mirror of
https://github.com/tailscale/tailscale.git
synced 2024-11-29 13:05:46 +00:00
236 lines
6.8 KiB
Go
236 lines
6.8 KiB
Go
|
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
// Package prober implements a simple blackbox prober. Each probe runs
|
||
|
// in its own goroutine, and run results are recorded as Prometheus
|
||
|
// metrics.
|
||
|
package prober
|
||
|
|
||
|
import (
|
||
|
"context"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"log"
|
||
|
"sync"
|
||
|
"time"
|
||
|
|
||
|
"tailscale.com/metrics"
|
||
|
)
|
||
|
|
||
|
// Probe is a function that probes something and reports whether the
|
||
|
// probe succeeded. The provided context must be used to ensure timely
|
||
|
// cancellation and timeout behavior.
|
||
|
type Probe func(context.Context) error
|
||
|
|
||
|
// a Prober manages a set of probes and keeps track of their results.
|
||
|
type Prober struct {
|
||
|
// Time-related functions that get faked out during tests.
|
||
|
now func() time.Time
|
||
|
newTicker func(time.Duration) ticker
|
||
|
|
||
|
// lastStart is the time, in seconds since epoch, of the last time
|
||
|
// each probe started a probe cycle.
|
||
|
lastStart metrics.LabelMap
|
||
|
// lastEnd is the time, in seconds since epoch, of the last time
|
||
|
// each probe finished a probe cycle.
|
||
|
lastEnd metrics.LabelMap
|
||
|
// lastResult records whether probes succeeded. A successful probe
|
||
|
// is recorded as 1, a failure as 0.
|
||
|
lastResult metrics.LabelMap
|
||
|
// lastLatency records how long the last probe cycle took for each
|
||
|
// probe, in milliseconds.
|
||
|
lastLatency metrics.LabelMap
|
||
|
// probeInterval records the time in seconds between successive
|
||
|
// runs of each probe.
|
||
|
//
|
||
|
// This is to help Prometheus figure out how long a probe should
|
||
|
// be failing before it fires an alert for it. To avoid random
|
||
|
// background noise, you want it to wait for more than 1
|
||
|
// datapoint, but you also can't use a fixed interval because some
|
||
|
// probes might run every few seconds, while e.g. TLS certificate
|
||
|
// expiry might only run once a day.
|
||
|
//
|
||
|
// So, for each probe, the prober tells Prometheus how often it
|
||
|
// runs, so that the alert can autotune itself to eliminate noise
|
||
|
// without being excessively delayed.
|
||
|
probeInterval metrics.LabelMap
|
||
|
|
||
|
mu sync.Mutex // protects all following fields
|
||
|
activeProbeCh map[string]chan struct{}
|
||
|
}
|
||
|
|
||
|
// New returns a new Prober.
|
||
|
func New() *Prober {
|
||
|
return newForTest(time.Now, newRealTicker)
|
||
|
}
|
||
|
|
||
|
func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober {
|
||
|
return &Prober{
|
||
|
now: now,
|
||
|
newTicker: newTicker,
|
||
|
lastStart: metrics.LabelMap{Label: "probe"},
|
||
|
lastEnd: metrics.LabelMap{Label: "probe"},
|
||
|
lastResult: metrics.LabelMap{Label: "probe"},
|
||
|
lastLatency: metrics.LabelMap{Label: "probe"},
|
||
|
probeInterval: metrics.LabelMap{Label: "probe"},
|
||
|
activeProbeCh: map[string]chan struct{}{},
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Expvar returns the metrics for running probes.
|
||
|
func (p *Prober) Expvar() *metrics.Set {
|
||
|
ret := new(metrics.Set)
|
||
|
ret.Set("start_secs", &p.lastStart)
|
||
|
ret.Set("end_secs", &p.lastEnd)
|
||
|
ret.Set("result", &p.lastResult)
|
||
|
ret.Set("latency_millis", &p.lastLatency)
|
||
|
ret.Set("interval_secs", &p.probeInterval)
|
||
|
return ret
|
||
|
}
|
||
|
|
||
|
// Run executes fun every interval, and exports probe results under probeName.
|
||
|
//
|
||
|
// fun is given a context.Context that, if obeyed, ensures that fun
|
||
|
// ends within interval. If fun disregards the context, it will not be
|
||
|
// run again until it does finish, and metrics will reflect that the
|
||
|
// probe function is stuck.
|
||
|
//
|
||
|
// Run returns a context.CancelFunc that stops the probe when
|
||
|
// invoked. Probe shutdown and removal happens-before the CancelFunc
|
||
|
// returns.
|
||
|
//
|
||
|
// Registering a probe under an already-registered name panics.
|
||
|
func (p *Prober) Run(name string, interval time.Duration, fun Probe) context.CancelFunc {
|
||
|
p.mu.Lock()
|
||
|
defer p.mu.Unlock()
|
||
|
ticker := p.registerLocked(name, interval)
|
||
|
|
||
|
ctx, cancel := context.WithCancel(context.Background())
|
||
|
go p.probeLoop(ctx, name, interval, ticker, fun)
|
||
|
|
||
|
return func() {
|
||
|
p.mu.Lock()
|
||
|
stopped := p.activeProbeCh[name]
|
||
|
p.mu.Unlock()
|
||
|
cancel()
|
||
|
<-stopped
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// probeLoop invokes runProbe on fun every interval. The first probe
|
||
|
// is run after interval.
