecoders();
|
|
}
|
|
|
|
void NetEqDecodingTest::TearDown() {
|
|
delete neteq_;
|
|
if (rtp_fp_)
|
|
fclose(rtp_fp_);
|
|
}
|
|
|
|
void NetEqDecodingTest::LoadDecoders() {
|
|
// Load PCMu.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMu, 0));
|
|
// Load PCMa.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMa, 8));
|
|
#ifndef WEBRTC_ANDROID
|
|
// Load iLBC.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderILBC, 102));
|
|
#endif // WEBRTC_ANDROID
|
|
// Load iSAC.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, 103));
|
|
#ifndef WEBRTC_ANDROID
|
|
// Load iSAC SWB.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACswb, 104));
|
|
// Load iSAC FB.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACfb, 105));
|
|
#endif // WEBRTC_ANDROID
|
|
// Load PCM16B nb.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16B, 93));
|
|
// Load PCM16B wb.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, 94));
|
|
// Load PCM16B swb32.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bswb32kHz, 95));
|
|
// Load CNG 8 kHz.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, 13));
|
|
// Load CNG 16 kHz.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, 98));
|
|
}
|
|
|
|
void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) {
|
|
rtp_fp_ = fopen(rtp_file.c_str(), "rb");
|
|
ASSERT_TRUE(rtp_fp_ != NULL);
|
|
ASSERT_EQ(0, NETEQTEST_RTPpacket::skipFileHeader(rtp_fp_));
|
|
}
|
|
|
|
void NetEqDecodingTest::Process(NETEQTEST_RTPpacket* rtp, int* out_len) {
|
|
// Check if time to receive.
|
|
while ((sim_clock_ >= rtp->time()) &&
|
|
(rtp->dataLen() >= 0)) {
|
|
if (rtp->dataLen() > 0) {
|
|
WebRtcRTPHeader rtpInfo;
|
|
rtp->parseHeader(&rtpInfo);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(
|
|
rtpInfo,
|
|
rtp->payload(),
|
|
rtp->payloadLen(),
|
|
rtp->time() * (output_sample_rate_ / 1000)));
|
|
}
|
|
// Get next packet.
|
|
ASSERT_NE(-1, rtp->readFromFile(rtp_fp_));
|
|
}
|
|
|
|
// Get audio from NetEq.
|
|
NetEqOutputType type;
|
|
int num_channels;
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, out_len,
|
|
&num_channels, &type));
|
|
ASSERT_TRUE((*out_len == kBlockSize8kHz) ||
|
|
(*out_len == kBlockSize16kHz) ||
|
|
(*out_len == kBlockSize32kHz));
|
|
output_sample_rate_ = *out_len / 10 * 1000;
|
|
|
|
// Increase time.
|
|
sim_clock_ += kTimeStepMs;
|
|
}
|
|
|
|
void NetEqDecodingTest::DecodeAndCompare(const std::string& rtp_file,
|
|
const std::string& ref_file,
|
|
const std::string& stat_ref_file,
|
|
const std::string& rtcp_ref_file) {
|
|
OpenInputFile(rtp_file);
|
|
|
|
std::string ref_out_file = "";
|
|
if (ref_file.empty()) {
|
|
ref_out_file = webrtc::test::OutputPath() + "neteq_universal_ref.pcm";
|
|
}
|
|
RefFiles ref_files(ref_file, ref_out_file);
|
|
|
|
std::string stat_out_file = "";
|
|
if (stat_ref_file.empty()) {
|
|
stat_out_file = webrtc::test::OutputPath() + "neteq_network_stats.dat";
|
|
}
|
|
RefFiles network_stat_files(stat_ref_file, stat_out_file);
|
|
|
|
std::string rtcp_out_file = "";
|
|
if (rtcp_ref_file.empty()) {
|
|
rtcp_out_file = webrtc::test::OutputPath() + "neteq_rtcp_stats.dat";
|
|
}
|
|
RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file);
|
|
|
|
NETEQTEST_RTPpacket rtp;
|
|
ASSERT_GT(rtp.readFromFile(rtp_fp_), 0);
|
|
int i = 0;
|
|
while (rtp.dataLen() >= 0) {
|
|
std::ostringstream ss;
|
|
ss << "Lap number " << i++ << " in DecodeAndCompare while loop";
|
|
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
|
|
int out_len = 0;
|
|
ASSERT_NO_FATAL_FAILURE(Process(&rtp, &out_len));
|
|
ASSERT_NO_FATAL_FAILURE(ref_files.ProcessReference(out_data_, out_len));
|
|
|
|
// Query the network statistics API once per second
|
|
if (sim_clock_ % 1000 == 0) {
|
|
// Process NetworkStatistics.
|
|
NetEqNetworkStatistics network_stats;
|
|
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
|
|
ASSERT_NO_FATAL_FAILURE(
|
|
network_stat_files.ProcessReference(network_stats));
|
|
|
|
// Process RTCPstat.
|
|
RtcpStatistics rtcp_stats;
|
|
neteq_->GetRtcpStatistics(&rtcp_stats);
|
|
ASSERT_NO_FATAL_FAILURE(rtcp_stat_files.ProcessReference(rtcp_stats));
|
|
}
|
|
}
|
|
}
|
|
|
|
void NetEqDecodingTest::PopulateRtpInfo(int frame_index,
|
|
int timestamp,
|
|
WebRtcRTPHeader* rtp_info) {
|
|
rtp_info->header.sequenceNumber = frame_index;
|
|
rtp_info->header.timestamp = timestamp;
|
|
rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC.
|
|
rtp_info->header.payloadType = 94; // PCM16b WB codec.
|
|
rtp_info->header.markerBit = 0;
|
|
}
|
|
|
|
void NetEqDecodingTest::PopulateCng(int frame_index,
|
|
int timestamp,
|
|
WebRtcRTPHeader* rtp_info,
|
|
uint8_t* payload,
|
|
int* payload_len) {
|
|
rtp_info->header.sequenceNumber = frame_index;
|
|
rtp_info->header.timestamp = timestamp;
|
|
rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC.
|
|
rtp_info->header.payloadType = 98; // WB CNG.
|
|
rtp_info->header.markerBit = 0;
|
|
payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen.
|
|
*payload_len = 1; // Only noise level, no spectral parameters.
