mirror of
https://github.com/tailscale/tailscale.git
synced 2024-12-02 06:25:37 +00:00
1101 lines
33 KiB
Go
1101 lines
33 KiB
Go
|
// Copyright 2011 The Go Authors. All rights reserved.
|
|||
|
// Use of this source code is governed by a BSD-style
|
|||
|
// license that can be found in the LICENSE file.
|
|||
|
|
|||
|
package x509
|
|||
|
|
|||
|
import (
|
|||
|
"bytes"
|
|||
|
"errors"
|
|||
|
"fmt"
|
|||
|
"net"
|
|||
|
"net/url"
|
|||
|
"os"
|
|||
|
"reflect"
|
|||
|
"runtime"
|
|||
|
"strings"
|
|||
|
"time"
|
|||
|
"unicode/utf8"
|
|||
|
)
|
|||
|
|
|||
|
// ignoreCN disables interpreting Common Name as a hostname. See issue 24151.
|
|||
|
var ignoreCN = strings.Contains(os.Getenv("GODEBUG"), "x509ignoreCN=1")
|
|||
|
|
|||
|
type InvalidReason int
|
|||
|
|
|||
|
const (
|
|||
|
// NotAuthorizedToSign results when a certificate is signed by another
|
|||
|
// which isn't marked as a CA certificate.
|
|||
|
NotAuthorizedToSign InvalidReason = iota
|
|||
|
// Expired results when a certificate has expired, based on the time
|
|||
|
// given in the VerifyOptions.
|
|||
|
Expired
|
|||
|
// CANotAuthorizedForThisName results when an intermediate or root
|
|||
|
// certificate has a name constraint which doesn't permit a DNS or
|
|||
|
// other name (including IP address) in the leaf certificate.
|
|||
|
CANotAuthorizedForThisName
|
|||
|
// TooManyIntermediates results when a path length constraint is
|
|||
|
// violated.
|
|||
|
TooManyIntermediates
|
|||
|
// IncompatibleUsage results when the certificate's key usage indicates
|
|||
|
// that it may only be used for a different purpose.
|
|||
|
IncompatibleUsage
|
|||
|
// NameMismatch results when the subject name of a parent certificate
|
|||
|
// does not match the issuer name in the child.
|
|||
|
NameMismatch
|
|||
|
// NameConstraintsWithoutSANs results when a leaf certificate doesn't
|
|||
|
// contain a Subject Alternative Name extension, but a CA certificate
|
|||
|
// contains name constraints, and the Common Name can be interpreted as
|
|||
|
// a hostname.
|
|||
|
//
|
|||
|
// You can avoid this error by setting the experimental GODEBUG environment
|
|||
|
// variable to "x509ignoreCN=1", disabling Common Name matching entirely.
|
|||
|
// This behavior might become the default in the future.
|
|||
|
NameConstraintsWithoutSANs
|
|||
|
// UnconstrainedName results when a CA certificate contains permitted
|
|||
|
// name constraints, but leaf certificate contains a name of an
|
|||
|
// unsupported or unconstrained type.
|
|||
|
UnconstrainedName
|
|||
|
// TooManyConstraints results when the number of comparison operations
|
|||
|
// needed to check a certificate exceeds the limit set by
|
|||
|
// VerifyOptions.MaxConstraintComparisions. This limit exists to
|
|||
|
// prevent pathological certificates can consuming excessive amounts of
|
|||
|
// CPU time to verify.
|
|||
|
TooManyConstraints
|
|||
|
// CANotAuthorizedForExtKeyUsage results when an intermediate or root
|
|||
|
// certificate does not permit a requested extended key usage.
|
|||
|
CANotAuthorizedForExtKeyUsage
|
|||
|
)
|
|||
|
|
|||
|
// CertificateInvalidError results when an odd error occurs. Users of this
|
|||
|
// library probably want to handle all these errors uniformly.
|
|||
|
type CertificateInvalidError struct {
|
|||
|
Cert *Certificate
|
|||
|
Reason InvalidReason
|
|||
|
Detail string
|
|||
|
}
|
|||
|
|
|||
|
func (e CertificateInvalidError) Error() string {
|
|||
|
switch e.Reason {
|
|||
|
case NotAuthorizedToSign:
|
|||
|
return "x509: certificate is not authorized to sign other certificates"
|
|||
|
case Expired:
|
|||
|
return "x509: certificate has expired or is not yet valid: " + e.Detail
|
|||
|
case CANotAuthorizedForThisName:
|
|||
|
return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
|
|||
|
case CANotAuthorizedForExtKeyUsage:
|
|||
|
return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
|
|||
|
case TooManyIntermediates:
|
|||
|
return "x509: too many intermediates for path length constraint"
|
|||
|
case IncompatibleUsage:
|
|||
|
return "x509: certificate specifies an incompatible key usage"
|
|||
|
case NameMismatch:
|
|||
|
return "x509: issuer name does not match subject from issuing certificate"
|
|||
|
case NameConstraintsWithoutSANs:
|
|||
|
return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
|
|||
|
case UnconstrainedName:
|
|||
|
return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
|
|||
|
}
|
|||
|
return "x509: unknown error"
|
|||
|
}
|
|||
|
|
|||
|
// HostnameError results when the set of authorized names doesn't match the
|
|||
|
// requested name.
