prober: support adding key/value labels to probes. (#4250)

prober: add labels to Probe instances.

This allows especially dynamically-registered probes to have a bunch
more dimensions along which they can be sliced in Prometheus.

Signed-off-by: David Anderson <danderson@tailscale.com>
This commit is contained in:
Dave Anderson 2022-03-22 13:45:11 -07:00 committed by GitHub
parent f3b13604b3
commit 0968b2d55a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 246 additions and 120 deletions

View File

@ -9,13 +9,16 @@ package prober
import ( import (
"context" "context"
"encoding/json"
"errors" "errors"
"expvar"
"fmt" "fmt"
"io"
"log" "log"
"sort"
"strings"
"sync" "sync"
"time" "time"
"tailscale.com/metrics"
) )
// ProbeFunc is a function that probes something and reports whether // ProbeFunc is a function that probes something and reports whether
@ -29,33 +32,6 @@ type Prober struct {
now func() time.Time now func() time.Time
newTicker func(time.Duration) ticker newTicker func(time.Duration) ticker
// lastStart is the time, in seconds since epoch, of the last time
// each probe started a probe cycle.
lastStart metrics.LabelMap
// lastEnd is the time, in seconds since epoch, of the last time
// each probe finished a probe cycle.
lastEnd metrics.LabelMap
// lastResult records whether probes succeeded. A successful probe
// is recorded as 1, a failure as 0.
lastResult metrics.LabelMap
// lastLatency records how long the last probe cycle took for each
// probe, in milliseconds.
lastLatency metrics.LabelMap
// probeInterval records the time in seconds between successive
// runs of each probe.
//
// This is to help Prometheus figure out how long a probe should
// be failing before it fires an alert for it. To avoid random
// background noise, you want it to wait for more than 1
// datapoint, but you also can't use a fixed interval because some
// probes might run every few seconds, while e.g. TLS certificate
// expiry might only run once a day.
//
// So, for each probe, the prober tells Prometheus how often it
// runs, so that the alert can autotune itself to eliminate noise
// without being excessively delayed.
probeInterval metrics.LabelMap
mu sync.Mutex // protects all following fields mu sync.Mutex // protects all following fields
probes map[string]*Probe probes map[string]*Probe
} }
@ -67,32 +43,21 @@ func New() *Prober {
func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober { func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober {
return &Prober{ return &Prober{
now: now, now: now,
newTicker: newTicker, newTicker: newTicker,
lastStart: metrics.LabelMap{Label: "probe"}, probes: map[string]*Probe{},
lastEnd: metrics.LabelMap{Label: "probe"},
lastResult: metrics.LabelMap{Label: "probe"},
lastLatency: metrics.LabelMap{Label: "probe"},
probeInterval: metrics.LabelMap{Label: "probe"},
probes: map[string]*Probe{},
} }
} }
// Expvar returns the metrics for running probes. // Expvar returns the metrics for running probes.
func (p *Prober) Expvar() *metrics.Set { func (p *Prober) Expvar() expvar.Var {
ret := new(metrics.Set) return varExporter{p}
ret.Set("start_secs", &p.lastStart)
ret.Set("end_secs", &p.lastEnd)
ret.Set("result", &p.lastResult)
ret.Set("latency_millis", &p.lastLatency)
ret.Set("interval_secs", &p.probeInterval)
return ret
} }
// Run executes fun every interval, and exports probe results under probeName. // Run executes fun every interval, and exports probe results under probeName.
// //
// Registering a probe under an already-registered name panics. // Registering a probe under an already-registered name panics.
func (p *Prober) Run(name string, interval time.Duration, fun ProbeFunc) *Probe { func (p *Prober) Run(name string, interval time.Duration, labels map[string]string, fun ProbeFunc) *Probe {
p.mu.Lock() p.mu.Lock()
defer p.mu.Unlock() defer p.mu.Unlock()
if _, ok := p.probes[name]; ok { if _, ok := p.probes[name]; ok {
@ -111,9 +76,9 @@ func (p *Prober) Run(name string, interval time.Duration, fun ProbeFunc) *Probe
doProbe: fun, doProbe: fun,
interval: interval, interval: interval,
tick: ticker, tick: ticker,
labels: labels,
} }
p.probes[name] = probe p.probes[name] = probe
p.probeInterval.Get(name).Set(int64(interval.Seconds()))
go probe.loop() go probe.loop()
return probe return probe
} }
@ -123,11 +88,6 @@ func (p *Prober) unregister(probe *Probe) {
defer p.mu.Unlock() defer p.mu.Unlock()
name := probe.name name := probe.name
delete(p.probes, name) delete(p.probes, name)
p.lastStart.Delete(name)
p.lastEnd.Delete(name)
p.lastResult.Delete(name)
p.lastLatency.Delete(name)
p.probeInterval.Delete(name)
} }
// Reports the number of registered probes. For tests only. // Reports the number of registered probes. For tests only.
