tailscale/control/controlbase/noiseexplorer_test.go

476 lines
14 KiB
Go
Raw Permalink Normal View History

// This file contains the implementation of Noise IK from
// https://noiseexplorer.com/ . Unlike the rest of this repository,
// this file is licensed under the terms of the GNU GPL v3. See
// https://source.symbolic.software/noiseexplorer/noiseexplorer for
// more information.
//
// This file is used here to verify that Tailscale's implementation of
// Noise IK is interoperable with another implementation.
//lint:file-ignore SA4006 not our code.
/*
IK:
<- s
...
-> e, es, s, ss
<- e, ee, se
->
<-
*/
// Implementation Version: 1.0.2
/* ---------------------------------------------------------------- *
* PARAMETERS *
* ---------------------------------------------------------------- */
package controlbase
import (
"crypto/rand"
"crypto/subtle"
"encoding/binary"
"hash"
"io"
"math"
"golang.org/x/crypto/blake2s"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/curve25519"
"golang.org/x/crypto/hkdf"
)
/* ---------------------------------------------------------------- *
* TYPES *
* ---------------------------------------------------------------- */
type keypair struct {
public_key [32]byte
private_key [32]byte
}
type messagebuffer struct {
ne [32]byte
ns []byte
ciphertext []byte
}
type cipherstate struct {
k [32]byte
n uint32
}
type symmetricstate struct {
cs cipherstate
ck [32]byte
h [32]byte
}
type handshakestate struct {
ss symmetricstate
s keypair
e keypair
rs [32]byte
re [32]byte
psk [32]byte
}
type noisesession struct {
hs handshakestate
h [32]byte
cs1 cipherstate
cs2 cipherstate
mc uint64
i bool
}
/* ---------------------------------------------------------------- *
* CONSTANTS *
* ---------------------------------------------------------------- */
var emptyKey = [32]byte{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
}
var minNonce = uint32(0)
/* ---------------------------------------------------------------- *
* UTILITY FUNCTIONS *
* ---------------------------------------------------------------- */
func getPublicKey(kp *keypair) [32]byte {
return kp.public_key
}
func isEmptyKey(k [32]byte) bool {
return subtle.ConstantTimeCompare(k[:], emptyKey[:]) == 1
}
func validatePublicKey(k []byte) bool {
forbiddenCurveValues := [12][]byte{
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{224, 235, 122, 124, 59, 65, 184, 174, 22, 86, 227, 250, 241, 159, 196, 106, 218, 9, 141, 235, 156, 50, 177, 253, 134, 98, 5, 22, 95, 73, 184, 0},
{95, 156, 149, 188, 163, 80, 140, 36, 177, 208, 177, 85, 156, 131, 239, 91, 4, 68, 92, 196, 88, 28, 142, 134, 216, 34, 78, 221, 208, 159, 17, 87},
{236, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 127},
{237, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 127},
{238, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 127},
{205, 235, 122, 124, 59, 65, 184, 174, 22, 86, 227, 250, 241, 159, 196, 106, 218, 9, 141, 235, 156, 50, 177, 253, 134, 98, 5, 22, 95, 73, 184, 128},
{76, 156, 149, 188, 163, 80, 140, 36, 177, 208, 177, 85, 156, 131, 239, 91, 4, 68, 92, 196, 88, 28, 142, 134, 216, 34, 78, 221, 208, 159, 17, 215},
{217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{218, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{219, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 25},