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(TestBitExactness)) {
|
|
const std::string input_rtp_file = webrtc::test::ProjectRootPath() +
|
|
"resources/audio_coding/neteq_universal_new.rtp";
|
|
// Note that neteq4_universal_ref.pcm and neteq4_universal_ref_win_32.pcm
|
|
// are identical. The latter could have been removed, but if clients still
|
|
// have a copy of the file, the test will fail.
|
|
const std::string input_ref_file =
|
|
webrtc::test::ResourcePath("audio_coding/neteq4_universal_ref", "pcm");
|
|
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
|
|
// For Visual Studio 2012 and later, we will have to use the generic reference
|
|
// file, rather than the windows-specific one.
|
|
const std::string network_stat_ref_file = webrtc::test::ProjectRootPath() +
|
|
"resources/audio_coding/neteq4_network_stats.dat";
|
|
#else
|
|
const std::string network_stat_ref_file =
|
|
webrtc::test::ResourcePath("audio_coding/neteq4_network_stats", "dat");
|
|
#endif
|
|
const std::string rtcp_stat_ref_file =
|
|
webrtc::test::ResourcePath("audio_coding/neteq4_rtcp_stats", "dat");
|
|
|
|
if (FLAGS_gen_ref) {
|
|
DecodeAndCompare(input_rtp_file, "", "", "");
|
|
} else {
|
|
DecodeAndCompare(input_rtp_file,
|
|
input_ref_file,
|
|
network_stat_ref_file,
|
|
rtcp_stat_ref_file);
|
|
}
|
|
}
|
|
|
|
// TODO(hlundin): Re-enable test once the statistics interface is up and again.
|
|
TEST_F(NetEqDecodingTest, TestFrameWaitingTimeStatistics) {
|
|
// Use fax mode to avoid time-scaling. This is to simplify the testing of
|
|
// packet waiting times in the packet buffer.
|
|
neteq_->SetPlayoutMode(kPlayoutFax);
|
|
ASSERT_EQ(kPlayoutFax, neteq_->PlayoutMode());
|
|
// Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio.
|
|
size_t num_frames = 30;
|
|
const int kSamples = 10 * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
for (size_t i = 0; i < num_frames; ++i) {
|
|
uint16_t payload[kSamples] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
rtp_info.header.sequenceNumber = i;
|
|
rtp_info.header.timestamp = i * kSamples;
|
|
rtp_info.header.ssrc = 0x1234; // Just an arbitrary SSRC.
|
|
rtp_info.header.payloadType = 94; // PCM16b WB codec.
|
|
rtp_info.header.markerBit = 0;
|
|
ASSERT_EQ(0, neteq_->InsertPacket(
|
|
rtp_info,
|
|
reinterpret_cast<uint8_t*>(payload),
|
|
kPayloadBytes, 0));
|
|
}
|
|
// Pull out all data.
|
|
for (size_t i = 0; i < num_frames; ++i) {
|
|
int out_len;
|
|
int num_channels;
|
|
NetEqOutputType type;
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len,
|
|
&num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
}
|
|
|
|
std::vector<int> waiting_times;
|
|
neteq_->WaitingTimes(&waiting_times);
|
|
EXPECT_EQ(num_frames, waiting_times.size());
|
|
// Since all frames are dumped into NetEQ at once, but pulled out with 10 ms
|
|
// spacing (per definition), we expect the delay to increase with 10 ms for
|
|
// each packet.
|
|
for (size_t i = 0; i < waiting_times.size(); ++i) {
|
|
EXPECT_EQ(static_cast<int>(i + 1) * 10, waiting_times[i]);
|
|
}
|
|
|
|
// Check statistics again and make sure it's been reset.
|
|
neteq_->WaitingTimes(&waiting_times);
|
|
int len = waiting_times.size();
|
|
EXPECT_EQ(0, len);
|
|
|
|
// Process > 100 frames, and make sure that that we get statistics
|
|
// only for 100 frames. Note the new SSRC, causing NetEQ to reset.
|
|
num_frames = 110;
|
|
for (size_t i = 0; i < num_frames; ++i) {
|
|
uint16_t payload[kSamples] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
rtp_info.header.sequenceNumber = i;
|
|
rtp_info.header.timestamp = i * kSamples;
|
|
rtp_info.header.ssrc = 0x1235; // Just an arbitrary SSRC.
|
|
rtp_info.header.payloadType = 94; // PCM16b WB codec.
|
|
rtp_info.header.markerBit = 0;
|
|
ASSERT_EQ(0, neteq_->InsertPacket(
|
|
rtp_info,
|
|
reinterpret_cast<uint8_t*>(payload),
|
|
kPayloadBytes, 0));
|
|
int out_len;
|
|
int num_channels;
|
|
NetEqOutputType type;
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len,
|
|
&num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
}
|
|
|
|
neteq_->WaitingTimes(&waiting_times);
|
|
EXPECT_EQ(100u, waiting_times.size());
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) {
|
|
const int kNumFrames = 3000; // Needed for convergence.
|
|
int frame_index = 0;
|
|
const int kSamples = 10 * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
while (frame_index < kNumFrames) {
|
|
// Insert one packet each time, except every 10th time where we insert two
|
|
// packets at once. This will create a negative clock-drift of approx. 10%.
|
|
int num_packets = (frame_index % 10 == 0 ? 2 : 1);
|
|
for (int n = 0; n < num_packets; ++n) {
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
++frame_index;
|
|
}
|
|
|
|
// Pull out data once.
|
|
int out_len;
|
|
int num_channels;
|
|
NetEqOutputType type;
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len,
|
|
&num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
}
|
|
|
|
NetEqNetworkStatistics network_stats;
|
|
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
|
|
EXPECT_EQ(-103196, network_stats.clockdrift_ppm);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) {
|
|
const int kNumFrames = 5000; // Needed for convergence.
|
|
int frame_index = 0;
|
|
const int kSamples = 10 * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
// Insert one packet each time, except every 10th time where we don't insert
|
|
// any packet. This will create a positive clock-drift of approx. 11%.
|
|
int num_packets = (i % 10 == 9 ? 0 : 1);
|
|
for (int n = 0; n < num_packets; ++n) {
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
++frame_index;
|
|
}
|
|
|
|
// Pull out data once.