@ -149,6 +109,12 @@ type Probe struct {
doProbe ProbeFunc doProbe ProbeFunc
interval time.Duration interval time.Duration
tick ticker tick ticker
labels map[string]string
mu sync.Mutex
start time.Time // last time doProbe started
end time.Time // last time doProbe returned
result bool // whether the last doProbe call succeeded
} }
// Close shuts down the Probe and unregisters it from its Prober. // Close shuts down the Probe and unregisters it from its Prober.
@ -183,7 +149,7 @@ func (p *Probe) loop() {
// the probe either succeeds or fails before the next cycle is // the probe either succeeds or fails before the next cycle is
// scheduled to start. // scheduled to start.
func (p *Probe) run() { func (p *Probe) run() {
start := p.start() start := p.recordStart()
defer func() { defer func() {
// Prevent a panic within one probe function from killing the // Prevent a panic within one probe function from killing the
// entire prober, so that a single buggy probe doesn't destroy // entire prober, so that a single buggy probe doesn't destroy
@ -192,7 +158,7 @@ func (p *Probe) run() {
// alert for debugging. // alert for debugging.
if r := recover(); r != nil { if r := recover(); r != nil {
log.Printf("probe %s panicked: %v", p.name, r) log.Printf("probe %s panicked: %v", p.name, r)
p.end(start, errors.New("panic")) p.recordEnd(start, errors.New("panic"))
} }
}() }()
timeout := time.Duration(float64(p.interval) * 0.8) timeout := time.Duration(float64(p.interval) * 0.8)
@ -200,27 +166,131 @@ func (p *Probe) run() {
defer cancel() defer cancel()
err := p.doProbe(ctx) err := p.doProbe(ctx)
p.end(start, err) p.recordEnd(start, err)
if err != nil { if err != nil {
log.Printf("probe %s: %v", p.name, err) log.Printf("probe %s: %v", p.name, err)
} }
} }
func (p *Probe) start() time.Time { func (p *Probe) recordStart() time.Time {
st := p.prober.now() st := p.prober.now()
p.prober.lastStart.Get(p.name).Set(st.Unix()) p.mu.Lock()
defer p.mu.Unlock()
p.start = st
return st return st
} }
func (p *Probe) end(start time.Time, err error) { func (p *Probe) recordEnd(start time.Time, err error) {
end := p.prober.now() end := p.prober.now()
p.prober.lastEnd.Get(p.name).Set(end.Unix()) p.mu.Lock()
p.prober.lastLatency.Get(p.name).Set(end.Sub(start).Milliseconds()) defer p.mu.Unlock()
v := int64(1) p.end = end
if err != nil { p.result = err == nil
v = 0 }
type varExporter struct {
p *Prober
}
// probeInfo is the state of a Probe. Used in expvar-format debug
// data.
type probeInfo struct {
Labels map[string]string
Start time.Time
End time.Time
Latency string // as a string because time.Duration doesn't encode readably to JSON
Result bool
}
// String implements expvar.Var, returning the prober's state as an
// encoded JSON map of probe name to its probeInfo.
func (v varExporter) String() string {
out := map[string]probeInfo{}
v.p.mu.Lock()
probes := make([]*Probe, 0, len(v.p.probes))
for _, probe := range v.p.probes {
probes = append(probes, probe)
}
v.p.mu.Unlock()
for _, probe := range probes {
probe.mu.Lock()
inf := probeInfo{
Labels: probe.labels,
Start: probe.start,
End: probe.end,
Result: probe.result,
}
if probe.end.After(probe.start) {
inf.Latency = probe.end.Sub(probe.start).String()
}
out[probe.name] = inf
probe.mu.Unlock()
}
bs, err := json.Marshal(out)
if err != nil {
return fmt.Sprintf(`{"error": %q}`, err)
}
return string(bs)
}
// WritePrometheus writes the the state of all probes to w.
