tailscale/net/art/stride_table_test.go

379 lines
11 KiB
Go
Raw Normal View History

net/art: implement the stride table building block of ART A stride table is an 8-bit routing table implemented as an array binary tree, with a special tree updating function (allot) that enables lightning fast address lookups and reasonably fast insertion and deletion. Insertion, deletion and lookup are all allocation-free. Updates #7781 │ sec/op │ StrideTableInsertion/10/random_order 16.79n ± 2% StrideTableInsertion/10/largest_first 16.83n ± 1% StrideTableInsertion/10/smallest_first 16.83n ± 0% StrideTableInsertion/50/random_order 17.84n ± 1% StrideTableInsertion/50/largest_first 20.04n ± 1% StrideTableInsertion/50/smallest_first 16.39n ± 0% StrideTableInsertion/100/random_order 14.63n ± 0% StrideTableInsertion/100/largest_first 17.45n ± 4% StrideTableInsertion/100/smallest_first 12.98n ± 0% StrideTableInsertion/200/random_order 12.51n ± 4% StrideTableInsertion/200/largest_first 18.36n ± 3% StrideTableInsertion/200/smallest_first 9.609n ± 3% StrideTableDeletion/10/random_order 19.50n ± 1% StrideTableDeletion/10/largest_first 19.34n ± 0% StrideTableDeletion/10/smallest_first 19.43n ± 0% StrideTableDeletion/50/random_order 14.58n ± 1% StrideTableDeletion/50/largest_first 14.27n ± 2% StrideTableDeletion/50/smallest_first 15.51n ± 0% StrideTableDeletion/100/random_order 12.02n ± 3% StrideTableDeletion/100/largest_first 10.64n ± 0% StrideTableDeletion/100/smallest_first 13.21n ± 3% StrideTableDeletion/200/random_order 14.05n ± 4% StrideTableDeletion/200/largest_first 9.288n ± 5% StrideTableDeletion/200/smallest_first 18.51n ± 1% StrideTableGet 0.5010n ± 0% │ routes/s │ StrideTableInsertion/10/random_order 59.55M ± 2% StrideTableInsertion/10/largest_first 59.42M ± 1% StrideTableInsertion/10/smallest_first 59.43M ± 0% StrideTableInsertion/50/random_order 56.04M ± 1% StrideTableInsertion/50/largest_first 49.91M ± 1% StrideTableInsertion/50/smallest_first 61.00M ± 0% StrideTableInsertion/100/random_order 68.35M ± 0% StrideTableInsertion/100/largest_first 57.32M ± 3% StrideTableInsertion/100/smallest_first 77.06M ± 0% StrideTableInsertion/200/random_order 79.93M ± 4% StrideTableInsertion/200/largest_first 54.47M ± 3% StrideTableInsertion/200/smallest_first 104.1M ± 3% StrideTableDeletion/10/random_order 51.28M ± 1% StrideTableDeletion/10/largest_first 51.70M ± 0% StrideTableDeletion/10/smallest_first 51.48M ± 0% StrideTableDeletion/50/random_order 68.60M ± 1% StrideTableDeletion/50/largest_first 70.09M ± 2% StrideTableDeletion/50/smallest_first 64.45M ± 0% StrideTableDeletion/100/random_order 83.21M ± 3% StrideTableDeletion/100/largest_first 94.03M ± 0% StrideTableDeletion/100/smallest_first 75.69M ± 3% StrideTableDeletion/200/random_order 71.20M ± 5% StrideTableDeletion/200/largest_first 107.7M ± 5% StrideTableDeletion/200/smallest_first 54.02M ± 1% StrideTableGet 1.996G ± 0% Signed-off-by: David Anderson <danderson@tailscale.com>
2023-04-03 16:29:36 -07:00
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package art
import (
"bytes"
"fmt"
"math/rand"
"sort"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"tailscale.com/types/ptr"
)
func TestInversePrefix(t *testing.T) {
for i := 0; i < 256; i++ {
for len := 0; len < 9; len++ {
addr := i & (0xFF << (8 - len))
idx := prefixIndex(uint8(addr), len)
addr2, len2 := inversePrefixIndex(idx)
if addr2 != uint8(addr) || len2 != len {
t.Errorf("inverse(index(%d/%d)) != %d/%d", addr, len, addr2, len2)
}
}
}
}
func TestHostIndex(t *testing.T) {
for i := 0; i < 256; i++ {
got := hostIndex(uint8(i))
want := prefixIndex(uint8(i), 8)
if got != want {
t.Errorf("hostIndex(%d) = %d, want %d", i, got, want)
}
}
}
func TestStrideTableInsert(t *testing.T) {
// Verify that strideTable's lookup results after a bunch of inserts exactly
// match those of a naive implementation that just scans all prefixes on
// every lookup. The naive implementation is very slow, but its behavior is
// easy to verify by inspection.