|
|||
|
type HostnameError struct {
|
|||
|
Certificate *Certificate
|
|||
|
Host string
|
|||
|
}
|
|||
|
|
|||
|
func (h HostnameError) Error() string {
|
|||
|
c := h.Certificate
|
|||
|
|
|||
|
if !c.hasSANExtension() && !validHostname(c.Subject.CommonName) &&
|
|||
|
matchHostnames(toLowerCaseASCII(c.Subject.CommonName), toLowerCaseASCII(h.Host)) {
|
|||
|
// This would have validated, if it weren't for the validHostname check on Common Name.
|
|||
|
return "x509: Common Name is not a valid hostname: " + c.Subject.CommonName
|
|||
|
}
|
|||
|
|
|||
|
var valid string
|
|||
|
if ip := net.ParseIP(h.Host); ip != nil {
|
|||
|
// Trying to validate an IP
|
|||
|
if len(c.IPAddresses) == 0 {
|
|||
|
return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
|
|||
|
}
|
|||
|
for _, san := range c.IPAddresses {
|
|||
|
if len(valid) > 0 {
|
|||
|
valid += ", "
|
|||
|
}
|
|||
|
valid += san.String()
|
|||
|
}
|
|||
|
} else {
|
|||
|
if c.commonNameAsHostname() {
|
|||
|
valid = c.Subject.CommonName
|
|||
|
} else {
|
|||
|
valid = strings.Join(c.DNSNames, ", ")
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if len(valid) == 0 {
|
|||
|
return "x509: certificate is not valid for any names, but wanted to match " + h.Host
|
|||
|
}
|
|||
|
return "x509: certificate is valid for " + valid + ", not " + h.Host
|
|||
|
}
|
|||
|
|
|||
|
// UnknownAuthorityError results when the certificate issuer is unknown
|
|||
|
type UnknownAuthorityError struct {
|
|||
|
Cert *Certificate
|
|||
|
// hintErr contains an error that may be helpful in determining why an
|
|||
|
// authority wasn't found.
|
|||
|
hintErr error
|
|||
|
// hintCert contains a possible authority certificate that was rejected
|
|||
|
// because of the error in hintErr.
|
|||
|
hintCert *Certificate
|
|||
|
}
|
|||
|
|
|||
|
func (e UnknownAuthorityError) Error() string {
|
|||
|
s := "x509: certificate signed by unknown authority"
|
|||
|
if e.hintErr != nil {
|
|||
|
certName := e.hintCert.Subject.CommonName
|
|||
|
if len(certName) == 0 {
|
|||
|
if len(e.hintCert.Subject.Organization) > 0 {
|
|||
|
certName = e.hintCert.Subject.Organization[0]
|
|||
|
} else {
|
|||
|
certName = "serial:" + e.hintCert.SerialNumber.String()
|
|||
|
}
|
|||
|
}
|
|||
|
s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
|
|||
|
}
|
|||
|
return s
|
|||
|
}
|
|||
|
|
|||
|
// SystemRootsError results when we fail to load the system root certificates.
|
|||
|
type SystemRootsError struct {
|
|||
|
Err error
|
|||
|
}
|
|||
|
|
|||
|
func (se SystemRootsError) Error() string {
|
|||
|
msg := "x509: failed to load system roots and no roots provided"
|
|||
|
if se.Err != nil {
|
|||
|
return msg + "; " + se.Err.Error()
|
|||
|
}
|
|||
|
return msg
|
|||
|
}
|
|||
|
|
|||
|
// errNotParsed is returned when a certificate without ASN.1 contents is
|
|||
|
// verified. Platform-specific verification needs the ASN.1 contents.
|
|||
|
var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
|
|||
|
|
|||
|
// VerifyOptions contains parameters for Certificate.Verify. It's a structure
|
|||
|
// because other PKIX verification APIs have ended up needing many options.
|
|||
|
type VerifyOptions struct {
|
|||
|
DNSName string
|
|||
|
Intermediates *CertPool
|
|||
|
Roots *CertPool // if nil, the system roots are used
|
|||
|
CurrentTime time.Time // if zero, the current time is used
|
|||
|
// KeyUsage specifies which Extended Key Usage values are acceptable. A leaf
|
|||
|
// certificate is accepted if it contains any of the listed values. An empty
|
|||
|
// list means ExtKeyUsageServerAuth. To accept any key usage, include
|
|||
|
// ExtKeyUsageAny.
|
|||
|
//
|
|||
|
// Certificate chains are required to nest these extended key usage values.
|
|||
|
// (This matches the Windows CryptoAPI behavior, but not the spec.)
|
|||
|
KeyUsages []ExtKeyUsage
|
|||
|
// MaxConstraintComparisions is the maximum number of comparisons to
|
|||
|
// perform when checking a given certificate's name constraints. If
|
|||
|
// zero, a sensible default is used. This limit prevents pathological
|
|||
|
// certificates from consuming excessive amounts of CPU time when
|
|||
|
// validating.
|
|||
|
MaxConstraintComparisions int
|
|||
|
}
|
|||
|
|
|||
|
const (
|
|||
|
leafCertificate = iota
|
|||
|
intermediateCertificate
|
|||
|
rootCertificate
|
|||
|
)
|
|||
|
|
|||
|
// rfc2821Mailbox represents a “mailbox” (which is an email address to most
|
|||
|
// people) by breaking it into the “local” (i.e. before the '@') and “domain”
|
|||
|
// parts.
|
|||
|
type rfc2821Mailbox struct {
|
|||
|
local, domain string
|
|||
|
}
|
|||
|
|
|||
|
// parseRFC2821Mailbox parses an email address into local and domain parts,
|
|||
|
// based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280,
|
|||
|
// Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The
|
|||
|
// format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”.