//
// For each probe, WritePrometheus exports 5 variables:
// - <prefix>_interval_secs, how frequently the probe runs.
// - <prefix>_start_secs, when the probe last started running, in seconds since epoch.
// - <prefix>_end_secs, when the probe last finished running, in seconds since epoch.
// - <prefix>_latency_millis, how long the last probe cycle took, in
// milliseconds. This is just (end_secs-start_secs) in an easier to
// graph form.
// - <prefix>_result, 1 if the last probe succeeded, 0 if it failed.
//
// Each probe has a set of static key/value labels (defined once at
// probe creation), which are added as Prometheus metric labels to
// that probe's variables.
func (v varExporter) WritePrometheus(w io.Writer, prefix string) {
v.p.mu.Lock()
probes := make([]*Probe, 0, len(v.p.probes))
for _, probe := range v.p.probes {
probes = append(probes, probe)
}
v.p.mu.Unlock()
sort.Slice(probes, func(i, j int) bool {
return probes[i].name < probes[j].name
})
for _, probe := range probes {
probe.mu.Lock()
keys := make([]string, 0, len(probe.labels))
for k := range probe.labels {
keys = append(keys, k)
}
sort.Strings(keys)
var sb strings.Builder
fmt.Fprintf(&sb, "name=%q", probe.name)
for _, k := range keys {
fmt.Fprintf(&sb, ",%s=%q", k, probe.labels[k])
}
labels := sb.String()
fmt.Fprintf(w, "%s_interval_secs{%s} %f\n", prefix, labels, probe.interval.Seconds())
if !probe.start.IsZero() {
fmt.Fprintf(w, "%s_start_secs{%s} %d\n", prefix, labels, probe.start.Unix())
}
if !probe.end.IsZero() {
fmt.Fprintf(w, "%s_end_secs{%s} %d\n", prefix, labels, probe.end.Unix())
// Start is always present if end is.
fmt.Fprintf(w, "%s_latency_millis{%s} %d\n", prefix, labels, probe.end.Sub(probe.start).Milliseconds())
if probe.result {
fmt.Fprintf(w, "%s_result{%s} 1\n", prefix, labels)
} else {
fmt.Fprintf(w, "%s_result{%s} 0\n", prefix, labels)
}
}
probe.mu.Unlock()
} }
p.prober.lastResult.Get(p.name).Set(v)
} }
// ticker wraps a time.Ticker in a way that can be faked for tests. // ticker wraps a time.Ticker in a way that can be faked for tests.

View File

@ -5,6 +5,7 @@
package prober package prober
import ( import (
"bytes"
"context" "context"
"encoding/json" "encoding/json"
"errors" "errors"
@ -14,8 +15,10 @@ import (
"testing" "testing"
"time" "time"
"github.com/google/go-cmp/cmp"
"tailscale.com/syncs" "tailscale.com/syncs"
"tailscale.com/tstest" "tailscale.com/tstest"
"tailscale.com/tsweb"
) )
const ( const (
@ -24,6 +27,7 @@ const (
quarterProbeInterval = probeInterval / 4 quarterProbeInterval = probeInterval / 4
convergenceTimeout = time.Second convergenceTimeout = time.Second
convergenceSleep = time.Millisecond convergenceSleep = time.Millisecond
aFewMillis = 20 * time.Millisecond
) )
var epoch = time.Unix(0, 0) var epoch = time.Unix(0, 0)
@ -51,7 +55,7 @@ func TestProberTiming(t *testing.T) {
} }
} }
p.Run("test-probe", probeInterval, func(context.Context) error { p.Run("test-probe", probeInterval, nil, func(context.Context) error {
invoked <- struct{}{} invoked <- struct{}{}
return nil return nil
}) })
@ -83,7 +87,7 @@ func TestProberRun(t *testing.T) {
var probes []*Probe var probes []*Probe
for i := 0; i < startingProbes; i++ { for i := 0; i < startingProbes; i++ {
probes = append(probes, p.Run(fmt.Sprintf("probe%d", i), probeInterval, func(context.Context) error { probes = append(probes, p.Run(fmt.Sprintf("probe%d", i), probeInterval, nil, func(context.Context) error {