}
for _, testValue := range forbiddenCurveValues {
if subtle.ConstantTimeCompare(k[:], testValue[:]) == 1 {
panic("Invalid public key")
}
}
return true
}
/* ---------------------------------------------------------------- *
* PRIMITIVES *
* ---------------------------------------------------------------- */
func incrementNonce(n uint32) uint32 {
return n + 1
}
func dh(private_key [32]byte, public_key [32]byte) [32]byte {
var ss [32]byte
curve25519.ScalarMult(&ss, &private_key, &public_key)
return ss
}
func generateKeypair() keypair {
var public_key [32]byte
var private_key [32]byte
_, _ = rand.Read(private_key[:])
curve25519.ScalarBaseMult(&public_key, &private_key)
if validatePublicKey(public_key[:]) {
return keypair{public_key, private_key}
}
return generateKeypair()
}
func generatePublicKey(private_key [32]byte) [32]byte {
var public_key [32]byte
curve25519.ScalarBaseMult(&public_key, &private_key)
return public_key
}
func encrypt(k [32]byte, n uint32, ad []byte, plaintext []byte) []byte {
var nonce [12]byte
var ciphertext []byte
enc, _ := chacha20poly1305.New(k[:])
binary.LittleEndian.PutUint32(nonce[4:], n)
ciphertext = enc.Seal(nil, nonce[:], plaintext, ad)
return ciphertext
}
func decrypt(k [32]byte, n uint32, ad []byte, ciphertext []byte) (bool, []byte, []byte) {
var nonce [12]byte
var plaintext []byte
enc, err := chacha20poly1305.New(k[:])
binary.LittleEndian.PutUint32(nonce[4:], n)
plaintext, err = enc.Open(nil, nonce[:], ciphertext, ad)
return (err == nil), ad, plaintext
}
func getHash(a []byte, b []byte) [32]byte {
return blake2s.Sum256(append(a, b...))
}
func hashProtocolName(protocolName []byte) [32]byte {
var h [32]byte
if len(protocolName) <= 32 {
copy(h[:], protocolName)
} else {
h = getHash(protocolName, []byte{})
}
return h
}
func blake2HkdfInterface() hash.Hash {
h, _ := blake2s.New256([]byte{})
return h
}
func getHkdf(ck [32]byte, ikm []byte) ([32]byte, [32]byte, [32]byte) {
var k1 [32]byte
var k2 [32]byte
var k3 [32]byte
output := hkdf.New(blake2HkdfInterface, ikm[:], ck[:], []byte{})
io.ReadFull(output, k1[:])
io.ReadFull(output, k2[:])
io.ReadFull(output, k3[:])
return k1, k2, k3
}
/* ---------------------------------------------------------------- *
* STATE MANAGEMENT *
* ---------------------------------------------------------------- */
/* CipherState */
func initializeKey(k [32]byte) cipherstate {
return cipherstate{k, minNonce}
}
func hasKey(cs *cipherstate) bool {
return !isEmptyKey(cs.k)
}
func setNonce(cs *cipherstate, newNonce uint32) *cipherstate {
cs.n = newNonce
return cs
}
func encryptWithAd(cs *cipherstate, ad []byte, plaintext []byte) (*cipherstate, []byte) {
e := encrypt(cs.k, cs.n, ad, plaintext)
cs = setNonce(cs, incrementNonce(cs.n))
return cs, e
}
func decryptWithAd(cs *cipherstate, ad []byte, ciphertext []byte) (*cipherstate, []byte, bool) {
valid, ad, plaintext := decrypt(cs.k, cs.n, ad, ciphertext)
cs = setNonce(cs, incrementNonce(cs.n))
return cs, plaintext, valid
}
func reKey(cs *cipherstate) *cipherstate {
e := encrypt(cs.k, math.MaxUint32, []byte{}, emptyKey[:])
copy(cs.k[:], e)
return cs
}
/* SymmetricState */