|
|
int out_len;
|
|
int num_channels;
|
|
NetEqOutputType type;
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len,
|
|
&num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
}
|
|
|
|
NetEqNetworkStatistics network_stats;
|
|
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
|
|
EXPECT_EQ(110946, network_stats.clockdrift_ppm);
|
|
}
|
|
|
|
void NetEqDecodingTest::LongCngWithClockDrift(double drift_factor,
|
|
double network_freeze_ms,
|
|
bool pull_audio_during_freeze,
|
|
int delay_tolerance_ms,
|
|
int max_time_to_speech_ms) {
|
|
uint16_t seq_no = 0;
|
|
uint32_t timestamp = 0;
|
|
const int kFrameSizeMs = 30;
|
|
const int kSamples = kFrameSizeMs * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
double next_input_time_ms = 0.0;
|
|
double t_ms;
|
|
int out_len;
|
|
int num_channels;
|
|
NetEqOutputType type;
|
|
|
|
// Insert speech for 5 seconds.
|
|
const int kSpeechDurationMs = 5000;
|
|
for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) {
|
|
// Each turn in this for loop is 10 ms.
|
|
while (next_input_time_ms <= t_ms) {
|
|
// Insert one 30 ms speech frame.
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
++seq_no;
|
|
timestamp += kSamples;
|
|
next_input_time_ms += static_cast<double>(kFrameSizeMs) * drift_factor;
|
|
}
|
|
// Pull out data once.
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len,
|
|
&num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
}
|
|
|
|
EXPECT_EQ(kOutputNormal, type);
|
|
int32_t delay_before = timestamp - PlayoutTimestamp();
|
|
|
|
// Insert CNG for 1 minute (= 60000 ms).
|
|
const int kCngPeriodMs = 100;
|
|
const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples.
|
|
const int kCngDurationMs = 60000;
|
|
for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) {
|
|
// Each turn in this for loop is 10 ms.
|
|
while (next_input_time_ms <= t_ms) {
|
|
// Insert one CNG frame each 100 ms.
|
|
uint8_t payload[kPayloadBytes];
|
|
int payload_len;
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0));
|
|
++seq_no;
|
|
timestamp += kCngPeriodSamples;
|
|
next_input_time_ms += static_cast<double>(kCngPeriodMs) * drift_factor;
|
|
}
|
|
// Pull out data once.
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len,
|
|
&num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
}
|
|
|
|
EXPECT_EQ(kOutputCNG, type);
|
|
|
|
if (network_freeze_ms > 0) {
|
|
// First keep pulling audio for |network_freeze_ms| without inserting
|
|
// any data, then insert CNG data corresponding to |network_freeze_ms|
|
|
// without pulling any output audio.
|
|
const double loop_end_time = t_ms + network_freeze_ms;
|
|
for (; t_ms < loop_end_time; t_ms += 10) {
|
|
// Pull out data once.
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(
|
|
kMaxBlockSize, out_data_, &out_len, &num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
EXPECT_EQ(kOutputCNG, type);
|
|
}
|
|
bool pull_once = pull_audio_during_freeze;
|
|
// If |pull_once| is true, GetAudio will be called once half-way through
|
|
// the network recovery period.
|
|
double pull_time_ms = (t_ms + next_input_time_ms) / 2;
|
|
while (next_input_time_ms <= t_ms) {
|
|
if (pull_once && next_input_time_ms >= pull_time_ms) {
|
|
pull_once = false;
|
|
// Pull out data once.
|
|
ASSERT_EQ(
|
|
0,
|
|
neteq_->GetAudio(
|
|
kMaxBlockSize, out_data_, &out_len, &num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
EXPECT_EQ(kOutputCNG, type);
|
|
t_ms += 10;
|
|
}
|
|
// Insert one CNG frame each 100 ms.
|
|
uint8_t payload[kPayloadBytes];
|
|
int payload_len;
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0));
|
|
++seq_no;
|
|
timestamp += kCngPeriodSamples;
|
|
next_input_time_ms += kCngPeriodMs * drift_factor;
|
|
}
|
|
}
|
|
|
|
// Insert speech again until output type is speech.
|
|
double speech_restart_time_ms = t_ms;
|
|
while (type != kOutputNormal) {
|
|
// Each turn in this for loop is 10 ms.
|
|
while (next_input_time_ms <= t_ms) {
|
|
// Insert one 30 ms speech frame.
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
++seq_no;
|
|
timestamp += kSamples;
|
|
next_input_time_ms += kFrameSizeMs * drift_factor;
|
|
}
|
|
// Pull out data once.
|
|
ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len,
|
|
&num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
// Increase clock.
|
|
t_ms += 10;
|
|
}
|
|
|
|
// Check that the speech starts again within reasonable time.
|
|
double time_until_speech_returns_ms = t_ms - speech_restart_time_ms;
|
|
EXPECT_LT(time_until_speech_returns_ms, max_time_to_speech_ms);
|
|
int32_t delay_after = timestamp - PlayoutTimestamp();
|
|
// Compare delay before and after, and make sure it differs less than 20 ms.
|
|
EXPECT_LE(delay_after, delay_before + delay_tolerance_ms * 16);
|
|
EXPECT_GE(delay_after, delay_before - delay_tolerance_ms * 16);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDrift) {
|
|
// Apply a clock drift of -25 ms / s (sender faster than receiver).
|
|
const double kDriftFactor = 1000.0 / (1000.0 + 25.0);
|
|
const double kNetworkFreezeTimeMs = 0.0;
|
|
const bool kGetAudioDuringFreezeRecovery = false;
|
|
const int kDelayToleranceMs = 20;
|
|
const int kMaxTimeToSpeechMs = 100;
|
|
LongCngWithClockDrift(kDriftFactor,
|
|
kNetworkFreezeTimeMs,
|
|
kGetAudioDuringFreezeRecovery,
|
|
kDelayToleranceMs,
|
|
kMaxTimeToSpeechMs);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDrift) {
|
|
// Apply a clock drift of +25 ms / s (sender slower than receiver).
