tailscale/prober/prober.go

238 lines
7.0 KiB
Go
Raw Normal View History

// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package prober implements a simple blackbox prober. Each probe runs
// in its own goroutine, and run results are recorded as Prometheus
// metrics.
package prober
import (
"context"
"errors"
"fmt"
"log"
"sync"
"time"
"tailscale.com/metrics"
)
// Probe is a function that probes something and reports whether the
// probe succeeded. The provided context must be used to ensure timely
// cancellation and timeout behavior.
type Probe func(context.Context) error
// a Prober manages a set of probes and keeps track of their results.
type Prober struct {
// Time-related functions that get faked out during tests.
now func() time.Time
newTicker func(time.Duration) ticker
// lastStart is the time, in seconds since epoch, of the last time
// each probe started a probe cycle.
lastStart metrics.LabelMap
// lastEnd is the time, in seconds since epoch, of the last time
// each probe finished a probe cycle.
lastEnd metrics.LabelMap
// lastResult records whether probes succeeded. A successful probe
// is recorded as 1, a failure as 0.
lastResult metrics.LabelMap
// lastLatency records how long the last probe cycle took for each
// probe, in milliseconds.
lastLatency metrics.LabelMap
// probeInterval records the time in seconds between successive
// runs of each probe.
//
// This is to help Prometheus figure out how long a probe should
// be failing before it fires an alert for it. To avoid random
// background noise, you want it to wait for more than 1
// datapoint, but you also can't use a fixed interval because some
// probes might run every few seconds, while e.g. TLS certificate
// expiry might only run once a day.
//
// So, for each probe, the prober tells Prometheus how often it
// runs, so that the alert can autotune itself to eliminate noise
// without being excessively delayed.
probeInterval metrics.LabelMap
mu sync.Mutex // protects all following fields
activeProbeCh map[string]chan struct{}
}
// New returns a new Prober.
func New() *Prober {
return newForTest(time.Now, newRealTicker)
}
func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober {
return &Prober{
now: now,
newTicker: newTicker,
lastStart: metrics.LabelMap{Label: "probe"},
lastEnd: metrics.LabelMap{Label: "probe"},
lastResult: metrics.LabelMap{Label: "probe"},
lastLatency: metrics.LabelMap{Label: "probe"},
probeInterval: metrics.LabelMap{Label: "probe"},
activeProbeCh: map[string]chan struct{}{},
}
}
// Expvar returns the metrics for running probes.
func (p *Prober) Expvar() *metrics.Set {
ret := new(metrics.Set)
ret.Set("start_secs", &p.lastStart)
ret.Set("end_secs", &p.lastEnd)
ret.Set("result", &p.lastResult)
ret.Set("latency_millis", &p.lastLatency)
ret.Set("interval_secs", &p.probeInterval)
return ret
}
// Run executes fun every interval, and exports probe results under probeName.
//
// fun is given a context.Context that, if obeyed, ensures that fun
// ends within interval. If fun disregards the context, it will not be
// run again until it does finish, and metrics will reflect that the
// probe function is stuck.
//
// Run returns a context.CancelFunc that stops the probe when
// invoked. Probe shutdown and removal happens-before the CancelFunc
// returns.
//
// Registering a probe under an already-registered name panics.
func (p *Prober) Run(name string, interval time.Duration, fun Probe) context.CancelFunc {
p.mu.Lock()
defer p.mu.Unlock()
ticker := p.registerLocked(name, interval)
ctx, cancel := context.WithCancel(context.Background())
go p.probeLoop(ctx, name, interval, ticker, fun)
return func() {
p.mu.Lock()
stopped := p.activeProbeCh[name]
p.mu.Unlock()
cancel()
<-stopped
}
}
// probeLoop invokes runProbe on fun every interval. The first probe
// is run after interval.
func (p *Prober) probeLoop(ctx context.Context, name string, interval time.Duration, tick ticker, fun Probe) {
defer func() {
p.unregister(name)
tick.Stop()
}()
// Do a first probe right away, so that the prober immediately exports results for everything.
p.runProbe(ctx, name, interval, fun)
for {
select {
case <-tick.Chan():
p.runProbe(ctx, name, interval, fun)
case <-ctx.Done():
return
}
}
}
// runProbe invokes fun and records the results.
//
// fun is invoked with a timeout slightly less than interval, so that
// the probe either succeeds or fails before the next cycle is
// scheduled to start.
func (p *Prober) runProbe(ctx context.Context, name string, interval time.Duration, fun Probe) {
start := p.start(name)
defer func() {
// Prevent a panic within one probe function from killing the
// entire prober, so that a single buggy probe doesn't destroy
// our entire ability to monitor anything. A panic is recorded
// as a probe failure, so panicking probes will trigger an
// alert for debugging.
if r := recover(); r != nil {
log.Printf("probe %s panicked: %v", name, r)
p.end(name, start, errors.New("panic"))
}
}()
timeout := time.Duration(float64(interval) * 0.8)
ctx, cancel := context.WithTimeout(ctx, timeout)
defer cancel()
err := fun(ctx)
p.end(name, start, err)
if err != nil {
log.Printf("probe %s: %v", name, err)
}
}
func (p *Prober) registerLocked(name string, interval time.Duration) ticker {
if _, ok := p.activeProbeCh[name]; ok {
panic(fmt.Sprintf("probe named %q already registered", name))
}
stoppedCh := make(chan struct{})
p.activeProbeCh[name] = stoppedCh
p.probeInterval.Get(name).Set(int64(interval.Seconds()))
// Create and return a ticker from here, while Prober is
// locked. This ensures that our fake time in tests always sees
// the new fake ticker being created before seeing that a new
// probe is registered.
return p.newTicker(interval)
}
func (p *Prober) unregister(name string) {
p.mu.Lock()
defer p.mu.Unlock()
close(p.activeProbeCh[name])
delete(p.activeProbeCh, name)
p.lastStart.Delete(name)
p.lastEnd.Delete(name)
p.lastResult.Delete(name)
p.lastLatency.Delete(name)
p.probeInterval.Delete(name)
}
func (p *Prober) start(name string) time.Time {
st := p.now()
p.lastStart.Get(name).Set(st.Unix())
return st
}
func (p *Prober) end(name string, start time.Time, err error) {
end := p.now()
p.lastEnd.Get(name).Set(end.Unix())
p.lastLatency.Get(name).Set(end.Sub(start).Milliseconds())
v := int64(1)
if err != nil {
v = 0
}
p.lastResult.Get(name).Set(v)
}
// Reports the number of registered probes. For tests only.
func (p *Prober) activeProbes() int {
p.mu.Lock()
defer p.mu.Unlock()
return len(p.activeProbeCh)
}
// ticker wraps a time.Ticker in a way that can be faked for tests.
type ticker interface {
Chan() <-chan time.Time
Stop()
}
type realTicker struct {
*time.Ticker
}
func (t *realTicker) Chan() <-chan time.Time {
return t.Ticker.C
}
func newRealTicker(d time.Duration) ticker {
return &realTicker{time.NewTicker(d)}
}