func initializeSymmetric(protocolName []byte) symmetricstate {
h := hashProtocolName(protocolName)
ck := h
cs := initializeKey(emptyKey)
return symmetricstate{cs, ck, h}
}
func mixKey(ss *symmetricstate, ikm [32]byte) *symmetricstate {
ck, tempK, _ := getHkdf(ss.ck, ikm[:])
ss.cs = initializeKey(tempK)
ss.ck = ck
return ss
}
func mixHash(ss *symmetricstate, data []byte) *symmetricstate {
ss.h = getHash(ss.h[:], data)
return ss
}
func mixKeyAndHash(ss *symmetricstate, ikm [32]byte) *symmetricstate {
var tempH [32]byte
var tempK [32]byte
ss.ck, tempH, tempK = getHkdf(ss.ck, ikm[:])
ss = mixHash(ss, tempH[:])
ss.cs = initializeKey(tempK)
return ss
}
func getHandshakeHash(ss *symmetricstate) [32]byte {
return ss.h
}
func encryptAndHash(ss *symmetricstate, plaintext []byte) (*symmetricstate, []byte) {
var ciphertext []byte
if hasKey(&ss.cs) {
_, ciphertext = encryptWithAd(&ss.cs, ss.h[:], plaintext)
} else {
ciphertext = plaintext
}
ss = mixHash(ss, ciphertext)
return ss, ciphertext
}
func decryptAndHash(ss *symmetricstate, ciphertext []byte) (*symmetricstate, []byte, bool) {
var plaintext []byte
var valid bool
if hasKey(&ss.cs) {
_, plaintext, valid = decryptWithAd(&ss.cs, ss.h[:], ciphertext)
} else {
plaintext, valid = ciphertext, true
}
ss = mixHash(ss, ciphertext)
return ss, plaintext, valid
}
func split(ss *symmetricstate) (cipherstate, cipherstate) {
tempK1, tempK2, _ := getHkdf(ss.ck, []byte{})
cs1 := initializeKey(tempK1)
cs2 := initializeKey(tempK2)
return cs1, cs2
}
/* HandshakeState */
func initializeInitiator(prologue []byte, s keypair, rs [32]byte, psk [32]byte) handshakestate {
var ss symmetricstate
var e keypair
var re [32]byte
name := []byte("Noise_IK_25519_ChaChaPoly_BLAKE2s")
ss = initializeSymmetric(name)
mixHash(&ss, prologue)
mixHash(&ss, rs[:])
return handshakestate{ss, s, e, rs, re, psk}
}
func initializeResponder(prologue []byte, s keypair, rs [32]byte, psk [32]byte) handshakestate {
var ss symmetricstate
var e keypair
var re [32]byte
name := []byte("Noise_IK_25519_ChaChaPoly_BLAKE2s")
ss = initializeSymmetric(name)
mixHash(&ss, prologue)
mixHash(&ss, s.public_key[:])
return handshakestate{ss, s, e, rs, re, psk}
}
func writeMessageA(hs *handshakestate, payload []byte) (*handshakestate, messagebuffer) {
ne, ns, ciphertext := emptyKey, []byte{}, []byte{}
hs.e = generateKeypair()
ne = hs.e.public_key
mixHash(&hs.ss, ne[:])
/* No PSK, so skipping mixKey */
mixKey(&hs.ss, dh(hs.e.private_key, hs.rs))
spk := make([]byte, len(hs.s.public_key))
copy(spk[:], hs.s.public_key[:])
_, ns = encryptAndHash(&hs.ss, spk)
mixKey(&hs.ss, dh(hs.s.private_key, hs.rs))
_, ciphertext = encryptAndHash(&hs.ss, payload)
messageBuffer := messagebuffer{ne, ns, ciphertext}
return hs, messageBuffer
}
func writeMessageB(hs *handshakestate, payload []byte) ([32]byte, messagebuffer, cipherstate, cipherstate) {
ne, ns, ciphertext := emptyKey, []byte{}, []byte{}
hs.e = generateKeypair()
ne = hs.e.public_key
mixHash(&hs.ss, ne[:])
/* No PSK, so skipping mixKey */
mixKey(&hs.ss, dh(hs.e.private_key, hs.re))
mixKey(&hs.ss, dh(hs.e.private_key, hs.rs))
_, ciphertext = encryptAndHash(&hs.ss, payload)
messageBuffer := messagebuffer{ne, ns, ciphertext}
cs1, cs2 := split(&hs.ss)
return hs.ss.h, messageBuffer, cs1, cs2