|
|
const double kDriftFactor = 1000.0 / (1000.0 - 25.0);
|
|
const double kNetworkFreezeTimeMs = 0.0;
|
|
const bool kGetAudioDuringFreezeRecovery = false;
|
|
const int kDelayToleranceMs = 20;
|
|
const int kMaxTimeToSpeechMs = 100;
|
|
LongCngWithClockDrift(kDriftFactor,
|
|
kNetworkFreezeTimeMs,
|
|
kGetAudioDuringFreezeRecovery,
|
|
kDelayToleranceMs,
|
|
kMaxTimeToSpeechMs);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDriftNetworkFreeze) {
|
|
// Apply a clock drift of -25 ms / s (sender faster than receiver).
|
|
const double kDriftFactor = 1000.0 / (1000.0 + 25.0);
|
|
const double kNetworkFreezeTimeMs = 5000.0;
|
|
const bool kGetAudioDuringFreezeRecovery = false;
|
|
const int kDelayToleranceMs = 50;
|
|
const int kMaxTimeToSpeechMs = 200;
|
|
LongCngWithClockDrift(kDriftFactor,
|
|
kNetworkFreezeTimeMs,
|
|
kGetAudioDuringFreezeRecovery,
|
|
kDelayToleranceMs,
|
|
kMaxTimeToSpeechMs);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreeze) {
|
|
// Apply a clock drift of +25 ms / s (sender slower than receiver).
|
|
const double kDriftFactor = 1000.0 / (1000.0 - 25.0);
|
|
const double kNetworkFreezeTimeMs = 5000.0;
|
|
const bool kGetAudioDuringFreezeRecovery = false;
|
|
const int kDelayToleranceMs = 20;
|
|
const int kMaxTimeToSpeechMs = 100;
|
|
LongCngWithClockDrift(kDriftFactor,
|
|
kNetworkFreezeTimeMs,
|
|
kGetAudioDuringFreezeRecovery,
|
|
kDelayToleranceMs,
|
|
kMaxTimeToSpeechMs);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreezeExtraPull) {
|
|
// Apply a clock drift of +25 ms / s (sender slower than receiver).
|
|
const double kDriftFactor = 1000.0 / (1000.0 - 25.0);
|
|
const double kNetworkFreezeTimeMs = 5000.0;
|
|
const bool kGetAudioDuringFreezeRecovery = true;
|
|
const int kDelayToleranceMs = 20;
|
|
const int kMaxTimeToSpeechMs = 100;
|
|
LongCngWithClockDrift(kDriftFactor,
|
|
kNetworkFreezeTimeMs,
|
|
kGetAudioDuringFreezeRecovery,
|
|
kDelayToleranceMs,
|
|
kMaxTimeToSpeechMs);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, LongCngWithoutClockDrift) {
|
|
const double kDriftFactor = 1.0; // No drift.
|
|
const double kNetworkFreezeTimeMs = 0.0;
|
|
const bool kGetAudioDuringFreezeRecovery = false;
|
|
const int kDelayToleranceMs = 10;
|
|
const int kMaxTimeToSpeechMs = 50;
|
|
LongCngWithClockDrift(kDriftFactor,
|
|
kNetworkFreezeTimeMs,
|
|
kGetAudioDuringFreezeRecovery,
|
|
kDelayToleranceMs,
|
|
kMaxTimeToSpeechMs);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, UnknownPayloadType) {
|
|
const int kPayloadBytes = 100;
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(0, 0, &rtp_info);
|
|
rtp_info.header.payloadType = 1; // Not registered as a decoder.
|
|
EXPECT_EQ(NetEq::kFail,
|
|
neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
EXPECT_EQ(NetEq::kUnknownRtpPayloadType, neteq_->LastError());
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(DecoderError)) {
|
|
const int kPayloadBytes = 100;
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(0, 0, &rtp_info);
|
|
rtp_info.header.payloadType = 103; // iSAC, but the payload is invalid.
|
|
EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
NetEqOutputType type;
|
|
// Set all of |out_data_| to 1, and verify that it was set to 0 by the call
|
|
// to GetAudio.
|
|
for (int i = 0; i < kMaxBlockSize; ++i) {
|
|
out_data_[i] = 1;
|
|
}
|
|
int num_channels;
|
|
int samples_per_channel;
|
|
EXPECT_EQ(NetEq::kFail,
|
|
neteq_->GetAudio(kMaxBlockSize, out_data_,
|
|
&samples_per_channel, &num_channels, &type));
|
|
// Verify that there is a decoder error to check.
|
|
EXPECT_EQ(NetEq::kDecoderErrorCode, neteq_->LastError());
|
|
// Code 6730 is an iSAC error code.
|
|
EXPECT_EQ(6730, neteq_->LastDecoderError());
|
|
// Verify that the first 160 samples are set to 0, and that the remaining
|
|
// samples are left unmodified.
|
|
static const int kExpectedOutputLength = 160; // 10 ms at 16 kHz sample rate.
|
|
for (int i = 0; i < kExpectedOutputLength; ++i) {
|
|
std::ostringstream ss;
|
|
ss << "i = " << i;
|
|
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
|
|
EXPECT_EQ(0, out_data_[i]);
|
|
}
|
|
for (int i = kExpectedOutputLength; i < kMaxBlockSize; ++i) {
|
|
std::ostringstream ss;
|
|
ss << "i = " << i;
|
|
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
|
|
EXPECT_EQ(1, out_data_[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) {
|
|
NetEqOutputType type;
|
|
// Set all of |out_data_| to 1, and verify that it was set to 0 by the call
|
|
// to GetAudio.
|
|
for (int i = 0; i < kMaxBlockSize; ++i) {
|
|
out_data_[i] = 1;
|
|
}
|
|
int num_channels;
|
|
int samples_per_channel;
|
|
EXPECT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_,
|
|
&samples_per_channel,
|
|
&num_channels, &type));
|
|
// Verify that the first block of samples is set to 0.
|
|
static const int kExpectedOutputLength =
|
|
kInitSampleRateHz / 100; // 10 ms at initial sample rate.
|
|
for (int i = 0; i < kExpectedOutputLength; ++i) {
|
|
std::ostringstream ss;
|
|
ss << "i = " << i;
|
|
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
|
|
EXPECT_EQ(0, out_data_[i]);
|
|
}
|
|
}
|
|
|
|
class NetEqBgnTest : public NetEqDecodingTest {
|
|
protected:
|
|
virtual void TestCondition(double sum_squared_noise,
|
|
bool should_be_faded) = 0;
|
|
|
|
void CheckBgn(int sampling_rate_hz) {
|
|
int expected_samples_per_channel = 0;
|
|
uint8_t payload_type = 0xFF; // Invalid.
