tailscale/control/controlhttp/client.go

240 lines
7.5 KiB
Go
Raw Normal View History

// Copyright (c) 2021 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package controlhttp implements the Tailscale 2021 control protocol
// base transport over HTTP.
//
// This tunnels the protocol in control/controlbase over HTTP with a
// variety of compatibility fallbacks for handling picky or deep
// inspecting proxies.
//
// In the happy path, a client makes a single cleartext HTTP request
// to the server, the server responds with 101 Switching Protocols,
// and the control base protocol takes place over plain TCP.
//
// In the compatibility path, the client does the above over HTTPS,
// resulting in double encryption (once for the control transport, and
// once for the outer TLS layer).
package controlhttp
import (
"context"
"crypto/tls"
"encoding/base64"
"errors"
"fmt"
"io"
"log"
"net"
"net/http"
"net/http/httptrace"
"net/url"
"tailscale.com/control/controlbase"
"tailscale.com/net/dnscache"
"tailscale.com/net/dnsfallback"
"tailscale.com/net/netns"
"tailscale.com/net/netutil"
"tailscale.com/net/tlsdial"
"tailscale.com/net/tshttpproxy"
"tailscale.com/types/key"
)
const (
// upgradeHeader is the value of the Upgrade HTTP header used to
// indicate the Tailscale control protocol.
upgradeHeaderValue = "tailscale-control-protocol"
// handshakeHeaderName is the HTTP request header that can
// optionally contain base64-encoded initial handshake
// payload, to save an RTT.
handshakeHeaderName = "X-Tailscale-Handshake"
// serverUpgradePath is where the server-side HTTP handler to
// to do the protocol switch is located.
serverUpgradePath = "/ts2021"
)
// Dial connects to the HTTP server at addr, requests to switch to the
// Tailscale control protocol, and returns an established control
// protocol connection.
//
// If Dial fails to connect using addr, it also tries to tunnel over
// TLS to <addr's host>:443 as a compatibility fallback.
//
// The provided ctx is only used for the initial connection, until
// Dial returns. It does not affect the connection once established.
func Dial(ctx context.Context, addr string, machineKey key.MachinePrivate, controlKey key.MachinePublic, protocolVersion uint16) (*controlbase.Conn, error) {
host, port, err := net.SplitHostPort(addr)
if err != nil {
return nil, err
}
a := &dialParams{
ctx: ctx,
host: host,
httpPort: port,
httpsPort: "443",
machineKey: machineKey,
controlKey: controlKey,
version: protocolVersion,
proxyFunc: tshttpproxy.ProxyFromEnvironment,
}
return a.dial()
}
type dialParams struct {
ctx context.Context
host string
httpPort string
httpsPort string
machineKey key.MachinePrivate
controlKey key.MachinePublic
version uint16
proxyFunc func(*http.Request) (*url.URL, error) // or nil
// For tests only
insecureTLS bool
}
func (a *dialParams) dial() (*controlbase.Conn, error) {
init, cont, err := controlbase.ClientDeferred(a.machineKey, a.controlKey, a.version)
if err != nil {
return nil, err
}
u := &url.URL{
Scheme: "http",
Host: net.JoinHostPort(a.host, a.httpPort),
Path: serverUpgradePath,
}
conn, httpErr := a.tryURL(u, init)
if httpErr == nil {
ret, err := cont(a.ctx, conn)
if err != nil {
conn.Close()
return nil, err
}
return ret, nil
}
// Connecting over plain HTTP failed, assume it's an HTTP proxy
// being difficult and see if we can get through over HTTPS.