|
|||
|
func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
|
|||
|
if len(in) == 0 {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
|
|||
|
localPartBytes := make([]byte, 0, len(in)/2)
|
|||
|
|
|||
|
if in[0] == '"' {
|
|||
|
// Quoted-string = DQUOTE *qcontent DQUOTE
|
|||
|
// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
|
|||
|
// qcontent = qtext / quoted-pair
|
|||
|
// qtext = non-whitespace-control /
|
|||
|
// %d33 / %d35-91 / %d93-126
|
|||
|
// quoted-pair = ("\" text) / obs-qp
|
|||
|
// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
|
|||
|
//
|
|||
|
// (Names beginning with “obs-” are the obsolete syntax from RFC 2822,
|
|||
|
// Section 4. Since it has been 16 years, we no longer accept that.)
|
|||
|
in = in[1:]
|
|||
|
QuotedString:
|
|||
|
for {
|
|||
|
if len(in) == 0 {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
c := in[0]
|
|||
|
in = in[1:]
|
|||
|
|
|||
|
switch {
|
|||
|
case c == '"':
|
|||
|
break QuotedString
|
|||
|
|
|||
|
case c == '\\':
|
|||
|
// quoted-pair
|
|||
|
if len(in) == 0 {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
if in[0] == 11 ||
|
|||
|
in[0] == 12 ||
|
|||
|
(1 <= in[0] && in[0] <= 9) ||
|
|||
|
(14 <= in[0] && in[0] <= 127) {
|
|||
|
localPartBytes = append(localPartBytes, in[0])
|
|||
|
in = in[1:]
|
|||
|
} else {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
|
|||
|
case c == 11 ||
|
|||
|
c == 12 ||
|
|||
|
// Space (char 32) is not allowed based on the
|
|||
|
// BNF, but RFC 3696 gives an example that
|
|||
|
// assumes that it is. Several “verified”
|
|||
|
// errata continue to argue about this point.
|
|||
|
// We choose to accept it.
|
|||
|
c == 32 ||
|
|||
|
c == 33 ||
|
|||
|
c == 127 ||
|
|||
|
(1 <= c && c <= 8) ||
|
|||
|
(14 <= c && c <= 31) ||
|
|||
|
(35 <= c && c <= 91) ||
|
|||
|
(93 <= c && c <= 126):
|
|||
|
// qtext
|
|||
|
localPartBytes = append(localPartBytes, c)
|
|||
|
|
|||
|
default:
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
}
|
|||
|
} else {
|
|||
|
// Atom ("." Atom)*
|
|||
|
NextChar:
|
|||
|
for len(in) > 0 {
|
|||
|
// atext from RFC 2822, Section 3.2.4
|
|||
|
c := in[0]
|
|||
|
|
|||
|
switch {
|
|||
|
case c == '\\':
|
|||
|
// Examples given in RFC 3696 suggest that
|
|||
|
// escaped characters can appear outside of a
|
|||
|
// quoted string. Several “verified” errata
|
|||
|
// continue to argue the point. We choose to
|
|||
|
// accept it.
|
|||
|
in = in[1:]
|
|||
|
if len(in) == 0 {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
fallthrough
|
|||
|
|
|||
|
case ('0' <= c && c <= '9') ||
|
|||
|
('a' <= c && c <= 'z') ||
|
|||
|
('A' <= c && c <= 'Z') ||
|
|||
|
c == '!' || c == '#' || c == '$' || c == '%' ||
|
|||
|
c == '&' || c == '\'' || c == '*' || c == '+' ||
|
|||
|
c == '-' || c == '/' || c == '=' || c == '?' ||
|
|||
|
c == '^' || c == '_' || c == '`' || c == '{' ||
|
|||
|
c == '|' || c == '}' || c == '~' || c == '.':
|
|||
|
localPartBytes = append(localPartBytes, in[0])
|
|||
|
in = in[1:]
|
|||
|
|
|||
|
default:
|
|||
|
break NextChar
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if len(localPartBytes) == 0 {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
|
|||
|
// From RFC 3696, Section 3:
|
|||
|
// “period (".") may also appear, but may not be used to start
|
|||
|
// or end the local part, nor may two or more consecutive
|
|||
|
// periods appear.”
|
|||
|
twoDots := []byte{'.', '.'}
|
|||
|
if localPartBytes[0] == '.' ||
|
|||
|
localPartBytes[len(localPartBytes)-1] == '.' ||
|
|||
|
bytes.Contains(localPartBytes, twoDots) {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if len(in) == 0 || in[0] != '@' {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
in = in[1:]
|
|||
|
|
|||
|
// The RFC species a format for domains, but that's known to be
|
|||
|
// violated in practice so we accept that anything after an '@' is the
|
|||
|
// domain part.
|
|||
|
if _, ok := domainToReverseLabels(in); !ok {
|
|||
|
return mailbox, false
|
|||
|
}
|
|||
|
|
|||
|
mailbox.local = string(localPartBytes)
|
|||
|
mailbox.domain = in
|
|||
|
return mailbox, true
|
|||
|
}
|
|||
|
|
|||
|
// domainToReverseLabels converts a textual domain name like foo.example.com to
|
|||
|
// the list of labels in reverse order, e.g. ["com", "example", "foo"].
|
|||
|
func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
|
|||
|
for len(domain) > 0 {
|
|||
|
if i := strings.LastIndexByte(domain, '.'); i == -1 {
|
|||
|
reverseLabels = append(reverseLabels, domain)
|
|||
|
domain = ""
|
|||
|
} else {
|
|||
|
reverseLabels = append(reverseLabels, domain[i+1:])
|
|||
|
domain = domain[:i]
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
|
|||
|
// An empty label at the end indicates an absolute value.