|
|
if (sampling_rate_hz == 8000) {
|
|
expected_samples_per_channel = kBlockSize8kHz;
|
|
payload_type = 93; // PCM 16, 8 kHz.
|
|
} else if (sampling_rate_hz == 16000) {
|
|
expected_samples_per_channel = kBlockSize16kHz;
|
|
payload_type = 94; // PCM 16, 16 kHZ.
|
|
} else if (sampling_rate_hz == 32000) {
|
|
expected_samples_per_channel = kBlockSize32kHz;
|
|
payload_type = 95; // PCM 16, 32 kHz.
|
|
} else {
|
|
ASSERT_TRUE(false); // Unsupported test case.
|
|
}
|
|
|
|
NetEqOutputType type;
|
|
int16_t output[kBlockSize32kHz]; // Maximum size is chosen.
|
|
test::AudioLoop input;
|
|
// We are using the same 32 kHz input file for all tests, regardless of
|
|
// |sampling_rate_hz|. The output may sound weird, but the test is still
|
|
// valid.
|
|
ASSERT_TRUE(input.Init(
|
|
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"),
|
|
10 * sampling_rate_hz, // Max 10 seconds loop length.
|
|
expected_samples_per_channel));
|
|
|
|
// Payload of 10 ms of PCM16 32 kHz.
|
|
uint8_t payload[kBlockSize32kHz * sizeof(int16_t)];
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(0, 0, &rtp_info);
|
|
rtp_info.header.payloadType = payload_type;
|
|
|
|
int number_channels = 0;
|
|
int samples_per_channel = 0;
|
|
|
|
uint32_t receive_timestamp = 0;
|
|
for (int n = 0; n < 10; ++n) { // Insert few packets and get audio.
|
|
int enc_len_bytes =
|
|
WebRtcPcm16b_EncodeW16(input.GetNextBlock(),
|
|
expected_samples_per_channel,
|
|
reinterpret_cast<int16_t*>(payload));
|
|
ASSERT_EQ(enc_len_bytes, expected_samples_per_channel * 2);
|
|
|
|
number_channels = 0;
|
|
samples_per_channel = 0;
|
|
ASSERT_EQ(0,
|
|
neteq_->InsertPacket(
|
|
rtp_info, payload, enc_len_bytes, receive_timestamp));
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(kBlockSize32kHz,
|
|
output,
|
|
&samples_per_channel,
|
|
&number_channels,
|
|
&type));
|
|
ASSERT_EQ(1, number_channels);
|
|
ASSERT_EQ(expected_samples_per_channel, samples_per_channel);
|
|
ASSERT_EQ(kOutputNormal, type);
|
|
|
|
// Next packet.
|
|
rtp_info.header.timestamp += expected_samples_per_channel;
|
|
rtp_info.header.sequenceNumber++;
|
|
receive_timestamp += expected_samples_per_channel;
|
|
}
|
|
|
|
number_channels = 0;
|
|
samples_per_channel = 0;
|
|
|
|
// Get audio without inserting packets, expecting PLC and PLC-to-CNG. Pull
|
|
// one frame without checking speech-type. This is the first frame pulled
|
|
// without inserting any packet, and might not be labeled as PLC.
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(kBlockSize32kHz,
|
|
output,
|
|
&samples_per_channel,
|
|
&number_channels,
|
|
&type));
|
|
ASSERT_EQ(1, number_channels);
|
|
ASSERT_EQ(expected_samples_per_channel, samples_per_channel);
|
|
|
|
// To be able to test the fading of background noise we need at lease to
|
|
// pull 611 frames.
|
|
const int kFadingThreshold = 611;
|
|
|
|
// Test several CNG-to-PLC packet for the expected behavior. The number 20
|
|
// is arbitrary, but sufficiently large to test enough number of frames.
|
|
const int kNumPlcToCngTestFrames = 20;
|
|
bool plc_to_cng = false;
|
|
for (int n = 0; n < kFadingThreshold + kNumPlcToCngTestFrames; ++n) {
|
|
number_channels = 0;
|
|
samples_per_channel = 0;
|
|
memset(output, 1, sizeof(output)); // Set to non-zero.
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(kBlockSize32kHz,
|
|
output,
|
|
&samples_per_channel,
|
|
&number_channels,
|
|
&type));
|
|
ASSERT_EQ(1, number_channels);
|
|
ASSERT_EQ(expected_samples_per_channel, samples_per_channel);
|
|
if (type == kOutputPLCtoCNG) {
|
|
plc_to_cng = true;
|
|
double sum_squared = 0;
|
|
for (int k = 0; k < number_channels * samples_per_channel; ++k)
|
|
sum_squared += output[k] * output[k];
|
|
TestCondition(sum_squared, n > kFadingThreshold);
|
|
} else {
|
|
EXPECT_EQ(kOutputPLC, type);
|
|
}
|
|
}
|
|
EXPECT_TRUE(plc_to_cng); // Just to be sure that PLC-to-CNG has occurred.
|
|
}
|
|
};
|
|
|
|
class NetEqBgnTestOn : public NetEqBgnTest {
|
|
protected:
|
|
NetEqBgnTestOn() : NetEqBgnTest() {
|
|
config_.background_noise_mode = NetEq::kBgnOn;
|
|
}
|
|
|
|
void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) {
|
|
EXPECT_NE(0, sum_squared_noise);
|
|
}
|
|
};
|
|
|
|
class NetEqBgnTestOff : public NetEqBgnTest {
|
|
protected:
|
|
NetEqBgnTestOff() : NetEqBgnTest() {
|
|
config_.background_noise_mode = NetEq::kBgnOff;
|
|
}
|
|
|
|
void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) {
|
|
EXPECT_EQ(0, sum_squared_noise);
|
|
}
|
|
};
|
|
|
|
class NetEqBgnTestFade : public NetEqBgnTest {
|
|
protected:
|
|
NetEqBgnTestFade() : NetEqBgnTest() {
|
|
config_.background_noise_mode = NetEq::kBgnFade;
|
|
}
|
|
|
|
void TestCondition(double sum_squared_noise, bool should_be_faded) {
|
|
if (should_be_faded)
|
|
EXPECT_EQ(0, sum_squared_noise);
|
|
}
|
|
};
|
|
|
|
TEST_F(NetEqBgnTestOn, RunTest) {
|
|
CheckBgn(8000);
|
|
CheckBgn(16000);
|
|
CheckBgn(32000);
|
|
}
|
|
|
|
TEST_F(NetEqBgnTestOff, RunTest) {
|
|
CheckBgn(8000);
|
|
CheckBgn(16000);
|
|
CheckBgn(32000);
|
|
}
|
|
|
|
TEST_F(NetEqBgnTestFade, RunTest) {
|
|
CheckBgn(8000);
|
|
CheckBgn(16000);
|
|
CheckBgn(32000);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, SyncPacketInsert) {
|
|
WebRtcRTPHeader rtp_info;
|
|
uint32_t receive_timestamp = 0;
|
|
// For the readability use the following payloads instead of the defaults of
|
|
// this test.