mu.Lock() mu.Lock()
defer mu.Unlock() defer mu.Unlock()
cnt++ cnt++
@ -92,6 +96,7 @@ func TestProberRun(t *testing.T) {
} }
checkCnt := func(want int) { checkCnt := func(want int) {
t.Helper()
err := tstest.WaitFor(convergenceTimeout, func() error { err := tstest.WaitFor(convergenceTimeout, func() error {
mu.Lock() mu.Lock()
defer mu.Unlock() defer mu.Unlock()
@ -126,9 +131,8 @@ func TestExpvar(t *testing.T) {
clk := newFakeTime() clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker) p := newForTest(clk.Now, clk.NewTicker)
const aFewMillis = 20 * time.Millisecond
var succeed syncs.AtomicBool var succeed syncs.AtomicBool
p.Run("probe", probeInterval, func(context.Context) error { p.Run("probe", probeInterval, map[string]string{"label": "value"}, func(context.Context) error {
clk.Advance(aFewMillis) clk.Advance(aFewMillis)
if succeed.Get() { if succeed.Get() {
return nil return nil
@ -138,20 +142,106 @@ func TestExpvar(t *testing.T) {
waitActiveProbes(t, p, 1) waitActiveProbes(t, p, 1)
waitExpInt(t, p, "start_secs/probe", 0) check := func(name string, want probeInfo) {
waitExpInt(t, p, "end_secs/probe", 0) t.Helper()
waitExpInt(t, p, "interval_secs/probe", int(probeInterval.Seconds())) err := tstest.WaitFor(convergenceTimeout, func() error {
waitExpInt(t, p, "latency_millis/probe", int(aFewMillis.Milliseconds())) vars := probeExpvar(t, p)
waitExpInt(t, p, "result/probe", 0) if got, want := len(vars), 1; got != want {
return fmt.Errorf("wrong probe count in expvar, got %d want %d", got, want)
}
for k, v := range vars {
if k != name {
return fmt.Errorf("wrong probe name in expvar, got %q want %q", k, name)
}
if diff := cmp.Diff(v, &want); diff != "" {
return fmt.Errorf("wrong probe stats (-got+want):\n%s", diff)
}
}
return nil
})
if err != nil {
t.Fatal(err)
}
}
check("probe", probeInfo{
Labels: map[string]string{"label": "value"},
Start: epoch,
End: epoch.Add(aFewMillis),
Latency: aFewMillis.String(),
Result: false,
})
succeed.Set(true) succeed.Set(true)
clk.Advance(probeInterval + halfProbeInterval) clk.Advance(probeInterval + halfProbeInterval)
waitExpInt(t, p, "start_secs/probe", int((probeInterval + halfProbeInterval).Seconds())) st := epoch.Add(probeInterval + halfProbeInterval + aFewMillis)
waitExpInt(t, p, "end_secs/probe", int((probeInterval + halfProbeInterval).Seconds())) check("probe", probeInfo{
waitExpInt(t, p, "interval_secs/probe", int(probeInterval.Seconds())) Labels: map[string]string{"label": "value"},
waitExpInt(t, p, "latency_millis/probe", int(aFewMillis.Milliseconds())) Start: st,
waitExpInt(t, p, "result/probe", 1) End: st.Add(aFewMillis),
Latency: aFewMillis.String(),
Result: true,
})
}
func TestPrometheus(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker)
var succeed syncs.AtomicBool
p.Run("testprobe", probeInterval, map[string]string{"label": "value"}, func(context.Context) error {
clk.Advance(aFewMillis)
if succeed.Get() {
return nil
}
return errors.New("failing, as instructed by test")
})
waitActiveProbes(t, p, 1)
err := tstest.WaitFor(convergenceTimeout, func() error {
var b bytes.Buffer
p.Expvar().(tsweb.PrometheusVar).WritePrometheus(&b, "probe")
want := strings.TrimSpace(fmt.Sprintf(`
probe_interval_secs{name="testprobe",label="value"} %f
probe_start_secs{name="testprobe",label="value"} %d
probe_end_secs{name="testprobe",label="value"} %d