|
||
|
func (p *Prober) probeLoop(ctx context.Context, name string, interval time.Duration, tick ticker, fun Probe) {
|
||
|
defer func() {
|
||
|
p.unregister(name)
|
||
|
tick.Stop()
|
||
|
}()
|
||
|
|
||
|
for {
|
||
|
select {
|
||
|
case <-tick.Chan():
|
||
|
p.runProbe(ctx, name, interval, fun)
|
||
|
case <-ctx.Done():
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// runProbe invokes fun and records the results.
|
||
|
//
|
||
|
// fun is invoked with a timeout slightly less than interval, so that
|
||
|
// the probe either succeeds or fails before the next cycle is
|
||
|
// scheduled to start.
|
||
|
func (p *Prober) runProbe(ctx context.Context, name string, interval time.Duration, fun Probe) {
|
||
|
start := p.start(name)
|
||
|
defer func() {
|
||
|
// Prevent a panic within one probe function from killing the
|
||
|
// entire prober, so that a single buggy probe doesn't destroy
|
||
|
// our entire ability to monitor anything. A panic is recorded
|
||
|
// as a probe failure, so panicking probes will trigger an
|
||
|
// alert for debugging.
|
||
|
if r := recover(); r != nil {
|
||
|
log.Printf("probe %s panicked: %v", name, r)
|
||
|
p.end(name, start, errors.New("panic"))
|
||
|
}
|
||
|
}()
|
||
|
timeout := time.Duration(float64(interval) * 0.8)
|
||
|
ctx, cancel := context.WithTimeout(ctx, timeout)
|
||
|
defer cancel()
|
||
|
|
||
|
err := fun(ctx)
|
||
|
p.end(name, start, err)
|
||
|
if err != nil {
|
||
|
log.Printf("probe %s: %v", name, err)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (p *Prober) registerLocked(name string, interval time.Duration) ticker {
|
||
|
if _, ok := p.activeProbeCh[name]; ok {
|
||
|
panic(fmt.Sprintf("probe named %q already registered", name))
|
||
|
}
|
||
|
|
||
|
stoppedCh := make(chan struct{})
|
||
|
p.activeProbeCh[name] = stoppedCh
|
||
|
p.probeInterval.Get(name).Set(int64(interval.Seconds()))
|
||
|
// Create and return a ticker from here, while Prober is
|
||
|
// locked. This ensures that our fake time in tests always sees
|
||
|
// the new fake ticker being created before seeing that a new
|
||
|
// probe is registered.
|
||
|
return p.newTicker(interval)
|
||
|
}
|
||
|
|
||
|
func (p *Prober) unregister(name string) {
|
||
|
p.mu.Lock()
|
||
|
defer p.mu.Unlock()
|
||
|
close(p.activeProbeCh[name])
|
||
|
delete(p.activeProbeCh, name)
|
||
|
p.lastStart.Delete(name)
|
||
|
p.lastEnd.Delete(name)
|
||
|
p.lastResult.Delete(name)
|
||
|
p.lastLatency.Delete(name)
|
||
|
p.probeInterval.Delete(name)
|
||
|
}
|
||
|
|
||
|
func (p *Prober) start(name string) time.Time {
|
||
|
st := p.now()
|
||
|
p.lastStart.Get(name).Set(st.Unix())
|
||
|
return st
|
||
|
}
|
||
|
|
||
|
func (p *Prober) end(name string, start time.Time, err error) {
|
||
|
end := p.now()
|
||
|
p.lastEnd.Get(name).Set(end.Unix())
|
||
|
p.lastLatency.Get(name).Set(end.Sub(start).Milliseconds())
|
||
|
v := int64(1)
|
||
|
if err != nil {
|
||
|
v = 0
|
||
|
}
|
||
|
p.lastResult.Get(name).Set(v)
|
||
|
}
|
||
|
|
||
|
// Reports the number of registered probes. For tests only.
|
||
|
func (p *Prober) activeProbes() int {
|
||
|
p.mu.Lock()
|
||
|
defer p.mu.Unlock()
|
||
|
return len(p.activeProbeCh)
|
||
|
}
|
||
|
|
||
|
// ticker wraps a time.Ticker in a way that can be faked for tests.
|
||
|
type ticker interface {
|
||
|
Chan() <-chan time.Time
|
||
|
Stop()
|
||
|
}
|
||
|
|
||
|
type realTicker struct {
|
||
|
*time.Ticker
|
||
|
}
|
||
|
|
||
|
func (t *realTicker) Chan() <-chan time.Time {
|
||
|
return t.Ticker.C
|
||
|
}
|
||
|
|
||
|
func newRealTicker(d time.Duration) ticker {
|
||
|
return &realTicker{time.NewTicker(d)}
|
||
|
}
|