|
|
uint8_t kPcm16WbPayloadType = 1;
|
|
uint8_t kCngNbPayloadType = 2;
|
|
uint8_t kCngWbPayloadType = 3;
|
|
uint8_t kCngSwb32PayloadType = 4;
|
|
uint8_t kCngSwb48PayloadType = 5;
|
|
uint8_t kAvtPayloadType = 6;
|
|
uint8_t kRedPayloadType = 7;
|
|
uint8_t kIsacPayloadType = 9; // Payload type 8 is already registered.
|
|
|
|
// Register decoders.
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb,
|
|
kPcm16WbPayloadType));
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, kCngNbPayloadType));
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, kCngWbPayloadType));
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb32kHz,
|
|
kCngSwb32PayloadType));
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb48kHz,
|
|
kCngSwb48PayloadType));
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderAVT, kAvtPayloadType));
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderRED, kRedPayloadType));
|
|
ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, kIsacPayloadType));
|
|
|
|
PopulateRtpInfo(0, 0, &rtp_info);
|
|
rtp_info.header.payloadType = kPcm16WbPayloadType;
|
|
|
|
// The first packet injected cannot be sync-packet.
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
// Payload length of 10 ms PCM16 16 kHz.
|
|
const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t);
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
ASSERT_EQ(0, neteq_->InsertPacket(
|
|
rtp_info, payload, kPayloadBytes, receive_timestamp));
|
|
|
|
// Next packet. Last packet contained 10 ms audio.
|
|
rtp_info.header.sequenceNumber++;
|
|
rtp_info.header.timestamp += kBlockSize16kHz;
|
|
receive_timestamp += kBlockSize16kHz;
|
|
|
|
// Unacceptable payload types CNG, AVT (DTMF), RED.
|
|
rtp_info.header.payloadType = kCngNbPayloadType;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
rtp_info.header.payloadType = kCngWbPayloadType;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
rtp_info.header.payloadType = kCngSwb32PayloadType;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
rtp_info.header.payloadType = kCngSwb48PayloadType;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
rtp_info.header.payloadType = kAvtPayloadType;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
rtp_info.header.payloadType = kRedPayloadType;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
// Change of codec cannot be initiated with a sync packet.
|
|
rtp_info.header.payloadType = kIsacPayloadType;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
// Change of SSRC is not allowed with a sync packet.
|
|
rtp_info.header.payloadType = kPcm16WbPayloadType;
|
|
++rtp_info.header.ssrc;
|
|
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
|
|
--rtp_info.header.ssrc;
|
|
EXPECT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
}
|
|
|
|
// First insert several noise like packets, then sync-packets. Decoding all
|
|
// packets should not produce error, statistics should not show any packet loss
|
|
// and sync-packets should decode to zero.
|
|
// TODO(turajs) we will have a better test if we have a referece NetEq, and
|
|
// when Sync packets are inserted in "test" NetEq we insert all-zero payload
|
|
// in reference NetEq and compare the output of those two.
|
|
TEST_F(NetEqDecodingTest, SyncPacketDecode) {
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(0, 0, &rtp_info);
|
|
const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t);
|
|
uint8_t payload[kPayloadBytes];
|
|
int16_t decoded[kBlockSize16kHz];
|
|
int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1;
|
|
for (int n = 0; n < kPayloadBytes; ++n) {
|
|
payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence.
|
|
}
|
|
// Insert some packets which decode to noise. We are not interested in
|
|
// actual decoded values.
|
|
NetEqOutputType output_type;
|
|
int num_channels;
|
|
int samples_per_channel;
|
|
uint32_t receive_timestamp = 0;
|
|
for (int n = 0; n < 100; ++n) {
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes,
|
|
receive_timestamp));
|
|
ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded,
|
|
&samples_per_channel, &num_channels,
|
|
&output_type));
|
|
ASSERT_EQ(kBlockSize16kHz, samples_per_channel);
|
|
ASSERT_EQ(1, num_channels);
|
|
|
|
rtp_info.header.sequenceNumber++;
|
|
rtp_info.header.timestamp += kBlockSize16kHz;
|
|
receive_timestamp += kBlockSize16kHz;
|
|
}
|
|
const int kNumSyncPackets = 10;
|
|
|
|
// Make sure sufficient number of sync packets are inserted that we can
|
|
// conduct a test.
|
|
ASSERT_GT(kNumSyncPackets, algorithmic_frame_delay);
|
|
// Insert sync-packets, the decoded sequence should be all-zero.
|
|
for (int n = 0; n < kNumSyncPackets; ++n) {
|
|
ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded,
|
|
&samples_per_channel, &num_channels,
|
|
&output_type));
|
|
ASSERT_EQ(kBlockSize16kHz, samples_per_channel);
|
|
ASSERT_EQ(1, num_channels);
|
|
if (n > algorithmic_frame_delay) {
|
|
EXPECT_TRUE(IsAllZero(decoded, samples_per_channel * num_channels));
|
|
}
|
|
rtp_info.header.sequenceNumber++;
|
|
rtp_info.header.timestamp += kBlockSize16kHz;
|
|
receive_timestamp += kBlockSize16kHz;
|
|
}
|
|
|
|
// We insert regular packets, if sync packet are not correctly buffered then
|
|
// network statistics would show some packet loss.
