session-android/jni/webrtc/modules/audio_coding/neteq/test/NETEQTEST_RTPpacket.cc
Moxie Marlinspike d83a3d71bc Support for Signal calls.
Merge in RedPhone

// FREEBIE
2015-09-30 14:30:09 -07:00

876 lines
19 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "NETEQTEST_RTPpacket.h"
#include <assert.h>
#include <stdlib.h> // rand
#include <string.h>
#ifdef WIN32
#include <winsock2.h>
#else
#include <netinet/in.h> // for htons, htonl, etc
#endif
const int NETEQTEST_RTPpacket::_kRDHeaderLen = 8;
const int NETEQTEST_RTPpacket::_kBasicHeaderLen = 12;
NETEQTEST_RTPpacket::NETEQTEST_RTPpacket()
:
_datagram(NULL),
_payloadPtr(NULL),
_memSize(0),
_datagramLen(-1),
_payloadLen(0),
_rtpParsed(false),
_receiveTime(0),
_lost(false)
{
memset(&_rtpInfo, 0, sizeof(_rtpInfo));
_blockList.clear();
}
NETEQTEST_RTPpacket::~NETEQTEST_RTPpacket()
{
if(_datagram)
{
delete [] _datagram;
}
}
void NETEQTEST_RTPpacket::reset()
{
if(_datagram) {
delete [] _datagram;
}
_datagram = NULL;
_memSize = 0;
_datagramLen = -1;
_payloadLen = 0;
_payloadPtr = NULL;
_receiveTime = 0;
memset(&_rtpInfo, 0, sizeof(_rtpInfo));
_rtpParsed = false;
}
int NETEQTEST_RTPpacket::skipFileHeader(FILE *fp)
{
if (!fp) {
return -1;
}
const int kFirstLineLength = 40;
char firstline[kFirstLineLength];
if (fgets(firstline, kFirstLineLength, fp) == NULL) {
return -1;
}
if (strncmp(firstline, "#!rtpplay", 9) == 0) {
if (strncmp(firstline, "#!rtpplay1.0", 12) != 0) {
return -1;
}
}
else if (strncmp(firstline, "#!RTPencode", 11) == 0) {
if (strncmp(firstline, "#!RTPencode1.0", 14) != 0) {
return -1;
}
}
else
{
return -1;
}
const int kRtpDumpHeaderSize = 4 + 4 + 4 + 2 + 2;
if (fseek(fp, kRtpDumpHeaderSize, SEEK_CUR) != 0)
{
return -1;
}
return 0;
}
int NETEQTEST_RTPpacket::readFromFile(FILE *fp)
{
if(!fp)
{
return(-1);
}
uint16_t length, plen;
uint32_t offset;
int packetLen = 0;
bool readNextPacket = true;
while (readNextPacket) {
readNextPacket = false;
if (fread(&length,2,1,fp)==0)
{
reset();
return(-2);
}
length = ntohs(length);
if (fread(&plen,2,1,fp)==0)
{
reset();
return(-1);
}
packetLen = ntohs(plen);
if (fread(&offset,4,1,fp)==0)
{
reset();
return(-1);
}
// store in local variable until we have passed the reset below
uint32_t receiveTime = ntohl(offset);
// Use length here because a plen of 0 specifies rtcp
length = (uint16_t) (length - _kRDHeaderLen);
// check buffer size
if (_datagram && _memSize < length)
{
reset();
}
if (!_datagram)
{
_datagram = new uint8_t[length];
_memSize = length;
}
if (fread((unsigned short *) _datagram,1,length,fp) != length)
{
reset();
return(-1);
}
_datagramLen = length;
_receiveTime = receiveTime;
if (!_blockList.empty() && _blockList.count(payloadType()) > 0)
{
readNextPacket = true;
}
}
_rtpParsed = false;
return(packetLen);
}
int NETEQTEST_RTPpacket::readFixedFromFile(FILE *fp, size_t length)
{
if (!fp)
{
return -1;
}
// check buffer size
if (_datagram && _memSize < static_cast<int>(length))
{
reset();
}
if (!_datagram)
{
_datagram = new uint8_t[length];
_memSize = length;
}
if (fread(_datagram, 1, length, fp) != length)
{
reset();
return -1;
}
_datagramLen = length;
_receiveTime = 0;
if (!_blockList.empty() && _blockList.count(payloadType()) > 0)
{
// discard this payload
return readFromFile(fp);
}
_rtpParsed = false;
return length;
}
int NETEQTEST_RTPpacket::writeToFile(FILE *fp)
{
if (!fp)
{
return -1;
}
uint16_t length, plen;
uint32_t offset;
// length including RTPplay header
length = htons(_datagramLen + _kRDHeaderLen);
if (fwrite(&length, 2, 1, fp) != 1)
{
return -1;
}
// payload length
plen = htons(_datagramLen);
if (fwrite(&plen, 2, 1, fp) != 1)
{
return -1;
}
// offset (=receive time)
offset = htonl(_receiveTime);
if (fwrite(&offset, 4, 1, fp) != 1)
{
return -1;
}
// write packet data
if (fwrite(_datagram, 1, _datagramLen, fp) !=
static_cast<size_t>(_datagramLen))
{
return -1;
}
return _datagramLen + _kRDHeaderLen; // total number of bytes written
}
void NETEQTEST_RTPpacket::blockPT(uint8_t pt)
{
_blockList[pt] = true;
}
void NETEQTEST_RTPpacket::parseHeader()
{
if (_rtpParsed)
{
// nothing to do
return;
}
if (_datagramLen < _kBasicHeaderLen)
{
// corrupt packet?
