tailscale/util/linuxfw/nftables_for_svcs_test.go

153 lines
5.4 KiB
Go
Raw Permalink Normal View History

cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
//go:build linux
package linuxfw
import (
"net/netip"
"testing"
"github.com/google/nftables"
)
// This test creates a temporary network namespace for the nftables rules being
// set up, so it needs to run in a privileged mode. Locally it needs to be run
// by root, else it will be silently skipped. In CI it runs in a privileged
// container.
func Test_nftablesRunner_EnsurePortMapRuleForSvc(t *testing.T) {
conn := newSysConn(t)
runner := newFakeNftablesRunnerWithConn(t, conn, true)
ipv4, ipv6 := netip.MustParseAddr("100.99.99.99"), netip.MustParseAddr("fd7a:115c:a1e0::701:b62a")
pmTCP := PortMap{MatchPort: 4003, TargetPort: 80, Protocol: "TCP"}
pmTCP1 := PortMap{MatchPort: 4004, TargetPort: 443, Protocol: "TCP"}
// Create a rule for service 'foo' to forward TCP traffic to IPv4 endpoint
runner.EnsurePortMapRuleForSvc("foo", "tailscale0", ipv4, pmTCP)
svcChains(t, 1, conn)
chainRuleCount(t, "foo", 1, conn, nftables.TableFamilyIPv4)
checkPortMapRule(t, "foo", ipv4, pmTCP, runner, nftables.TableFamilyIPv4)
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
// Create another rule for service 'foo' to forward TCP traffic to the
// same IPv4 endpoint, but to a different port.
runner.EnsurePortMapRuleForSvc("foo", "tailscale0", ipv4, pmTCP1)
svcChains(t, 1, conn)
chainRuleCount(t, "foo", 2, conn, nftables.TableFamilyIPv4)
checkPortMapRule(t, "foo", ipv4, pmTCP1, runner, nftables.TableFamilyIPv4)
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
// Create a rule for service 'foo' to forward TCP traffic to an IPv6 endpoint
runner.EnsurePortMapRuleForSvc("foo", "tailscale0", ipv6, pmTCP)
svcChains(t, 2, conn)
chainRuleCount(t, "foo", 1, conn, nftables.TableFamilyIPv6)
checkPortMapRule(t, "foo", ipv6, pmTCP, runner, nftables.TableFamilyIPv6)
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
// Create a rule for service 'bar' to forward TCP traffic to IPv4 endpoint
runner.EnsurePortMapRuleForSvc("bar", "tailscale0", ipv4, pmTCP)
svcChains(t, 3, conn)
chainRuleCount(t, "bar", 1, conn, nftables.TableFamilyIPv4)
checkPortMapRule(t, "bar", ipv4, pmTCP, runner, nftables.TableFamilyIPv4)
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
// Create a rule for service 'bar' to forward TCP traffic to an IPv6 endpoint
runner.EnsurePortMapRuleForSvc("bar", "tailscale0", ipv6, pmTCP)
svcChains(t, 4, conn)
chainRuleCount(t, "bar", 1, conn, nftables.TableFamilyIPv6)
checkPortMapRule(t, "bar", ipv6, pmTCP, runner, nftables.TableFamilyIPv6)
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
// Delete service bar
runner.DeleteSvc("bar", "tailscale0", []netip.Addr{ipv4, ipv6}, []PortMap{pmTCP})
svcChains(t, 2, conn)
// Delete a rule from service foo
runner.DeletePortMapRuleForSvc("foo", "tailscale0", ipv4, pmTCP)
svcChains(t, 2, conn)
chainRuleCount(t, "foo", 1, conn, nftables.TableFamilyIPv4)
// Delete service foo
runner.DeleteSvc("foo", "tailscale0", []netip.Addr{ipv4, ipv6}, []PortMap{pmTCP, pmTCP1})
svcChains(t, 0, conn)
}
// svcChains verifies that the expected number of chains exist (for either IP
// family) and that each of them is configured as NAT prerouting chain.
func svcChains(t *testing.T, wantCount int, conn *nftables.Conn) {
t.Helper()
chains, err := conn.ListChains()
if err != nil {
t.Fatalf("error listing chains: %v", err)
}
if len(chains) != wantCount {
t.Fatalf("wants %d chains, got %d", wantCount, len(chains))
}
for _, ch := range chains {
if *ch.Policy != nftables.ChainPolicyAccept {
t.Fatalf("chain %s has unexpected policy %v", ch.Name, *ch.Policy)
}
if ch.Type != nftables.ChainTypeNAT {
t.Fatalf("chain %s has unexpected type %v", ch.Name, ch.Type)
}
if *ch.Hooknum != *nftables.ChainHookPrerouting {
t.Fatalf("chain %s is attached to unexpected hook %v", ch.Name, ch.Hooknum)
}
if *ch.Priority != *nftables.ChainPriorityNATDest {
t.Fatalf("chain %s has unexpected priority %v", ch.Name, ch.Priority)
}
}
}
// chainRuleCount verifies that the named chain in the given table contains the provided number of rules.