|
|
for (int n = 0; n <= algorithmic_frame_delay + 10; ++n) {
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes,
|
|
receive_timestamp));
|
|
ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded,
|
|
&samples_per_channel, &num_channels,
|
|
&output_type));
|
|
if (n >= algorithmic_frame_delay + 1) {
|
|
// Expect that this frame contain samples from regular RTP.
|
|
EXPECT_TRUE(IsAllNonZero(decoded, samples_per_channel * num_channels));
|
|
}
|
|
rtp_info.header.sequenceNumber++;
|
|
rtp_info.header.timestamp += kBlockSize16kHz;
|
|
receive_timestamp += kBlockSize16kHz;
|
|
}
|
|
NetEqNetworkStatistics network_stats;
|
|
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
|
|
// Expecting a "clean" network.
|
|
EXPECT_EQ(0, network_stats.packet_loss_rate);
|
|
EXPECT_EQ(0, network_stats.expand_rate);
|
|
EXPECT_EQ(0, network_stats.accelerate_rate);
|
|
EXPECT_LE(network_stats.preemptive_rate, 150);
|
|
}
|
|
|
|
// Test if the size of the packet buffer reported correctly when containing
|
|
// sync packets. Also, test if network packets override sync packets. That is to
|
|
// prefer decoding a network packet to a sync packet, if both have same sequence
|
|
// number and timestamp.
|
|
TEST_F(NetEqDecodingTest, SyncPacketBufferSizeAndOverridenByNetworkPackets) {
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(0, 0, &rtp_info);
|
|
const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t);
|
|
uint8_t payload[kPayloadBytes];
|
|
int16_t decoded[kBlockSize16kHz];
|
|
for (int n = 0; n < kPayloadBytes; ++n) {
|
|
payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence.
|
|
}
|
|
// Insert some packets which decode to noise. We are not interested in
|
|
// actual decoded values.
|
|
NetEqOutputType output_type;
|
|
int num_channels;
|
|
int samples_per_channel;
|
|
uint32_t receive_timestamp = 0;
|
|
int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1;
|
|
for (int n = 0; n < algorithmic_frame_delay; ++n) {
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes,
|
|
receive_timestamp));
|
|
ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded,
|
|
&samples_per_channel, &num_channels,
|
|
&output_type));
|
|
ASSERT_EQ(kBlockSize16kHz, samples_per_channel);
|
|
ASSERT_EQ(1, num_channels);
|
|
rtp_info.header.sequenceNumber++;
|
|
rtp_info.header.timestamp += kBlockSize16kHz;
|
|
receive_timestamp += kBlockSize16kHz;
|
|
}
|
|
const int kNumSyncPackets = 10;
|
|
|
|
WebRtcRTPHeader first_sync_packet_rtp_info;
|
|
memcpy(&first_sync_packet_rtp_info, &rtp_info, sizeof(rtp_info));
|
|
|
|
// Insert sync-packets, but no decoding.
|
|
for (int n = 0; n < kNumSyncPackets; ++n) {
|
|
ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
|
|
rtp_info.header.sequenceNumber++;
|
|
rtp_info.header.timestamp += kBlockSize16kHz;
|
|
receive_timestamp += kBlockSize16kHz;
|
|
}
|
|
NetEqNetworkStatistics network_stats;
|
|
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
|
|
EXPECT_EQ(kNumSyncPackets * 10 + algorithmic_delay_ms_,
|
|
network_stats.current_buffer_size_ms);
|
|
|
|
// Rewind |rtp_info| to that of the first sync packet.
|
|
memcpy(&rtp_info, &first_sync_packet_rtp_info, sizeof(rtp_info));
|
|
|
|
// Insert.
|
|
for (int n = 0; n < kNumSyncPackets; ++n) {
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes,
|
|
receive_timestamp));
|
|
rtp_info.header.sequenceNumber++;
|
|
rtp_info.header.timestamp += kBlockSize16kHz;
|
|
receive_timestamp += kBlockSize16kHz;
|
|
}
|
|
|
|
// Decode.
|
|
for (int n = 0; n < kNumSyncPackets; ++n) {
|
|
ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded,
|
|
&samples_per_channel, &num_channels,
|
|
&output_type));
|
|
ASSERT_EQ(kBlockSize16kHz, samples_per_channel);
|
|
ASSERT_EQ(1, num_channels);
|
|
EXPECT_TRUE(IsAllNonZero(decoded, samples_per_channel * num_channels));
|
|
}
|
|
}
|
|
|
|
void NetEqDecodingTest::WrapTest(uint16_t start_seq_no,
|
|
uint32_t start_timestamp,
|
|
const std::set<uint16_t>& drop_seq_numbers,
|
|
bool expect_seq_no_wrap,
|
|
bool expect_timestamp_wrap) {
|
|
uint16_t seq_no = start_seq_no;
|
|
uint32_t timestamp = start_timestamp;
|
|
const int kBlocksPerFrame = 3; // Number of 10 ms blocks per frame.
|
|
const int kFrameSizeMs = kBlocksPerFrame * kTimeStepMs;
|
|
const int kSamples = kBlockSize16kHz * kBlocksPerFrame;
|
|
const int kPayloadBytes = kSamples * sizeof(int16_t);
|
|
double next_input_time_ms = 0.0;
|
|
int16_t decoded[kBlockSize16kHz];
|
|
int num_channels;
|
|
int samples_per_channel;
|
|
NetEqOutputType output_type;
|
|
uint32_t receive_timestamp = 0;
|
|
|
|
// Insert speech for 2 seconds.
|
|
const int kSpeechDurationMs = 2000;
|
|
int packets_inserted = 0;
|
|
uint16_t last_seq_no;
|
|
uint32_t last_timestamp;
|
|
bool timestamp_wrapped = false;
|
|
bool seq_no_wrapped = false;
|
|
for (double t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) {
|
|
// Each turn in this for loop is 10 ms.
|
|
while (next_input_time_ms <= t_ms) {
|
|
// Insert one 30 ms speech frame.