return;
}
_payloadLen = parseRTPheader(&_payloadPtr);
_rtpParsed = true;
return;
}
void NETEQTEST_RTPpacket::parseHeader(webrtc::WebRtcRTPHeader* rtp_header) {
if (!_rtpParsed) {
parseHeader();
}
if (rtp_header) {
rtp_header->header.markerBit = _rtpInfo.header.markerBit;
rtp_header->header.payloadType = _rtpInfo.header.payloadType;
rtp_header->header.sequenceNumber = _rtpInfo.header.sequenceNumber;
rtp_header->header.timestamp = _rtpInfo.header.timestamp;
rtp_header->header.ssrc = _rtpInfo.header.ssrc;
}
}
const webrtc::WebRtcRTPHeader* NETEQTEST_RTPpacket::RTPinfo() const
{
if (_rtpParsed)
{
return &_rtpInfo;
}
else
{
return NULL;
}
}
uint8_t * NETEQTEST_RTPpacket::datagram() const
{
if (_datagramLen > 0)
{
return _datagram;
}
else
{
return NULL;
}
}
uint8_t * NETEQTEST_RTPpacket::payload() const
{
if (_payloadLen > 0)
{
return _payloadPtr;
}
else
{
return NULL;
}
}
int16_t NETEQTEST_RTPpacket::payloadLen()
{
parseHeader();
return _payloadLen;
}
int16_t NETEQTEST_RTPpacket::dataLen() const
{
return _datagramLen;
}
bool NETEQTEST_RTPpacket::isParsed() const
{
return _rtpParsed;
}
bool NETEQTEST_RTPpacket::isLost() const
{
return _lost;
}
uint8_t NETEQTEST_RTPpacket::payloadType() const
{
webrtc::WebRtcRTPHeader tempRTPinfo;
if(_datagram && _datagramLen >= _kBasicHeaderLen)
{
parseRTPheader(&tempRTPinfo);
}
else
{
return 0;
}
return tempRTPinfo.header.payloadType;
}
uint16_t NETEQTEST_RTPpacket::sequenceNumber() const
{
webrtc::WebRtcRTPHeader tempRTPinfo;
if(_datagram && _datagramLen >= _kBasicHeaderLen)
{
parseRTPheader(&tempRTPinfo);
}
else
{
return 0;
}
return tempRTPinfo.header.sequenceNumber;
}
uint32_t NETEQTEST_RTPpacket::timeStamp() const
{
webrtc::WebRtcRTPHeader tempRTPinfo;
if(_datagram && _datagramLen >= _kBasicHeaderLen)
{
parseRTPheader(&tempRTPinfo);
}
else
{
return 0;
}
return tempRTPinfo.header.timestamp;
}
uint32_t NETEQTEST_RTPpacket::SSRC() const
{
webrtc::WebRtcRTPHeader tempRTPinfo;
if(_datagram && _datagramLen >= _kBasicHeaderLen)
{
parseRTPheader(&tempRTPinfo);
}
else
{
return 0;
}
return tempRTPinfo.header.ssrc;
}
uint8_t NETEQTEST_RTPpacket::markerBit() const
{
webrtc::WebRtcRTPHeader tempRTPinfo;
if(_datagram && _datagramLen >= _kBasicHeaderLen)
{
parseRTPheader(&tempRTPinfo);
}
else
{
return 0;
}
return tempRTPinfo.header.markerBit;
}
int NETEQTEST_RTPpacket::setPayloadType(uint8_t pt)
{
if (_datagramLen < 12)
{
return -1;
}
if (!_rtpParsed)
{
_rtpInfo.header.payloadType = pt;
}
_datagram[1]=(unsigned char)(pt & 0xFF);
return 0;
}
