tailscale/util/codegen/codegen.go

399 lines
11 KiB
Go
Raw Normal View History

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package codegen contains shared utilities for generating code.
package codegen
import (
"bytes"
"flag"
"fmt"
"go/ast"
"go/token"
"go/types"
"io"
"os"
"reflect"
"strings"
"golang.org/x/tools/go/packages"
"golang.org/x/tools/imports"
"tailscale.com/util/mak"
)
var flagCopyright = flag.Bool("copyright", true, "add Tailscale copyright to generated file headers")
// LoadTypes returns all named types in pkgName, keyed by their type name.
func LoadTypes(buildTags string, pkgName string) (*packages.Package, map[string]types.Type, error) {
cfg := &packages.Config{
Mode: packages.NeedTypes | packages.NeedTypesInfo | packages.NeedSyntax | packages.NeedName,
Tests: buildTags == "test",
}
if buildTags != "" && !cfg.Tests {
cfg.BuildFlags = []string{"-tags=" + buildTags}
}
pkgs, err := packages.Load(cfg, pkgName)
if err != nil {
return nil, nil, err
}
if cfg.Tests {
pkgs = testPackages(pkgs)
}
if len(pkgs) != 1 {
return nil, nil, fmt.Errorf("wrong number of packages: %d", len(pkgs))
}
pkg := pkgs[0]
return pkg, namedTypes(pkg), nil
}
func testPackages(pkgs []*packages.Package) []*packages.Package {
var testPackages []*packages.Package
for _, pkg := range pkgs {
testPackageID := fmt.Sprintf("%[1]s [%[1]s.test]", pkg.PkgPath)
if pkg.ID == testPackageID {
testPackages = append(testPackages, pkg)
}
}
return testPackages
}
// HasNoClone reports whether the provided tag has `codegen:noclone`.
func HasNoClone(structTag string) bool {
val := reflect.StructTag(structTag).Get("codegen")
for _, v := range strings.Split(val, ",") {
if v == "noclone" {
return true
}
}
return false
}
const copyrightHeader = `// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
`
const genAndPackageHeader = `// Code generated by %v; DO NOT EDIT.
package %s
`
func NewImportTracker(thisPkg *types.Package) *ImportTracker {
return &ImportTracker{
thisPkg: thisPkg,
}
}
// ImportTracker provides a mechanism to track and build import paths.
type ImportTracker struct {
thisPkg *types.Package
packages map[string]bool
}
func (it *ImportTracker) Import(pkg string) {
if pkg != "" && !it.packages[pkg] {
mak.Set(&it.packages, pkg, true)
}
}
// Has reports whether the specified package has been imported.
func (it *ImportTracker) Has(pkg string) bool {
return it.packages[pkg]
}
func (it *ImportTracker) qualifier(pkg *types.Package) string {
if it.thisPkg == pkg {
return ""
}
it.Import(pkg.Path())
// TODO(maisem): handle conflicts?
return pkg.Name()
}
// QualifiedName returns the string representation of t in the package.
func (it *ImportTracker) QualifiedName(t types.Type) string {
return types.TypeString(t, it.qualifier)
}
// PackagePrefix returns the prefix to be used when referencing named objects from pkg.
func (it *ImportTracker) PackagePrefix(pkg *types.Package) string {
if s := it.qualifier(pkg); s != "" {
return s + "."
}
return ""
}
// Write prints all the tracked imports in a single import block to w.
func (it *ImportTracker) Write(w io.Writer) {
fmt.Fprintf(w, "import (\n")
for s := range it.packages {
fmt.Fprintf(w, "\t%q\n", s)
}
fmt.Fprintf(w, ")\n\n")
}
func writeHeader(w io.Writer, tool, pkg string) {
if *flagCopyright {
fmt.Fprint(w, copyrightHeader)
}
fmt.Fprintf(w, genAndPackageHeader, tool, pkg)
}
// WritePackageFile adds a file with the provided imports and contents to package.
// The tool param is used to identify the tool that generated package file.
func WritePackageFile(tool string, pkg *packages.Package, path string, it *ImportTracker, contents *bytes.Buffer) error {
buf := new(bytes.Buffer)
writeHeader(buf, tool, pkg.Name)
it.Write(buf)
if _, err := buf.Write(contents.Bytes()); err != nil {
return err
}
return writeFormatted(buf.Bytes(), path)
}
// writeFormatted writes code to path.
// It runs gofmt on it before writing;
// if gofmt fails, it writes code unchanged.
// Errors can include I/O errors and gofmt errors.
//
// The advantage of always writing code to path,
// even if gofmt fails, is that it makes debugging easier.
// The code can be long, but you need it in order to debug.
// It is nicer to work with it in a file than a terminal.
// It is also easier to interpret gofmt errors
// with an editor providing file and line numbers.
func writeFormatted(code []byte, path string) error {
out, fmterr := imports.Process(path, code, &imports.Options{
Comments: true,
TabIndent: true,
TabWidth: 8,
FormatOnly: true, // fancy gofmt only
})
if fmterr != nil {
out = code
}
ioerr := os.WriteFile(path, out, 0644)
// Prefer I/O errors. They're usually easier to fix,
// and until they're fixed you can't do much else.
if ioerr != nil {
return ioerr
}
if fmterr != nil {
return fmt.Errorf("%s:%v", path, fmterr)
}
return nil
}
// namedTypes returns all named types in pkg, keyed by their type name.
func namedTypes(pkg *packages.Package) map[string]types.Type {
nt := make(map[string]types.Type)
for _, file := range pkg.Syntax {
for _, d := range file.Decls {
decl, ok := d.(*ast.GenDecl)
if !ok || decl.Tok != token.TYPE {
continue
}
for _, s := range decl.Specs {
spec, ok := s.(*ast.TypeSpec)
if !ok {
continue
}
typeNameObj, ok := pkg.TypesInfo.Defs[spec.Name]
if !ok {
continue
}
switch typ := typeNameObj.Type(); typ.(type) {
case *types.Alias, *types.Named:
nt[spec.Name.Name] = typ
}
}
}
}
return nt
}
// AssertStructUnchanged generates code that asserts at compile time that type t is unchanged.