|
|||
|
return nil, false
|
|||
|
}
|
|||
|
|
|||
|
for _, label := range reverseLabels {
|
|||
|
if len(label) == 0 {
|
|||
|
// Empty labels are otherwise invalid.
|
|||
|
return nil, false
|
|||
|
}
|
|||
|
|
|||
|
for _, c := range label {
|
|||
|
if c < 33 || c > 126 {
|
|||
|
// Invalid character.
|
|||
|
return nil, false
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return reverseLabels, true
|
|||
|
}
|
|||
|
|
|||
|
func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
|
|||
|
// If the constraint contains an @, then it specifies an exact mailbox
|
|||
|
// name.
|
|||
|
if strings.Contains(constraint, "@") {
|
|||
|
constraintMailbox, ok := parseRFC2821Mailbox(constraint)
|
|||
|
if !ok {
|
|||
|
return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
|
|||
|
}
|
|||
|
return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
|
|||
|
}
|
|||
|
|
|||
|
// Otherwise the constraint is like a DNS constraint of the domain part
|
|||
|
// of the mailbox.
|
|||
|
return matchDomainConstraint(mailbox.domain, constraint)
|
|||
|
}
|
|||
|
|
|||
|
func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
|
|||
|
// From RFC 5280, Section 4.2.1.10:
|
|||
|
// “a uniformResourceIdentifier that does not include an authority
|
|||
|
// component with a host name specified as a fully qualified domain
|
|||
|
// name (e.g., if the URI either does not include an authority
|
|||
|
// component or includes an authority component in which the host name
|
|||
|
// is specified as an IP address), then the application MUST reject the
|
|||
|
// certificate.”
|
|||
|
|
|||
|
host := uri.Host
|
|||
|
if len(host) == 0 {
|
|||
|
return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
|
|||
|
}
|
|||
|
|
|||
|
if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
|
|||
|
var err error
|
|||
|
host, _, err = net.SplitHostPort(uri.Host)
|
|||
|
if err != nil {
|
|||
|
return false, err
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
|
|||
|
net.ParseIP(host) != nil {
|
|||
|
return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
|
|||
|
}
|
|||
|
|
|||
|
return matchDomainConstraint(host, constraint)
|
|||
|
}
|
|||
|
|
|||
|
func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
|
|||
|
if len(ip) != len(constraint.IP) {
|
|||
|
return false, nil
|
|||
|
}
|
|||
|
|
|||
|
for i := range ip {
|
|||
|
if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
|
|||
|
return false, nil
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true, nil
|
|||
|
}
|
|||
|
|
|||
|
func matchDomainConstraint(domain, constraint string) (bool, error) {
|
|||
|
// The meaning of zero length constraints is not specified, but this
|
|||
|
// code follows NSS and accepts them as matching everything.
|
|||
|
if len(constraint) == 0 {
|
|||
|
return true, nil
|
|||
|
}
|
|||
|
|
|||
|
domainLabels, ok := domainToReverseLabels(domain)
|
|||
|
if !ok {
|
|||
|
return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
|
|||
|
}
|
|||
|
|
|||
|
// RFC 5280 says that a leading period in a domain name means that at
|
|||
|
// least one label must be prepended, but only for URI and email
|
|||
|
// constraints, not DNS constraints. The code also supports that
|
|||
|
// behaviour for DNS constraints.
|
|||
|
|
|||
|
mustHaveSubdomains := false
|
|||
|
if constraint[0] == '.' {
|
|||
|
mustHaveSubdomains = true
|
|||
|
constraint = constraint[1:]
|
|||
|
}
|
|||
|
|
|||
|
constraintLabels, ok := domainToReverseLabels(constraint)
|
|||
|
if !ok {
|
|||
|
return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
|
|||
|
}
|
|||
|
|
|||
|
if len(domainLabels) < len(constraintLabels) ||
|
|||
|
(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
|
|||
|
return false, nil
|
|||
|
}
|
|||
|
|
|||
|
for i, constraintLabel := range constraintLabels {
|
|||
|
if !strings.EqualFold(constraintLabel, domainLabels[i]) {
|
|||
|
return false, nil
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true, nil
|
|||
|
}
|
|||
|
|
|||
|
// checkNameConstraints checks that c permits a child certificate to claim the
|
|||
|
// given name, of type nameType. The argument parsedName contains the parsed
|
|||
|
// form of name, suitable for passing to the match function. The total number
|
|||
|
// of comparisons is tracked in the given count and should not exceed the given
|
|||
|
// limit.