}
func writeMessageRegular(cs *cipherstate, payload []byte) (*cipherstate, messagebuffer) {
ne, ns, ciphertext := emptyKey, []byte{}, []byte{}
cs, ciphertext = encryptWithAd(cs, []byte{}, payload)
messageBuffer := messagebuffer{ne, ns, ciphertext}
return cs, messageBuffer
}
func readMessageA(hs *handshakestate, message *messagebuffer) (*handshakestate, []byte, bool) {
valid1 := true
if validatePublicKey(message.ne[:]) {
hs.re = message.ne
}
mixHash(&hs.ss, hs.re[:])
/* No PSK, so skipping mixKey */
mixKey(&hs.ss, dh(hs.s.private_key, hs.re))
_, ns, valid1 := decryptAndHash(&hs.ss, message.ns)
if valid1 && len(ns) == 32 && validatePublicKey(message.ns[:]) {
copy(hs.rs[:], ns)
}
mixKey(&hs.ss, dh(hs.s.private_key, hs.rs))
_, plaintext, valid2 := decryptAndHash(&hs.ss, message.ciphertext)
return hs, plaintext, (valid1 && valid2)
}
func readMessageB(hs *handshakestate, message *messagebuffer) ([32]byte, []byte, bool, cipherstate, cipherstate) {
valid1 := true
if validatePublicKey(message.ne[:]) {
hs.re = message.ne
}
mixHash(&hs.ss, hs.re[:])
/* No PSK, so skipping mixKey */
mixKey(&hs.ss, dh(hs.e.private_key, hs.re))
mixKey(&hs.ss, dh(hs.s.private_key, hs.re))
_, plaintext, valid2 := decryptAndHash(&hs.ss, message.ciphertext)
cs1, cs2 := split(&hs.ss)
return hs.ss.h, plaintext, (valid1 && valid2), cs1, cs2
}
func readMessageRegular(cs *cipherstate, message *messagebuffer) (*cipherstate, []byte, bool) {
/* No encrypted keys */
_, plaintext, valid2 := decryptWithAd(cs, []byte{}, message.ciphertext)
return cs, plaintext, valid2
}
/* ---------------------------------------------------------------- *
* PROCESSES *
* ---------------------------------------------------------------- */
func InitSession(initiator bool, prologue []byte, s keypair, rs [32]byte) noisesession {
var session noisesession
psk := emptyKey
if initiator {
session.hs = initializeInitiator(prologue, s, rs, psk)
} else {
session.hs = initializeResponder(prologue, s, rs, psk)
}
session.i = initiator
session.mc = 0
return session
}
func SendMessage(session *noisesession, message []byte) (*noisesession, messagebuffer) {
var messageBuffer messagebuffer
if session.mc == 0 {
_, messageBuffer = writeMessageA(&session.hs, message)
}
if session.mc == 1 {
session.h, messageBuffer, session.cs1, session.cs2 = writeMessageB(&session.hs, message)
session.hs = handshakestate{}
}
if session.mc > 1 {
if session.i {
_, messageBuffer = writeMessageRegular(&session.cs1, message)
} else {
_, messageBuffer = writeMessageRegular(&session.cs2, message)
}
}
session.mc = session.mc + 1
return session, messageBuffer
}
func RecvMessage(session *noisesession, message *messagebuffer) (*noisesession, []byte, bool) {
var plaintext []byte
var valid bool
if session.mc == 0 {
_, plaintext, valid = readMessageA(&session.hs, message)
}
if session.mc == 1 {
session.h, plaintext, valid, session.cs1, session.cs2 = readMessageB(&session.hs, message)
session.hs = handshakestate{}
}
if session.mc > 1 {
if session.i {
_, plaintext, valid = readMessageRegular(&session.cs2, message)
} else {
_, plaintext, valid = readMessageRegular(&session.cs1, message)
}
}
session.mc = session.mc + 1
return session, plaintext, valid
}
func main() {}