// thisPkg is the package containing t.
// tname is the named type corresponding to t.
// ctx is a single-word context for this assertion, such as "Clone".
// If non-nil, AssertStructUnchanged will add elements to imports
// for each package path that the caller must import for the returned code to compile.
func AssertStructUnchanged(t *types.Struct, tname string, params *types.TypeParamList, ctx string, it *ImportTracker) []byte {
buf := new(bytes.Buffer)
w := func(format string, args ...any) {
fmt.Fprintf(buf, format+"\n", args...)
}
w("// A compilation failure here means this code must be regenerated, with the command at the top of this file.")
hasTypeParams := params != nil && params.Len() > 0
if hasTypeParams {
constraints, identifiers := FormatTypeParams(params, it)
w("func _%s%sNeedsRegeneration%s (%s%s) {", tname, ctx, constraints, tname, identifiers)
w("_%s%sNeedsRegeneration(struct {", tname, ctx)
} else {
w("var _%s%sNeedsRegeneration = %s(struct {", tname, ctx, tname)
}
for i := range t.NumFields() {
st := t.Field(i)
fname := st.Name()
ft := t.Field(i).Type()
if IsInvalid(ft) {
continue
}
qname := it.QualifiedName(ft)
var tag string
if hasTypeParams {
tag = t.Tag(i)
if tag != "" {
tag = "`" + tag + "`"
}
}
if st.Anonymous() {
w("\t%s %s", qname, tag)
} else {
w("\t%s %s %s", fname, qname, tag)
}
}
if hasTypeParams {
w("}{})\n}")
} else {
w("}{})")
}
return buf.Bytes()
}
// IsInvalid reports whether the provided type is invalid. It is used to allow
// codegeneration to run even when the target files have build errors or are
// missing views.
func IsInvalid(t types.Type) bool {
return t.String() == "invalid type"
}
// ContainsPointers reports whether typ contains any pointers,
// either explicitly or implicitly.
// It has special handling for some types that contain pointers
// that we know are free from memory aliasing/mutation concerns.
func ContainsPointers(typ types.Type) bool {
switch typ.String() {
case "time.Time":
// time.Time contains a pointer that does not need copying
return false
case "inet.af/netip.Addr", "net/netip.Addr", "net/netip.Prefix", "net/netip.AddrPort":
return false
}
switch ft := typ.Underlying().(type) {
case *types.Array:
return ContainsPointers(ft.Elem())
case *types.Basic:
if ft.Kind() == types.UnsafePointer {
return true
}
case *types.Chan:
return true
case *types.Interface:
if ft.Empty() || ft.IsMethodSet() {
return true
}
for i := 0; i < ft.NumEmbeddeds(); i++ {
if ContainsPointers(ft.EmbeddedType(i)) {
return true
}
}
case *types.Map:
return true
case *types.Pointer:
return true
case *types.Slice:
return true
case *types.Struct:
for i := range ft.NumFields() {
if ContainsPointers(ft.Field(i).Type()) {
return true
}
}
case *types.Union:
for i := range ft.Len() {
if ContainsPointers(ft.Term(i).Type()) {
return true
}
}
}
return false
}
// IsViewType reports whether the provided typ is a View.
func IsViewType(typ types.Type) bool {
t, ok := typ.Underlying().(*types.Struct)
if !ok {
return false
}
if t.NumFields() != 1 {
return false
}
return t.Field(0).Name() == "ж"
}
// FormatTypeParams formats the specified params and returns two strings:
// - constraints are comma-separated type parameters and their constraints in square brackets (e.g. [T any, V constraints.Integer])
// - names are comma-separated type parameter names in square brackets (e.g. [T, V])
//
// If params is nil or empty, both return values are empty strings.
func FormatTypeParams(params *types.TypeParamList, it *ImportTracker) (constraints, names string) {
if params == nil || params.Len() == 0 {
return "", ""
}
var constraintList, nameList []string
for i := range params.Len() {
param := params.At(i)
name := param.Obj().Name()
constraint := it.QualifiedName(param.Constraint())
nameList = append(nameList, name)
constraintList = append(constraintList, name+" "+constraint)
}
constraints = "[" + strings.Join(constraintList, ", ") + "]"
names = "[" + strings.Join(nameList, ", ") + "]"
return constraints, names
}
// LookupMethod returns the method with the specified name in t, or nil if the method does not exist.
func LookupMethod(t types.Type, name string) *types.Func {
switch t := t.(type) {
case *types.Alias:
return LookupMethod(t.Rhs(), name)
case *types.TypeParam:
return LookupMethod(t.Constraint(), name)
case *types.Pointer:
return LookupMethod(t.Elem(), name)
case *types.Named:
switch u := t.Underlying().(type) {
case *types.Interface:
return LookupMethod(u, name)
default:
for i := 0; i < t.NumMethods(); i++ {
if method := t.Method(i); method.Name() == name {
return method
}
}
}
case *types.Interface:
for i := 0; i < t.NumMethods(); i++ {
if method := t.Method(i); method.Name() == name {
return method
}
}
}
return nil
}
// NamedTypeOf is like t.(*types.Named), but also works with type aliases.
func NamedTypeOf(t types.Type) (named *types.Named, ok bool) {
if a, ok := t.(*types.Alias); ok {
return NamedTypeOf(types.Unalias(a))
}
named, ok = t.(*types.Named)
return
}