|
|||
|
func (c *Certificate) checkNameConstraints(count *int,
|
|||
|
maxConstraintComparisons int,
|
|||
|
nameType string,
|
|||
|
name string,
|
|||
|
parsedName interface{},
|
|||
|
match func(parsedName, constraint interface{}) (match bool, err error),
|
|||
|
permitted, excluded interface{}) error {
|
|||
|
|
|||
|
excludedValue := reflect.ValueOf(excluded)
|
|||
|
|
|||
|
*count += excludedValue.Len()
|
|||
|
if *count > maxConstraintComparisons {
|
|||
|
return CertificateInvalidError{c, TooManyConstraints, ""}
|
|||
|
}
|
|||
|
|
|||
|
for i := 0; i < excludedValue.Len(); i++ {
|
|||
|
constraint := excludedValue.Index(i).Interface()
|
|||
|
match, err := match(parsedName, constraint)
|
|||
|
if err != nil {
|
|||
|
return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
|
|||
|
}
|
|||
|
|
|||
|
if match {
|
|||
|
return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
permittedValue := reflect.ValueOf(permitted)
|
|||
|
|
|||
|
*count += permittedValue.Len()
|
|||
|
if *count > maxConstraintComparisons {
|
|||
|
return CertificateInvalidError{c, TooManyConstraints, ""}
|
|||
|
}
|
|||
|
|
|||
|
ok := true
|
|||
|
for i := 0; i < permittedValue.Len(); i++ {
|
|||
|
constraint := permittedValue.Index(i).Interface()
|
|||
|
|
|||
|
var err error
|
|||
|
if ok, err = match(parsedName, constraint); err != nil {
|
|||
|
return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
|
|||
|
}
|
|||
|
|
|||
|
if ok {
|
|||
|
break
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if !ok {
|
|||
|
return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
|
|||
|
}
|
|||
|
|
|||
|
return nil
|
|||
|
}
|
|||
|
|
|||
|
// isValid performs validity checks on c given that it is a candidate to append
|
|||
|
// to the chain in currentChain.
|
|||
|
func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
|
|||
|
if len(c.UnhandledCriticalExtensions) > 0 {
|
|||
|
return UnhandledCriticalExtension{}
|
|||
|
}
|
|||
|
|
|||
|
if len(currentChain) > 0 {
|
|||
|
child := currentChain[len(currentChain)-1]
|
|||
|
if !bytes.Equal(child.RawIssuer, c.RawSubject) {
|
|||
|
return CertificateInvalidError{c, NameMismatch, ""}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
now := opts.CurrentTime
|
|||
|
if now.IsZero() {
|
|||
|
now = time.Now()
|
|||
|
}
|
|||
|
if now.Before(c.NotBefore) {
|
|||
|
return CertificateInvalidError{
|
|||
|
Cert: c,
|
|||
|
Reason: Expired,
|
|||
|
Detail: fmt.Sprintf("current time %s is before %s", now.Format(time.RFC3339), c.NotBefore.Format(time.RFC3339)),
|
|||
|
}
|
|||
|
} else if now.After(c.NotAfter) {
|
|||
|
return CertificateInvalidError{
|
|||
|
Cert: c,
|
|||
|
Reason: Expired,
|
|||
|
Detail: fmt.Sprintf("current time %s is after %s", now.Format(time.RFC3339), c.NotAfter.Format(time.RFC3339)),
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
maxConstraintComparisons := opts.MaxConstraintComparisions
|
|||
|
if maxConstraintComparisons == 0 {
|
|||
|
maxConstraintComparisons = 250000
|
|||
|
}
|
|||
|
comparisonCount := 0
|
|||
|
|
|||
|
var leaf *Certificate
|
|||
|
if certType == intermediateCertificate || certType == rootCertificate {
|
|||
|
if len(currentChain) == 0 {
|
|||
|
return errors.New("x509: internal error: empty chain when appending CA cert")
|
|||
|
}
|
|||
|
leaf = currentChain[0]
|
|||
|
}
|
|||
|
|
|||
|
checkNameConstraints := (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints()
|
|||
|
if checkNameConstraints && leaf.commonNameAsHostname() {
|
|||
|
// This is the deprecated, legacy case of depending on the commonName as
|
|||
|
// a hostname. We don't enforce name constraints against the CN, but
|
|||
|
// VerifyHostname will look for hostnames in there if there are no SANs.
|
|||
|
// In order to ensure VerifyHostname will not accept an unchecked name,
|
|||
|
// return an error here.
|
|||
|
return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""}
|
|||
|
} else if checkNameConstraints && leaf.hasSANExtension() {
|
|||
|
err := forEachSAN(leaf.getSANExtension(), func(tag int, data []byte) error {
|
|||
|
switch tag {
|
|||
|
case nameTypeEmail:
|
|||
|
name := string(data)
|
|||
|
mailbox, ok := parseRFC2821Mailbox(name)
|
|||
|
if !ok {
|
|||
|
return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
|
|||
|
}
|
|||
|
|
|||
|
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
|
|||
|
func(parsedName, constraint interface{}) (bool, error) {
|
|||
|
return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
|
|||
|
}, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
|
|||
|
return err
|
|||
|
}
|
|||
|
|
|||
|
case nameTypeDNS:
|
|||
|
name := string(data)
|
|||
|
if _, ok := domainToReverseLabels(name); !ok {
|
|||
|
return fmt.Errorf("x509: cannot parse dnsName %q", name)
|
|||
|
}
|
|||
|
|
|||
|
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
|
|||
|
func(parsedName, constraint interface{}) (bool, error) {
|
|||
|
return matchDomainConstraint(parsedName.(string), constraint.(string))
|
|||
|
}, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
|
|||
|
return err
|
|||
|
}
|
|||
|
|
|||
|
case nameTypeURI:
|
|||
|
name := string(data)
|
|||
|
uri, err := url.Parse(name)
|
|||
|
if err != nil {
|
|||
|
return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
|
|||
|
}
|
|||
|
|
|||
|
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
|
|||
|
func(parsedName, constraint interface{}) (bool, error) {
|
|||
|
return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
|
|||
|
}, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
|
|||
|
return err
|
|||
|
}
|
|||
|
|
|||
|
case nameTypeIP:
|
|||
|
ip := net.IP(data)
|
|||
|
if l := len(ip); l != net.IPv4len && l != net.IPv6len {
|
|||
|
return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
|
|||
|
}
|
|||
|
|
|||
|
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
|
|||
|
func(parsedName, constraint interface{}) (bool, error) {
|
|||
|
return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
|
|||
|
}, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
|
|||
|
return err
|
|||
|
}
|
|||
|
|
|||
|
default:
|
|||
|
// Unknown SAN types are ignored.