int NETEQTEST_RTPpacket::setSequenceNumber(uint16_t sn)
{
if (_datagramLen < 12)
{
return -1;
}
if (!_rtpParsed)
{
_rtpInfo.header.sequenceNumber = sn;
}
_datagram[2]=(unsigned char)((sn>>8)&0xFF);
_datagram[3]=(unsigned char)((sn)&0xFF);
return 0;
}
int NETEQTEST_RTPpacket::setTimeStamp(uint32_t ts)
{
if (_datagramLen < 12)
{
return -1;
}
if (!_rtpParsed)
{
_rtpInfo.header.timestamp = ts;
}
_datagram[4]=(unsigned char)((ts>>24)&0xFF);
_datagram[5]=(unsigned char)((ts>>16)&0xFF);
_datagram[6]=(unsigned char)((ts>>8)&0xFF);
_datagram[7]=(unsigned char)(ts & 0xFF);
return 0;
}
int NETEQTEST_RTPpacket::setSSRC(uint32_t ssrc)
{
if (_datagramLen < 12)
{
return -1;
}
if (!_rtpParsed)
{
_rtpInfo.header.ssrc = ssrc;
}
_datagram[8]=(unsigned char)((ssrc>>24)&0xFF);
_datagram[9]=(unsigned char)((ssrc>>16)&0xFF);
_datagram[10]=(unsigned char)((ssrc>>8)&0xFF);
_datagram[11]=(unsigned char)(ssrc & 0xFF);
return 0;
}
int NETEQTEST_RTPpacket::setMarkerBit(uint8_t mb)
{
if (_datagramLen < 12)
{
return -1;
}
if (_rtpParsed)
{
_rtpInfo.header.markerBit = mb;
}
if (mb)
{
_datagram[0] |= 0x01;
}
else
{
_datagram[0] &= 0xFE;
}
return 0;
}
int NETEQTEST_RTPpacket::setRTPheader(const webrtc::WebRtcRTPHeader* RTPinfo)
{
if (_datagramLen < 12)
{
// this packet is not ok
return -1;
}
makeRTPheader(_datagram,
RTPinfo->header.payloadType,
RTPinfo->header.sequenceNumber,
RTPinfo->header.timestamp,
RTPinfo->header.ssrc,
RTPinfo->header.markerBit);
return 0;
}
int NETEQTEST_RTPpacket::splitStereo(NETEQTEST_RTPpacket* slaveRtp,
enum stereoModes mode)
{
// if mono, do nothing
if (mode == stereoModeMono)
{
return 0;
}
// check that the RTP header info is parsed
parseHeader();
// start by copying the main rtp packet
*slaveRtp = *this;
if(_payloadLen == 0)
{
// do no more
return 0;
}
if(_payloadLen%2 != 0)
{
// length must be a factor of 2
return -1;
}
switch(mode)
{
case stereoModeSample1:
{
// sample based codec with 1-byte samples
splitStereoSample(slaveRtp, 1 /* 1 byte/sample */);
break;
}
case stereoModeSample2:
{
// sample based codec with 2-byte samples
splitStereoSample(slaveRtp, 2 /* 2 bytes/sample */);
break;
}
case stereoModeFrame:
{
// frame based codec
splitStereoFrame(slaveRtp);
break;
}
case stereoModeDuplicate:
{
// frame based codec, send the whole packet to both master and slave
splitStereoDouble(slaveRtp);
break;
}
case stereoModeMono:
{
assert(false);
return -1;
}
}
return 0;
}
void NETEQTEST_RTPpacket::makeRTPheader(unsigned char* rtp_data, uint8_t payloadType, uint16_t seqNo, uint32_t timestamp, uint32_t ssrc, uint8_t markerBit) const