probe_latency_millis{name="testprobe",label="value"} %d
probe_result{name="testprobe",label="value"} 0
`, probeInterval.Seconds(), epoch.Unix(), epoch.Add(aFewMillis).Unix(), aFewMillis.Milliseconds()))
if diff := cmp.Diff(strings.TrimSpace(b.String()), want); diff != "" {
return fmt.Errorf("wrong probe stats (-got+want):\n%s", diff)
}
return nil
})
if err != nil {
t.Fatal(err)
}
succeed.Set(true)
clk.Advance(probeInterval + halfProbeInterval)
err = tstest.WaitFor(convergenceTimeout, func() error {
var b bytes.Buffer
p.Expvar().(tsweb.PrometheusVar).WritePrometheus(&b, "probe")
start := epoch.Add(probeInterval + halfProbeInterval)
end := start.Add(aFewMillis)
want := strings.TrimSpace(fmt.Sprintf(`
probe_interval_secs{name="testprobe",label="value"} %f
probe_start_secs{name="testprobe",label="value"} %d
probe_end_secs{name="testprobe",label="value"} %d
probe_latency_millis{name="testprobe",label="value"} %d
probe_result{name="testprobe",label="value"} 1
`, probeInterval.Seconds(), start.Unix(), end.Unix(), aFewMillis.Milliseconds()))
if diff := cmp.Diff(strings.TrimSpace(b.String()), want); diff != "" {
return fmt.Errorf("wrong probe stats (-got+want):\n%s", diff)
}
return nil
})
if err != nil {
t.Fatal(err)
}
} }
type fakeTicker struct { type fakeTicker struct {
@ -185,7 +275,9 @@ func (t *fakeTicker) fire(now time.Time) {
case t.ch <- now: case t.ch <- now:
default: default:
} }
t.next = now.Add(t.interval) for now.After(t.next) {
t.next = t.next.Add(t.interval)
}
} }
type fakeTime struct { type fakeTime struct {
@ -200,7 +292,6 @@ func newFakeTime() *fakeTime {
curTime: epoch, curTime: epoch,
} }
ret.Cond = &sync.Cond{L: &ret.Mutex} ret.Cond = &sync.Cond{L: &ret.Mutex}
ret.Advance(time.Duration(1)) // so that Now never IsZero
return ret return ret
} }
@ -208,8 +299,6 @@ func (t *fakeTime) Now() time.Time {
t.Lock() t.Lock()
defer t.Unlock() defer t.Unlock()
ret := t.curTime ret := t.curTime
// so that time always seems to advance for the program under test
t.curTime = t.curTime.Add(time.Microsecond)
return ret return ret
} }
@ -237,47 +326,14 @@ func (t *fakeTime) Advance(d time.Duration) {
} }
} }
func waitExpInt(t *testing.T, p *Prober, path string, want int) { func probeExpvar(t *testing.T, p *Prober) map[string]*probeInfo {
t.Helper()
err := tstest.WaitFor(convergenceTimeout, func() error {
got, ok := getExpInt(t, p, path)
if !ok {
return fmt.Errorf("expvar %q did not get set", path)
}
if got != want {
return fmt.Errorf("expvar %q is %d, want %d", path, got, want)
}
return nil
})
if err != nil {
t.Fatal(err)
}
}
func getExpInt(t *testing.T, p *Prober, path string) (ret int, ok bool) {
t.Helper() t.Helper()
s := p.Expvar().String() s := p.Expvar().String()
dec := map[string]interface{}{} ret := map[string]*probeInfo{}
if err := json.Unmarshal([]byte(s), &dec); err != nil { if err := json.Unmarshal([]byte(s), &ret); err != nil {
t.Fatalf("couldn't unmarshal expvar data: %v", err) t.Fatalf("expvar json decode failed: %v", err)
} }
var v interface{} = dec return ret
for _, d := range strings.Split(path, "/") {
m, ok := v.(map[string]interface{})
if !ok {
t.Fatalf("expvar path %q ended early with a leaf value", path)
}
child, ok := m[d]
if !ok {
return 0, false
}
v = child
}
f, ok := v.(float64)
if !ok {
return 0, false
}
return int(f), true
} }
func waitActiveProbes(t *testing.T, p *Prober, want int) { func waitActiveProbes(t *testing.T, p *Prober, want int) {