|
|||
|
}
|
|||
|
|
|||
|
return nil
|
|||
|
})
|
|||
|
|
|||
|
if err != nil {
|
|||
|
return err
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// KeyUsage status flags are ignored. From Engineering Security, Peter
|
|||
|
// Gutmann: A European government CA marked its signing certificates as
|
|||
|
// being valid for encryption only, but no-one noticed. Another
|
|||
|
// European CA marked its signature keys as not being valid for
|
|||
|
// signatures. A different CA marked its own trusted root certificate
|
|||
|
// as being invalid for certificate signing. Another national CA
|
|||
|
// distributed a certificate to be used to encrypt data for the
|
|||
|
// country’s tax authority that was marked as only being usable for
|
|||
|
// digital signatures but not for encryption. Yet another CA reversed
|
|||
|
// the order of the bit flags in the keyUsage due to confusion over
|
|||
|
// encoding endianness, essentially setting a random keyUsage in
|
|||
|
// certificates that it issued. Another CA created a self-invalidating
|
|||
|
// certificate by adding a certificate policy statement stipulating
|
|||
|
// that the certificate had to be used strictly as specified in the
|
|||
|
// keyUsage, and a keyUsage containing a flag indicating that the RSA
|
|||
|
// encryption key could only be used for Diffie-Hellman key agreement.
|
|||
|
|
|||
|
if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
|
|||
|
return CertificateInvalidError{c, NotAuthorizedToSign, ""}
|
|||
|
}
|
|||
|
|
|||
|
if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
|
|||
|
numIntermediates := len(currentChain) - 1
|
|||
|
if numIntermediates > c.MaxPathLen {
|
|||
|
return CertificateInvalidError{c, TooManyIntermediates, ""}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return nil
|
|||
|
}
|
|||
|
|
|||
|
// Verify attempts to verify c by building one or more chains from c to a
|
|||
|
// certificate in opts.Roots, using certificates in opts.Intermediates if
|
|||
|
// needed. If successful, it returns one or more chains where the first
|
|||
|
// element of the chain is c and the last element is from opts.Roots.
|
|||
|
//
|
|||
|
// If opts.Roots is nil and system roots are unavailable the returned error
|
|||
|
// will be of type SystemRootsError.
|
|||
|
//
|
|||
|
// Name constraints in the intermediates will be applied to all names claimed
|
|||
|
// in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
|
|||
|
// example.com if an intermediate doesn't permit it, even if example.com is not
|
|||
|
// the name being validated. Note that DirectoryName constraints are not
|
|||
|
// supported.
|
|||
|
//
|
|||
|
// Extended Key Usage values are enforced down a chain, so an intermediate or
|
|||
|
// root that enumerates EKUs prevents a leaf from asserting an EKU not in that
|
|||
|
// list.
|
|||
|
//
|
|||
|
// WARNING: this function doesn't do any revocation checking.
|
|||
|
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
|
|||
|
// Platform-specific verification needs the ASN.1 contents so
|
|||
|
// this makes the behavior consistent across platforms.
|
|||
|
if len(c.Raw) == 0 {
|
|||
|
return nil, errNotParsed
|
|||
|
}
|
|||
|
if opts.Intermediates != nil {
|
|||
|
for _, intermediate := range opts.Intermediates.certs {
|
|||
|
if len(intermediate.Raw) == 0 {
|
|||
|
return nil, errNotParsed
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Use Windows's own verification and chain building.
|
|||
|
if opts.Roots == nil && runtime.GOOS == "windows" {
|
|||
|
return c.systemVerify(&opts)
|
|||
|
}
|
|||
|
|
|||
|
if opts.Roots == nil {
|
|||
|
opts.Roots = systemRootsPool()
|
|||
|
if opts.Roots == nil {
|
|||
|
return nil, SystemRootsError{systemRootsErr}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
err = c.isValid(leafCertificate, nil, &opts)
|
|||
|
if err != nil {
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
if len(opts.DNSName) > 0 {
|
|||
|
err = c.VerifyHostname(opts.DNSName)
|
|||
|
if err != nil {
|
|||
|
return
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
var candidateChains [][]*Certificate
|
|||
|
if opts.Roots.contains(c) {
|
|||
|
candidateChains = append(candidateChains, []*Certificate{c})
|
|||
|
} else {
|
|||
|
if candidateChains, err = c.buildChains(nil, []*Certificate{c}, nil, &opts); err != nil {
|
|||
|
return nil, err
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
keyUsages := opts.KeyUsages
|
|||
|
if len(keyUsages) == 0 {
|
|||
|
keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
|
|||
|
}
|
|||
|
|
|||
|
// If any key usage is acceptable then we're done.
