tailscale/wgengine/netstack/gro/gro.go

170 lines
5.3 KiB
Go
Raw Normal View History

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package gro implements GRO for the receive (write) path into gVisor.
package gro
import (
"bytes"
"sync"
"github.com/tailscale/wireguard-go/tun"
"gvisor.dev/gvisor/pkg/buffer"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/header/parse"
"gvisor.dev/gvisor/pkg/tcpip/stack"
nsgro "gvisor.dev/gvisor/pkg/tcpip/stack/gro"
"tailscale.com/net/packet"
"tailscale.com/types/ipproto"
)
// RXChecksumOffload validates IPv4, TCP, and UDP header checksums in p,
// returning an equivalent *stack.PacketBuffer if they are valid, otherwise nil.
// The set of headers validated covers where gVisor would perform validation if
// !stack.PacketBuffer.RXChecksumValidated, i.e. it satisfies
// stack.CapabilityRXChecksumOffload. Other protocols with checksum fields,
// e.g. ICMP{v6}, are still validated by gVisor regardless of rx checksum
// offloading capabilities.
func RXChecksumOffload(p *packet.Parsed) *stack.PacketBuffer {
var (
pn tcpip.NetworkProtocolNumber
csumStart int
)
buf := p.Buffer()
switch p.IPVersion {
case 4:
if len(buf) < header.IPv4MinimumSize {
return nil
}
csumStart = int((buf[0] & 0x0F) * 4)
if csumStart < header.IPv4MinimumSize || csumStart > header.IPv4MaximumHeaderSize || len(buf) < csumStart {
return nil
}
if ^tun.Checksum(buf[:csumStart], 0) != 0 {
return nil
}
pn = header.IPv4ProtocolNumber
case 6:
if len(buf) < header.IPv6FixedHeaderSize {
return nil
}
csumStart = header.IPv6FixedHeaderSize
pn = header.IPv6ProtocolNumber
if p.IPProto != ipproto.ICMPv6 && p.IPProto != ipproto.TCP && p.IPProto != ipproto.UDP {
// buf could have extension headers before a UDP or TCP header, but
// packet.Parsed.IPProto will be set to the ext header type, so we
// have to look deeper. We are still responsible for validating the
// L4 checksum in this case. So, make use of gVisor's existing
// extension header parsing via parse.IPv6() in order to unpack the
// L4 csumStart index. This is not particularly efficient as we have
// to allocate a short-lived stack.PacketBuffer that cannot be
// re-used. parse.IPv6() "consumes" the IPv6 headers, so we can't
// inject this stack.PacketBuffer into the stack at a later point.
packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData(bytes.Clone(buf)),
})
defer packetBuf.DecRef()
// The rightmost bool returns false only if packetBuf is too short,
// which we've already accounted for above.
transportProto, _, _, _, _ := parse.IPv6(packetBuf)
if transportProto == header.TCPProtocolNumber || transportProto == header.UDPProtocolNumber {
csumLen := packetBuf.Data().Size()
if len(buf) < csumLen {
return nil
}
csumStart = len(buf) - csumLen
p.IPProto = ipproto.Proto(transportProto)
}
}
}
if p.IPProto == ipproto.TCP || p.IPProto == ipproto.UDP {
lenForPseudo := len(buf) - csumStart
csum := tun.PseudoHeaderChecksum(
uint8(p.IPProto),
p.Src.Addr().AsSlice(),
p.Dst.Addr().AsSlice(),
uint16(lenForPseudo))
csum = tun.Checksum(buf[csumStart:], csum)
if ^csum != 0 {
return nil
}
}
packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData(bytes.Clone(buf)),
})
packetBuf.NetworkProtocolNumber = pn
// Setting this is not technically required. gVisor overrides where
// stack.CapabilityRXChecksumOffload is advertised from Capabilities().
// https://github.com/google/gvisor/blob/64c016c92987cc04dfd4c7b091ddd21bdad875f8/pkg/tcpip/stack/nic.go#L763
// This is also why we offload for all packets since we cannot signal this
// per-packet.
packetBuf.RXChecksumValidated = true
return packetBuf
}
var (
groPool sync.Pool
)
func init() {
groPool.New = func() any {
g := &GRO{}
g.gro.Init(true)
return g
}
}
// GRO coalesces incoming packets to increase throughput. It is NOT thread-safe.
type GRO struct {
gro nsgro.GRO
maybeEnqueued bool
}
// NewGRO returns a new instance of *GRO from a sync.Pool. It can be returned to
// the pool with GRO.Flush().
func NewGRO() *GRO {
return groPool.Get().(*GRO)
}
// SetDispatcher sets the underlying stack.NetworkDispatcher where packets are
// delivered.
func (g *GRO) SetDispatcher(d stack.NetworkDispatcher) {
g.gro.Dispatcher = d
}
// Enqueue enqueues the provided packet for GRO. It may immediately deliver
// it to the underlying stack.NetworkDispatcher depending on its contents. To
// explicitly flush previously enqueued packets see Flush().
func (g *GRO) Enqueue(p *packet.Parsed) {
if g.gro.Dispatcher == nil {
return
}
pkt := RXChecksumOffload(p)
if pkt == nil {
return
}
// TODO(jwhited): g.gro.Enqueue() duplicates a lot of p.Decode().
// We may want to push stack.PacketBuffer further up as a
// replacement for packet.Parsed, or inversely push packet.Parsed
// down into refactored GRO logic.
g.gro.Enqueue(pkt)
g.maybeEnqueued = true
pkt.DecRef()
}
// Flush flushes previously enqueued packets to the underlying
// stack.NetworkDispatcher, and returns GRO to a pool for later re-use. Callers
// MUST NOT use GRO once it has been Flush()'d.
func (g *GRO) Flush() {
if g.gro.Dispatcher != nil && g.maybeEnqueued {
g.gro.Flush()
}
g.gro.Dispatcher = nil
g.maybeEnqueued = false
groPool.Put(g)
}