u.Scheme = "https"
u.Host = net.JoinHostPort(a.host, a.httpsPort)
init, cont, err = controlbase.ClientDeferred(a.machineKey, a.controlKey, a.version)
if err != nil {
return nil, err
}
conn, tlsErr := a.tryURL(u, init)
if tlsErr == nil {
ret, err := cont(a.ctx, conn)
if err != nil {
conn.Close()
return nil, err
}
return ret, nil
}
return nil, fmt.Errorf("all connection attempts failed (HTTP: %v, HTTPS: %v)", httpErr, tlsErr)
}
func (a *dialParams) tryURL(u *url.URL, init []byte) (net.Conn, error) {
dns := &dnscache.Resolver{
Forward: dnscache.Get().Forward,
LookupIPFallback: dnsfallback.Lookup,
UseLastGood: true,
}
dialer := netns.NewDialer(log.Printf)
tr := http.DefaultTransport.(*http.Transport).Clone()
defer tr.CloseIdleConnections()
tr.Proxy = a.proxyFunc
tshttpproxy.SetTransportGetProxyConnectHeader(tr)
tr.DialContext = dnscache.Dialer(dialer.DialContext, dns)
// Disable HTTP2, since h2 can't do protocol switching.
tr.TLSClientConfig.NextProtos = []string{}
tr.TLSNextProto = map[string]func(string, *tls.Conn) http.RoundTripper{}
tr.TLSClientConfig = tlsdial.Config(a.host, tr.TLSClientConfig)
if a.insecureTLS {
tr.TLSClientConfig.InsecureSkipVerify = true
tr.TLSClientConfig.VerifyConnection = nil
}
tr.DialTLSContext = dnscache.TLSDialer(dialer.DialContext, dns, tr.TLSClientConfig)
tr.DisableCompression = true
// (mis)use httptrace to extract the underlying net.Conn from the
// transport. We make exactly 1 request using this transport, so
// there will be exactly 1 GotConn call. Additionally, the
// transport handles 101 Switching Protocols correctly, such that
// the Conn will not be reused or kept alive by the transport once
// the response has been handed back from RoundTrip.
//
// In theory, the machinery of net/http should make it such that
// the trace callback happens-before we get the response, but
// there's no promise of that. So, to make sure, we use a buffered
// channel as a synchronization step to avoid data races.
//
// Note that even though we're able to extract a net.Conn via this
// mechanism, we must still keep using the eventual resp.Body to
// read from, because it includes a buffer we can't get rid of. If
// the server never sends any data after sending the HTTP
// response, we could get away with it, but violating this
// assumption leads to very mysterious transport errors (lockups,
// unexpected EOFs...), and we're bound to forget someday and
// introduce a protocol optimization at a higher level that starts
// eagerly transmitting from the server.
connCh := make(chan net.Conn, 1)
trace := httptrace.ClientTrace{
GotConn: func(info httptrace.GotConnInfo) {
connCh <- info.Conn
},
}
ctx := httptrace.WithClientTrace(a.ctx, &trace)
req := &http.Request{
Method: "POST",
URL: u,
Header: http.Header{
"Upgrade": []string{upgradeHeaderValue},
"Connection": []string{"upgrade"},
handshakeHeaderName: []string{base64.StdEncoding.EncodeToString(init)},
},
}
req = req.WithContext(ctx)
resp, err := tr.RoundTrip(req)
if err != nil {
return nil, err
}
if resp.StatusCode != http.StatusSwitchingProtocols {
return nil, fmt.Errorf("unexpected HTTP response: %s", resp.Status)
}
// From here on, the underlying net.Conn is ours to use, but there
// is still a read buffer attached to it within resp.Body. So, we
// must direct I/O through resp.Body, but we can still use the
// underlying net.Conn for stuff like deadlines.
var switchedConn net.Conn
select {
case switchedConn = <-connCh:
default:
}
if switchedConn == nil {
resp.Body.Close()
return nil, fmt.Errorf("httptrace didn't provide a connection")
}
if next := resp.Header.Get("Upgrade"); next != upgradeHeaderValue {
resp.Body.Close()
return nil, fmt.Errorf("server switched to unexpected protocol %q", next)
}
rwc, ok := resp.Body.(io.ReadWriteCloser)
if !ok {
resp.Body.Close()
return nil, errors.New("http Transport did not provide a writable body")
}
return netutil.NewAltReadWriteCloserConn(rwc, switchedConn), nil
}