|
|||
|
for _, usage := range keyUsages {
|
|||
|
if usage == ExtKeyUsageAny {
|
|||
|
return candidateChains, nil
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for _, candidate := range candidateChains {
|
|||
|
if checkChainForKeyUsage(candidate, keyUsages) {
|
|||
|
chains = append(chains, candidate)
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if len(chains) == 0 {
|
|||
|
return nil, CertificateInvalidError{c, IncompatibleUsage, ""}
|
|||
|
}
|
|||
|
|
|||
|
return chains, nil
|
|||
|
}
|
|||
|
|
|||
|
func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
|
|||
|
n := make([]*Certificate, len(chain)+1)
|
|||
|
copy(n, chain)
|
|||
|
n[len(chain)] = cert
|
|||
|
return n
|
|||
|
}
|
|||
|
|
|||
|
// maxChainSignatureChecks is the maximum number of CheckSignatureFrom calls
|
|||
|
// that an invocation of buildChains will (tranistively) make. Most chains are
|
|||
|
// less than 15 certificates long, so this leaves space for multiple chains and
|
|||
|
// for failed checks due to different intermediates having the same Subject.
|
|||
|
const maxChainSignatureChecks = 100
|
|||
|
|
|||
|
func (c *Certificate) buildChains(cache map[*Certificate][][]*Certificate, currentChain []*Certificate, sigChecks *int, opts *VerifyOptions) (chains [][]*Certificate, err error) {
|
|||
|
var (
|
|||
|
hintErr error
|
|||
|
hintCert *Certificate
|
|||
|
)
|
|||
|
|
|||
|
considerCandidate := func(certType int, candidate *Certificate) {
|
|||
|
for _, cert := range currentChain {
|
|||
|
if cert.Equal(candidate) {
|
|||
|
return
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if sigChecks == nil {
|
|||
|
sigChecks = new(int)
|
|||
|
}
|
|||
|
*sigChecks++
|
|||
|
if *sigChecks > maxChainSignatureChecks {
|
|||
|
err = errors.New("x509: signature check attempts limit reached while verifying certificate chain")
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
if err := c.CheckSignatureFrom(candidate); err != nil {
|
|||
|
if hintErr == nil {
|
|||
|
hintErr = err
|
|||
|
hintCert = candidate
|
|||
|
}
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
err = candidate.isValid(certType, currentChain, opts)
|
|||
|
if err != nil {
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
switch certType {
|
|||
|
case rootCertificate:
|
|||
|
chains = append(chains, appendToFreshChain(currentChain, candidate))
|
|||
|
case intermediateCertificate:
|
|||
|
if cache == nil {
|
|||
|
cache = make(map[*Certificate][][]*Certificate)
|
|||
|
}
|
|||
|
childChains, ok := cache[candidate]
|
|||
|
if !ok {
|
|||
|
childChains, err = candidate.buildChains(cache, appendToFreshChain(currentChain, candidate), sigChecks, opts)
|
|||
|
cache[candidate] = childChains
|
|||
|
}
|
|||
|
chains = append(chains, childChains...)
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for _, rootNum := range opts.Roots.findPotentialParents(c) {
|
|||
|
considerCandidate(rootCertificate, opts.Roots.certs[rootNum])
|
|||
|
}
|
|||
|
for _, intermediateNum := range opts.Intermediates.findPotentialParents(c) {
|
|||
|
considerCandidate(intermediateCertificate, opts.Intermediates.certs[intermediateNum])
|
|||
|
}
|
|||
|
|
|||
|
if len(chains) > 0 {
|
|||
|
err = nil
|
|||
|
}
|
|||
|
if len(chains) == 0 && err == nil {
|
|||
|
err = UnknownAuthorityError{c, hintErr, hintCert}
|
|||
|
}
|
|||
|
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
// validHostname reports whether host is a valid hostname that can be matched or
|
|||
|
// matched against according to RFC 6125 2.2, with some leniency to accommodate
|
|||
|
// legacy values.
|
|||
|
func validHostname(host string) bool {
|
|||
|
host = strings.TrimSuffix(host, ".")
|
|||
|
|
|||
|
if len(host) == 0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
for i, part := range strings.Split(host, ".") {
|
|||
|
if part == "" {
|
|||
|
// Empty label.
|
|||
|
return false
|
|||
|
}
|
|||
|
if i == 0 && part == "*" {
|
|||
|
// Only allow full left-most wildcards, as those are the only ones
|
|||
|
// we match, and matching literal '*' characters is probably never
|
|||
|
// the expected behavior.
|
|||
|
continue
|
|||
|
}
|
|||
|
for j, c := range part {
|
|||
|
if 'a' <= c && c <= 'z' {
|
|||
|
continue
|
|||
|
}
|
|||
|
if '0' <= c && c <= '9' {
|
|||
|
continue
|
|||
|
}
|
|||
|
if 'A' <= c && c <= 'Z' {
|
|||
|
continue
|
|||
|
}
|
|||
|
if c == '-' && j != 0 {
|
|||
|
continue
|
|||
|
}
|
|||
|
if c == '_' || c == ':' {
|
|||
|
// Not valid characters in hostnames, but commonly
|
|||
|
// found in deployments outside the WebPKI.
|
|||
|
continue
|
|||
|
}
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// commonNameAsHostname reports whether the Common Name field should be
|
|||
|
// considered the hostname that the certificate is valid for. This is a legacy
|
|||
|
// behavior, disabled if the Subject Alt Name extension is present.
|
|||
|
//
|
|||
|
// It applies the strict validHostname check to the Common Name field, so that
|
|||
|
// certificates without SANs can still be validated against CAs with name
|
|||
|
// constraints if there is no risk the CN would be matched as a hostname.
|
|||
|
// See NameConstraintsWithoutSANs and issue 24151.