func chainRuleCount(t *testing.T, name string, numOfRules int, conn *nftables.Conn, fam nftables.TableFamily) {
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
t.Helper()
chains, err := conn.ListChainsOfTableFamily(fam)
if err != nil {
t.Fatalf("error listing chains: %v", err)
}
for _, ch := range chains {
if ch.Name == name {
checkChainRules(t, conn, ch, numOfRules)
return
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
}
}
t.Fatalf("chain %s does not exist", name)
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
}
// checkPortMapRule verifies that rule for the provided target IP and PortMap exists in a chain identified by service
// name and IP family.
func checkPortMapRule(t *testing.T, svc string, targetIP netip.Addr, pm PortMap, runner *nftablesRunner, fam nftables.TableFamily) {
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
t.Helper()
chains, err := runner.conn.ListChainsOfTableFamily(fam)
if err != nil {
t.Fatalf("error listing chains: %v", err)
}
var chain *nftables.Chain
for _, ch := range chains {
if ch.Name == svc {
chain = ch
break
}
}
if chain == nil {
t.Fatalf("chain for service %s does not exist", svc)
}
meta := svcPortMapRuleMeta(svc, targetIP, pm)
p, err := protoFromString(pm.Protocol)
if err != nil {
t.Fatalf("error converting protocol: %v", err)
}
wantsRule := portMapRule(chain.Table, chain, "tailscale0", targetIP, pm.MatchPort, pm.TargetPort, p, meta)
checkRule(t, wantsRule, runner.conn)
}
// checkRule checks that the provided rules exists.
func checkRule(t *testing.T, rule *nftables.Rule, conn *nftables.Conn) {
t.Helper()
gotRule, err := findRule(conn, rule)
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
if err != nil {
t.Fatalf("error looking up rule: %v", err)
}
if gotRule == nil {
t.Fatal("rule not found")
cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets (#13531) * cmd/containerboot,kube,util/linuxfw: configure kube egress proxies to route to 1+ tailnet targets This commit is first part of the work to allow running multiple replicas of the Kubernetes operator egress proxies per tailnet service + to allow exposing multiple tailnet services via each proxy replica. This expands the existing iptables/nftables-based proxy configuration mechanism. A proxy can now be configured to route to one or more tailnet targets via a (mounted) config file that, for each tailnet target, specifies: - the target's tailnet IP or FQDN - mappings of container ports to which cluster workloads will send traffic to tailnet target ports where the traffic should be forwarded. Example configfile contents: { "some-svc": {"tailnetTarget":{"fqdn":"foo.tailnetxyz.ts.net","ports"{"tcp:4006:80":{"protocol":"tcp","matchPort":4006,"targetPort":80},"tcp:4007:443":{"protocol":"tcp","matchPort":4007,"targetPort":443}}}} } A proxy that is configured with this config file will configure firewall rules to route cluster traffic to the tailnet targets. It will then watch the config file for updates as well as monitor relevant netmap updates and reconfigure firewall as needed. This adds a bunch of new iptables/nftables functionality to make it easier to dynamically update the firewall rules without needing to restart the proxy Pod as well as to make it easier to debug/understand the rules: - for iptables, each portmapping is a DNAT rule with a comment pointing at the 'service',i.e: -A PREROUTING ! -i tailscale0 -p tcp -m tcp --dport 4006 -m comment --comment "some-svc:tcp:4006 -> tcp:80" -j DNAT --to-destination 100.64.1.18:80 Additionally there is a SNAT rule for each tailnet target, to mask the source address. - for nftables, a separate prerouting chain is created for each tailnet target and all the portmapping rules are placed in that chain. This makes it easier to look up rules and delete services when no longer needed. (nftables allows hooking a custom chain to a prerouting hook, so no extra work is needed to ensure that the rules in the service chains are evaluated). The next steps will be to get the Kubernetes Operator to generate the configfile and ensure it is mounted to the relevant proxy nodes. Updates tailscale/tailscale#13406 Signed-off-by: Irbe Krumina <irbe@tailscale.com>
2024-09-29 15:30:53 +00:00
}
}