pfxs := shufflePrefixes(allPrefixes())[:100]
slow := slowTable[int]{pfxs}
fast := strideTable[int]{}
t.Logf("slow table:\n%s", slow.String())
for _, pfx := range pfxs {
fast.insert(pfx.addr, pfx.len, pfx.val)
t.Logf("after insert %d/%d:\n%s", pfx.addr, pfx.len, fast.tableDebugString())
}
for i := 0; i < 256; i++ {
addr := uint8(i)
slowVal := slow.get(addr)
fastVal := fast.get(addr)
if slowVal != fastVal {
t.Fatalf("strideTable.get(%d) = %v, want %v", addr, *fastVal, *slowVal)
}
}
}
func TestStrideTableInsertShuffled(t *testing.T) {
// The order in which routes are inserted into a route table does not
// influence the final shape of the table, as long as the same set of
// prefixes is being inserted. This test verifies that strideTable behaves
// this way.
//
// In addition to the basic shuffle test, we also check that this behavior
// is maintained if all inserted routes have the same value pointer. This
// shouldn't matter (the strideTable still needs to correctly account for
// each inserted route, regardless of associated value), but during initial
// development a subtle bug made the table corrupt itself in that setup, so
// this test includes a regression test for that.
routes := shufflePrefixes(allPrefixes())[:100]
zero := 0
rt := strideTable[int]{}
rtZero := strideTable[int]{}
for _, route := range routes {
rt.insert(route.addr, route.len, route.val)
rtZero.insert(route.addr, route.len, &zero)
}
// Order of insertion should not affect the final shape of the stride table.
routes2 := append([]slowEntry[int](nil), routes...) // dup so we can print both slices on fail
for i := 0; i < 100; i++ {
rand.Shuffle(len(routes2), func(i, j int) { routes2[i], routes2[j] = routes2[j], routes2[i] })
rt2 := strideTable[int]{}
for _, route := range routes2 {
rt2.insert(route.addr, route.len, route.val)
}
if diff := cmp.Diff(rt, rt2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables ended up different with different insertion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(routes), formatSlowEntriesShort(routes2))
}
rtZero2 := strideTable[int]{}
for _, route := range routes2 {
rtZero2.insert(route.addr, route.len, &zero)
}
if diff := cmp.Diff(rtZero, rtZero2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables with identical vals ended up different with different insertion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(routes), formatSlowEntriesShort(routes2))
}
}
}
func TestStrideTableDelete(t *testing.T) {
// Compare route deletion to our reference slowTable.
pfxs := shufflePrefixes(allPrefixes())[:100]
slow := slowTable[int]{pfxs}
fast := strideTable[int]{}
t.Logf("slow table:\n%s", slow.String())
for _, pfx := range pfxs {
fast.insert(pfx.addr, pfx.len, pfx.val)
t.Logf("after insert %d/%d:\n%s", pfx.addr, pfx.len, fast.tableDebugString())
}
toDelete := pfxs[:50]
for _, pfx := range toDelete {
slow.delete(pfx.addr, pfx.len)
fast.delete(pfx.addr, pfx.len)
}
// Sanity check that slowTable seems to have done the right thing.