{
rtp_data[0]=(unsigned char)0x80;
if (markerBit)
{
rtp_data[0] |= 0x01;
}
else
{
rtp_data[0] &= 0xFE;
}
rtp_data[1]=(unsigned char)(payloadType & 0xFF);
rtp_data[2]=(unsigned char)((seqNo>>8)&0xFF);
rtp_data[3]=(unsigned char)((seqNo)&0xFF);
rtp_data[4]=(unsigned char)((timestamp>>24)&0xFF);
rtp_data[5]=(unsigned char)((timestamp>>16)&0xFF);
rtp_data[6]=(unsigned char)((timestamp>>8)&0xFF);
rtp_data[7]=(unsigned char)(timestamp & 0xFF);
rtp_data[8]=(unsigned char)((ssrc>>24)&0xFF);
rtp_data[9]=(unsigned char)((ssrc>>16)&0xFF);
rtp_data[10]=(unsigned char)((ssrc>>8)&0xFF);
rtp_data[11]=(unsigned char)(ssrc & 0xFF);
}
uint16_t
NETEQTEST_RTPpacket::parseRTPheader(webrtc::WebRtcRTPHeader* RTPinfo,
uint8_t **payloadPtr) const
{
int16_t *rtp_data = (int16_t *) _datagram;
int i_P, i_X, i_CC;
assert(_datagramLen >= 12);
parseBasicHeader(RTPinfo, &i_P, &i_X, &i_CC);
int i_startPosition = calcHeaderLength(i_X, i_CC);
int i_padlength = calcPadLength(i_P);
if (payloadPtr)
{
*payloadPtr = (uint8_t*) &rtp_data[i_startPosition >> 1];
}
return (uint16_t) (_datagramLen - i_startPosition - i_padlength);
}
void NETEQTEST_RTPpacket::parseBasicHeader(webrtc::WebRtcRTPHeader* RTPinfo,
int *i_P, int *i_X, int *i_CC) const
{
int16_t *rtp_data = (int16_t *) _datagram;
if (_datagramLen < 12)
{
assert(false);
return;
}
*i_P=(((uint16_t)(rtp_data[0] & 0x20))>>5); /* Extract the P bit */
*i_X=(((uint16_t)(rtp_data[0] & 0x10))>>4); /* Extract the X bit */
*i_CC=(uint16_t)(rtp_data[0] & 0xF); /* Get the CC number */
/* Get the marker bit */
RTPinfo->header.markerBit = (uint8_t) ((rtp_data[0] >> 15) & 0x01);
/* Get the coder type */
RTPinfo->header.payloadType = (uint8_t) ((rtp_data[0] >> 8) & 0x7F);
/* Get the packet number */
RTPinfo->header.sequenceNumber =
((( ((uint16_t)rtp_data[1]) >> 8) & 0xFF) |
( ((uint16_t)(rtp_data[1] & 0xFF)) << 8));
/* Get timestamp */
RTPinfo->header.timestamp = ((((uint16_t)rtp_data[2]) & 0xFF) << 24) |
((((uint16_t)rtp_data[2]) & 0xFF00) << 8) |
((((uint16_t)rtp_data[3]) >> 8) & 0xFF) |
((((uint16_t)rtp_data[3]) & 0xFF) << 8);
/* Get the SSRC */
RTPinfo->header.ssrc = ((((uint16_t)rtp_data[4]) & 0xFF) << 24) |
((((uint16_t)rtp_data[4]) & 0xFF00) << 8) |
((((uint16_t)rtp_data[5]) >> 8) & 0xFF) |
((((uint16_t)rtp_data[5]) & 0xFF) << 8);
}
int NETEQTEST_RTPpacket::calcHeaderLength(int i_X, int i_CC) const
{
int i_extlength = 0;
int16_t *rtp_data = (int16_t *) _datagram;
if (i_X == 1)
{
// Extension header exists.