|
|||
|
func (c *Certificate) commonNameAsHostname() bool {
|
|||
|
return !ignoreCN && !c.hasSANExtension() && validHostname(c.Subject.CommonName)
|
|||
|
}
|
|||
|
|
|||
|
func matchHostnames(pattern, host string) bool {
|
|||
|
host = strings.TrimSuffix(host, ".")
|
|||
|
pattern = strings.TrimSuffix(pattern, ".")
|
|||
|
|
|||
|
if len(pattern) == 0 || len(host) == 0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
patternParts := strings.Split(pattern, ".")
|
|||
|
hostParts := strings.Split(host, ".")
|
|||
|
|
|||
|
if len(patternParts) != len(hostParts) {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
for i, patternPart := range patternParts {
|
|||
|
if i == 0 && patternPart == "*" {
|
|||
|
continue
|
|||
|
}
|
|||
|
if patternPart != hostParts[i] {
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
|
|||
|
// an explicitly ASCII function to avoid any sharp corners resulting from
|
|||
|
// performing Unicode operations on DNS labels.
|
|||
|
func toLowerCaseASCII(in string) string {
|
|||
|
// If the string is already lower-case then there's nothing to do.
|
|||
|
isAlreadyLowerCase := true
|
|||
|
for _, c := range in {
|
|||
|
if c == utf8.RuneError {
|
|||
|
// If we get a UTF-8 error then there might be
|
|||
|
// upper-case ASCII bytes in the invalid sequence.
|
|||
|
isAlreadyLowerCase = false
|
|||
|
break
|
|||
|
}
|
|||
|
if 'A' <= c && c <= 'Z' {
|
|||
|
isAlreadyLowerCase = false
|
|||
|
break
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if isAlreadyLowerCase {
|
|||
|
return in
|
|||
|
}
|
|||
|
|
|||
|
out := []byte(in)
|
|||
|
for i, c := range out {
|
|||
|
if 'A' <= c && c <= 'Z' {
|
|||
|
out[i] += 'a' - 'A'
|
|||
|
}
|
|||
|
}
|
|||
|
return string(out)
|
|||
|
}
|
|||
|
|
|||
|
// VerifyHostname returns nil if c is a valid certificate for the named host.
|
|||
|
// Otherwise it returns an error describing the mismatch.
|
|||
|
func (c *Certificate) VerifyHostname(h string) error {
|
|||
|
// IP addresses may be written in [ ].
|
|||
|
candidateIP := h
|
|||
|
if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
|
|||
|
candidateIP = h[1 : len(h)-1]
|
|||
|
}
|
|||
|
if ip := net.ParseIP(candidateIP); ip != nil {
|
|||
|
// We only match IP addresses against IP SANs.
|
|||
|
// See RFC 6125, Appendix B.2.
|
|||
|
for _, candidate := range c.IPAddresses {
|
|||
|
if ip.Equal(candidate) {
|
|||
|
return nil
|
|||
|
}
|
|||
|
}
|
|||
|
return HostnameError{c, candidateIP}
|
|||
|
}
|
|||
|
|
|||
|
lowered := toLowerCaseASCII(h)
|
|||
|
|
|||
|
if c.commonNameAsHostname() {
|
|||
|
if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
|
|||
|
return nil
|
|||
|
}
|
|||
|
} else {
|
|||
|
for _, match := range c.DNSNames {
|
|||
|
if matchHostnames(toLowerCaseASCII(match), lowered) {
|
|||
|
return nil
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return HostnameError{c, h}
|
|||
|
}
|
|||
|
|
|||
|
func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
|
|||
|
usages := make([]ExtKeyUsage, len(keyUsages))
|
|||
|
copy(usages, keyUsages)
|
|||
|
|
|||
|
if len(chain) == 0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
usagesRemaining := len(usages)
|
|||
|
|
|||
|
// We walk down the list and cross out any usages that aren't supported
|
|||
|
// by each certificate. If we cross out all the usages, then the chain
|
|||
|
// is unacceptable.
|
|||
|
|
|||
|
NextCert:
|
|||
|
for i := len(chain) - 1; i >= 0; i-- {
|
|||
|
cert := chain[i]
|
|||
|
if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
|
|||
|
// The certificate doesn't have any extended key usage specified.
|
|||
|
continue
|
|||
|
}
|
|||
|
|
|||
|
for _, usage := range cert.ExtKeyUsage {
|
|||
|
if usage == ExtKeyUsageAny {
|
|||
|
// The certificate is explicitly good for any usage.
|
|||
|
continue NextCert
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
const invalidUsage ExtKeyUsage = -1
|
|||
|
|
|||
|
NextRequestedUsage:
|
|||
|
for i, requestedUsage := range usages {
|
|||
|
if requestedUsage == invalidUsage {
|
|||
|
continue
|
|||
|
}
|
|||
|
|
|||
|
for _, usage := range cert.ExtKeyUsage {
|
|||
|
if requestedUsage == usage {
|
|||
|
continue NextRequestedUsage
|
|||
|
} else if requestedUsage == ExtKeyUsageServerAuth &&
|
|||
|
(usage == ExtKeyUsageNetscapeServerGatedCrypto ||
|
|||
|
usage == ExtKeyUsageMicrosoftServerGatedCrypto) {
|
|||
|
// In order to support COMODO
|
|||
|
// certificate chains, we have to
|
|||
|
// accept Netscape or Microsoft SGC
|
|||
|
// usages as equal to ServerAuth.
|
|||
|
continue NextRequestedUsage
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
usages[i] = invalidUsage
|
|||
|
usagesRemaining--
|
|||
|
if usagesRemaining == 0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true
|
|||
|
}
|