if cnt := len(slow.prefixes); cnt != 50 {
t.Fatalf("slowTable has %d entries after deletes, want 50", cnt)
}
for i := 0; i < 256; i++ {
addr := uint8(i)
slowVal := slow.get(addr)
fastVal := fast.get(addr)
if slowVal != fastVal {
t.Fatalf("strideTable.get(%d) = %v, want %v", addr, *fastVal, *slowVal)
}
}
}
func TestStrideTableDeleteShuffle(t *testing.T) {
// Same as TestStrideTableInsertShuffle, the order in which prefixes are
// deleted should not impact the final shape of the route table.
routes := shufflePrefixes(allPrefixes())[:100]
toDelete := routes[:50]
zero := 0
rt := strideTable[int]{}
rtZero := strideTable[int]{}
for _, route := range routes {
rt.insert(route.addr, route.len, route.val)
rtZero.insert(route.addr, route.len, &zero)
}
for _, route := range toDelete {
rt.delete(route.addr, route.len)
rtZero.delete(route.addr, route.len)
}
// Order of deletion should not affect the final shape of the stride table.
toDelete2 := append([]slowEntry[int](nil), toDelete...) // dup so we can print both slices on fail
for i := 0; i < 100; i++ {
rand.Shuffle(len(toDelete2), func(i, j int) { toDelete2[i], toDelete2[j] = toDelete2[j], toDelete2[i] })
rt2 := strideTable[int]{}
for _, route := range routes {
rt2.insert(route.addr, route.len, route.val)
}
for _, route := range toDelete2 {
rt2.delete(route.addr, route.len)
}
if diff := cmp.Diff(rt, rt2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables ended up different with different deletion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(toDelete), formatSlowEntriesShort(toDelete2))
}
rtZero2 := strideTable[int]{}
for _, route := range routes {
rtZero2.insert(route.addr, route.len, &zero)
}
for _, route := range toDelete2 {
rtZero2.delete(route.addr, route.len)
}
if diff := cmp.Diff(rtZero, rtZero2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables with identical vals ended up different with different deletion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(toDelete), formatSlowEntriesShort(toDelete2))
}
}
}
var benchRouteCount = []int{10, 50, 100, 200}
// forCountAndOrdering runs the benchmark fn with different sets of routes.
//
// fn is called once for each combination of {num_routes, order}, where
// num_routes is the values in benchRouteCount, and order is the order of the
// routes in the list: random, largest prefix first (/0 to /8), and smallest
// prefix first (/8 to /0).
func forCountAndOrdering(b *testing.B, fn func(b *testing.B, routes []slowEntry[int])) {
routes := shufflePrefixes(allPrefixes())
for _, nroutes := range benchRouteCount {
b.Run(fmt.Sprint(nroutes), func(b *testing.B) {
routes := append([]slowEntry[int](nil), routes[:nroutes]...)
b.Run("random_order", func(b *testing.B) {
b.ReportAllocs()
fn(b, routes)
})
sort.Slice(routes, func(i, j int) bool {
if routes[i].len < routes[j].len {
return true
}
return routes[i].addr < routes[j].addr
})
b.Run("largest_first", func(b *testing.B) {
b.ReportAllocs()
fn(b, routes)
})
sort.Slice(routes, func(i, j int) bool {
if routes[j].len < routes[i].len {
return true
}
return routes[j].addr < routes[i].addr
})
b.Run("smallest_first", func(b *testing.B) {
b.ReportAllocs()
fn(b, routes)
})
})
}
}
func BenchmarkStrideTableInsertion(b *testing.B) {
forCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
val := 0
for i := 0; i < b.N; i++ {
var rt strideTable[int]
for _, route := range routes {
rt.insert(route.addr, route.len, &val)
}
}
inserts := float64(b.N) * float64(len(routes))
elapsed := float64(b.Elapsed().Nanoseconds())
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(elapsed/inserts, "ns/op")
b.ReportMetric(inserts/elapsedSec, "routes/s")
})
}
func BenchmarkStrideTableDeletion(b *testing.B) {
forCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
val := 0
var rt strideTable[int]
for _, route := range routes {
rt.insert(route.addr, route.len, &val)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
rt2 := rt
for _, route := range routes {
rt2.delete(route.addr, route.len)
}
}
deletes := float64(b.N) * float64(len(routes))
elapsed := float64(b.Elapsed().Nanoseconds())
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(elapsed/deletes, "ns/op")
b.ReportMetric(deletes/elapsedSec, "routes/s")
})
}
var writeSink *int
func BenchmarkStrideTableGet(b *testing.B) {
// No need to forCountAndOrdering here, route lookup time is independent of
// the route count.