// Find out how many int32_t it consists of.
assert(_datagramLen > 2 * (7 + 2 * i_CC));
if (_datagramLen > 2 * (7 + 2 * i_CC))
{
i_extlength = (((((uint16_t) rtp_data[7 + 2 * i_CC]) >> 8)
& 0xFF) | (((uint16_t) (rtp_data[7 + 2 * i_CC] & 0xFF))
<< 8)) + 1;
}
}
return 12 + 4 * i_extlength + 4 * i_CC;
}
int NETEQTEST_RTPpacket::calcPadLength(int i_P) const
{
int16_t *rtp_data = (int16_t *) _datagram;
if (i_P == 1)
{
/* Padding exists. Find out how many bytes the padding consists of. */
if (_datagramLen & 0x1)
{
/* odd number of bytes => last byte in higher byte */
return rtp_data[_datagramLen >> 1] & 0xFF;
}
else
{
/* even number of bytes => last byte in lower byte */
return ((uint16_t) rtp_data[(_datagramLen >> 1) - 1]) >> 8;
}
}
return 0;
}
void NETEQTEST_RTPpacket::splitStereoSample(NETEQTEST_RTPpacket* slaveRtp,
int stride)
{
if(!_payloadPtr || !slaveRtp || !slaveRtp->_payloadPtr
|| _payloadLen <= 0 || slaveRtp->_memSize < _memSize)
{
return;
}
uint8_t *readDataPtr = _payloadPtr;
uint8_t *writeDataPtr = _payloadPtr;
uint8_t *slaveData = slaveRtp->_payloadPtr;
while (readDataPtr - _payloadPtr < _payloadLen)
{
// master data
for (int ix = 0; ix < stride; ix++) {
*writeDataPtr = *readDataPtr;
writeDataPtr++;
readDataPtr++;
}
// slave data
for (int ix = 0; ix < stride; ix++) {
*slaveData = *readDataPtr;
slaveData++;
readDataPtr++;
}
}
_payloadLen /= 2;
slaveRtp->_payloadLen = _payloadLen;
}
void NETEQTEST_RTPpacket::splitStereoFrame(NETEQTEST_RTPpacket* slaveRtp)
{
if(!_payloadPtr || !slaveRtp || !slaveRtp->_payloadPtr
|| _payloadLen <= 0 || slaveRtp->_memSize < _memSize)
{
return;
}
memmove(slaveRtp->_payloadPtr, _payloadPtr + _payloadLen/2, _payloadLen/2);
_payloadLen /= 2;
slaveRtp->_payloadLen = _payloadLen;
}
void NETEQTEST_RTPpacket::splitStereoDouble(NETEQTEST_RTPpacket* slaveRtp)
{
if(!_payloadPtr || !slaveRtp || !slaveRtp->_payloadPtr
|| _payloadLen <= 0 || slaveRtp->_memSize < _memSize)
{
return;
}
memcpy(slaveRtp->_payloadPtr, _payloadPtr, _payloadLen);
slaveRtp->_payloadLen = _payloadLen;
}
// Get the RTP header for the RED payload indicated by argument index.
// The first RED payload is index = 0.
int NETEQTEST_RTPpacket::extractRED(int index, webrtc::WebRtcRTPHeader& red)
{
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |1| block PT | timestamp offset | block length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |1| ... |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0| block PT |
// +-+-+-+-+-+-+-+-+
//
parseHeader();
uint8_t* ptr = payload();
uint8_t* payloadEndPtr = ptr + payloadLen();
int num_encodings = 0;
int total_len = 0;
while ((ptr < payloadEndPtr) && (*ptr & 0x80))
{
int len = ((ptr[2] & 0x03) << 8) + ptr[3];
if (num_encodings == index)
{
// Header found.
red.header.payloadType = ptr[0] & 0x7F;
uint32_t offset = (ptr[1] << 6) + ((ptr[2] & 0xFC) >> 2);
red.header.sequenceNumber = sequenceNumber();
red.header.timestamp = timeStamp() - offset;
red.header.markerBit = markerBit();
red.header.ssrc = SSRC();
return len;
}
++num_encodings;
total_len += len;
ptr += 4;
}
if ((ptr < payloadEndPtr) && (num_encodings == index))
{
// Last header.
red.header.payloadType = ptr[0] & 0x7F;
red.header.sequenceNumber = sequenceNumber();
red.header.timestamp = timeStamp();
red.header.markerBit = markerBit();
red.header.ssrc = SSRC();
++ptr;
return payloadLen() - (ptr - payload()) - total_len;
}
return -1;
}
// Randomize the payload, not the RTP header.
void NETEQTEST_RTPpacket::scramblePayload(void)
{
parseHeader();
for (int i = 0; i < _payloadLen; ++i)
{
_payloadPtr[i] = static_cast<uint8_t>(rand());
}
}