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
|
|
if (drop_seq_numbers.find(seq_no) == drop_seq_numbers.end()) {
|
|
// This sequence number was not in the set to drop. Insert it.
|
|
ASSERT_EQ(0,
|
|
neteq_->InsertPacket(rtp_info, payload, kPayloadBytes,
|
|
receive_timestamp));
|
|
++packets_inserted;
|
|
}
|
|
NetEqNetworkStatistics network_stats;
|
|
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
|
|
|
|
// Due to internal NetEq logic, preferred buffer-size is about 4 times the
|
|
// packet size for first few packets. Therefore we refrain from checking
|
|
// the criteria.
|
|
if (packets_inserted > 4) {
|
|
// Expect preferred and actual buffer size to be no more than 2 frames.
|
|
EXPECT_LE(network_stats.preferred_buffer_size_ms, kFrameSizeMs * 2);
|
|
EXPECT_LE(network_stats.current_buffer_size_ms, kFrameSizeMs * 2 +
|
|
algorithmic_delay_ms_);
|
|
}
|
|
last_seq_no = seq_no;
|
|
last_timestamp = timestamp;
|
|
|
|
++seq_no;
|
|
timestamp += kSamples;
|
|
receive_timestamp += kSamples;
|
|
next_input_time_ms += static_cast<double>(kFrameSizeMs);
|
|
|
|
seq_no_wrapped |= seq_no < last_seq_no;
|
|
timestamp_wrapped |= timestamp < last_timestamp;
|
|
}
|
|
// Pull out data once.
|
|
ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded,
|
|
&samples_per_channel, &num_channels,
|
|
&output_type));
|
|
ASSERT_EQ(kBlockSize16kHz, samples_per_channel);
|
|
ASSERT_EQ(1, num_channels);
|
|
|
|
// Expect delay (in samples) to be less than 2 packets.
|
|
EXPECT_LE(timestamp - PlayoutTimestamp(),
|
|
static_cast<uint32_t>(kSamples * 2));
|
|
}
|
|
// Make sure we have actually tested wrap-around.
|
|
ASSERT_EQ(expect_seq_no_wrap, seq_no_wrapped);
|
|
ASSERT_EQ(expect_timestamp_wrap, timestamp_wrapped);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, SequenceNumberWrap) {
|
|
// Start with a sequence number that will soon wrap.
|
|
std::set<uint16_t> drop_seq_numbers; // Don't drop any packets.
|
|
WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, SequenceNumberWrapAndDrop) {
|
|
// Start with a sequence number that will soon wrap.
|
|
std::set<uint16_t> drop_seq_numbers;
|
|
drop_seq_numbers.insert(0xFFFF);
|
|
drop_seq_numbers.insert(0x0);
|
|
WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TimestampWrap) {
|
|
// Start with a timestamp that will soon wrap.
|
|
std::set<uint16_t> drop_seq_numbers;
|
|
WrapTest(0, 0xFFFFFFFF - 3000, drop_seq_numbers, false, true);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TimestampAndSequenceNumberWrap) {
|
|
// Start with a timestamp and a sequence number that will wrap at the same
|
|
// time.
|
|
std::set<uint16_t> drop_seq_numbers;
|
|
WrapTest(0xFFFF - 10, 0xFFFFFFFF - 5000, drop_seq_numbers, true, true);
|
|
}
|
|
|
|
void NetEqDecodingTest::DuplicateCng() {
|
|
uint16_t seq_no = 0;
|
|
uint32_t timestamp = 0;
|
|
const int kFrameSizeMs = 10;
|
|
const int kSampleRateKhz = 16;
|
|
const int kSamples = kFrameSizeMs * kSampleRateKhz;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
|
|
const int algorithmic_delay_samples = std::max(
|
|
algorithmic_delay_ms_ * kSampleRateKhz, 5 * kSampleRateKhz / 8);
|
|
// Insert three speech packet. Three are needed to get the frame length
|
|
// correct.
|
|
int out_len;
|
|
int num_channels;
|
|
NetEqOutputType type;
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcRTPHeader rtp_info;
|
|
for (int i = 0; i < 3; ++i) {
|
|
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
++seq_no;
|
|
timestamp += kSamples;
|
|
|
|
// Pull audio once.
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(
|
|
kMaxBlockSize, out_data_, &out_len, &num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
}
|
|
// Verify speech output.
|
|
EXPECT_EQ(kOutputNormal, type);
|
|
|
|
// Insert same CNG packet twice.
|
|
const int kCngPeriodMs = 100;
|
|
const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz;
|
|
int payload_len;
|
|
PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len);
|
|
// This is the first time this CNG packet is inserted.
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0));
|
|
|
|
// Pull audio once and make sure CNG is played.
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(
|
|
kMaxBlockSize, out_data_, &out_len, &num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
EXPECT_EQ(kOutputCNG, type);
|
|
EXPECT_EQ(timestamp - algorithmic_delay_samples, PlayoutTimestamp());
|
|
|
|
// Insert the same CNG packet again. Note that at this point it is old, since
|
|
// we have already decoded the first copy of it.
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0));
|
|
|
|
// Pull audio until we have played |kCngPeriodMs| of CNG. Start at 10 ms since
|
|
// we have already pulled out CNG once.
|
|
for (int cng_time_ms = 10; cng_time_ms < kCngPeriodMs; cng_time_ms += 10) {
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(
|
|
kMaxBlockSize, out_data_, &out_len, &num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
EXPECT_EQ(kOutputCNG, type);
|
|
EXPECT_EQ(timestamp - algorithmic_delay_samples,
|
|
PlayoutTimestamp());
|
|
}
|
|
|
|
// Insert speech again.
|
|
++seq_no;
|
|
timestamp += kCngPeriodSamples;
|
|
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
|
|
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0));
|
|
|
|
// Pull audio once and verify that the output is speech again.
|
|
ASSERT_EQ(0,
|
|
neteq_->GetAudio(
|
|
kMaxBlockSize, out_data_, &out_len, &num_channels, &type));
|
|
ASSERT_EQ(kBlockSize16kHz, out_len);
|
|
EXPECT_EQ(kOutputNormal, type);
|
|
EXPECT_EQ(timestamp + kSamples - algorithmic_delay_samples,
|
|
PlayoutTimestamp());
|
|
}
|
|
|
|
uint32_t NetEqDecodingTest::PlayoutTimestamp() {
|
|
uint32_t playout_timestamp = 0;
|
|
EXPECT_TRUE(neteq_->GetPlayoutTimestamp(&playout_timestamp));
|
|
return playout_timestamp;
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, DiscardDuplicateCng) { DuplicateCng(); }
|
|
} // namespace webrtc
|