routes := shufflePrefixes(allPrefixes())[:100]
var rt strideTable[int]
for _, route := range routes {
rt.insert(route.addr, route.len, route.val)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
writeSink = rt.get(uint8(i))
}
gets := float64(b.N)
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(gets/elapsedSec, "routes/s")
}
// slowTable is an 8-bit routing table implemented as a set of prefixes that are
// explicitly scanned in full for every route lookup. It is very slow, but also
// reasonably easy to verify by inspection, and so a good comparison target for
// strideTable.
type slowTable[T any] struct {
prefixes []slowEntry[T]
}
type slowEntry[T any] struct {
addr uint8
len int
val *T
}
func (t *slowTable[T]) String() string {
pfxs := append([]slowEntry[T](nil), t.prefixes...)
sort.Slice(pfxs, func(i, j int) bool {
if pfxs[i].len != pfxs[j].len {
return pfxs[i].len < pfxs[j].len
}
return pfxs[i].addr < pfxs[j].addr
})
var ret bytes.Buffer
for _, pfx := range pfxs {
fmt.Fprintf(&ret, "%3d/%d (%08b/%08b) = %v\n", pfx.addr, pfx.len, pfx.addr, pfxMask(pfx.len), *pfx.val)
}
return ret.String()
}
func (t *slowTable[T]) insert(addr uint8, prefixLen int, val *T) {
t.delete(addr, prefixLen) // no-op if prefix doesn't exist
t.prefixes = append(t.prefixes, slowEntry[T]{addr, prefixLen, val})
}
func (t *slowTable[T]) delete(addr uint8, prefixLen int) {
pfx := make([]slowEntry[T], 0, len(t.prefixes))
for _, e := range t.prefixes {
if e.addr == addr && e.len == prefixLen {
continue
}
pfx = append(pfx, e)
}
t.prefixes = pfx
}
func (t *slowTable[T]) get(addr uint8) *T {
var (
ret *T
curLen = -1
)
for _, e := range t.prefixes {
if addr&pfxMask(e.len) == e.addr && e.len >= curLen {
ret = e.val
curLen = e.len
}
}
return ret
}
func pfxMask(pfxLen int) uint8 {
return 0xFF << (8 - pfxLen)
}
func allPrefixes() []slowEntry[int] {
ret := make([]slowEntry[int], 0, lastHostIndex)
for i := 1; i < lastHostIndex+1; i++ {
a, l := inversePrefixIndex(i)
ret = append(ret, slowEntry[int]{a, l, ptr.To(i)})
}
return ret
}
func shufflePrefixes(pfxs []slowEntry[int]) []slowEntry[int] {
rand.Shuffle(len(pfxs), func(i, j int) { pfxs[i], pfxs[j] = pfxs[j], pfxs[i] })
return pfxs
}
func formatSlowEntriesShort[T any](ents []slowEntry[T]) string {
var ret []string
for _, ent := range ents {
ret = append(ret, fmt.Sprintf("%d/%d", ent.addr, ent.len))
}
return "[" + strings.Join(ret, " ") + "]"
}