wgengine/magicsock,all: allocate peer relay over disco instead of PeerAPI (#16603)

Updates tailscale/corp#30583
Updates tailscale/corp#30534
Updates tailscale/corp#30557

Signed-off-by: Dylan Bargatze <dylan@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Co-authored-by: Dylan Bargatze <dylan@tailscale.com>
This commit is contained in:
Jordan Whited
2025-07-21 10:02:37 -07:00
committed by GitHub
parent 5d4e67fd93
commit 1677fb1905
16 changed files with 1290 additions and 743 deletions

View File

@@ -175,13 +175,15 @@ type Conn struct {
// These [eventbus.Subscriber] fields are solely accessed by
// consumeEventbusTopics once initialized.
pmSub *eventbus.Subscriber[portmapper.Mapping]
filterSub *eventbus.Subscriber[FilterUpdate]
nodeViewsSub *eventbus.Subscriber[NodeViewsUpdate]
nodeMutsSub *eventbus.Subscriber[NodeMutationsUpdate]
syncSub *eventbus.Subscriber[syncPoint]
syncPub *eventbus.Publisher[syncPoint]
subsDoneCh chan struct{} // closed when consumeEventbusTopics returns
pmSub *eventbus.Subscriber[portmapper.Mapping]
filterSub *eventbus.Subscriber[FilterUpdate]
nodeViewsSub *eventbus.Subscriber[NodeViewsUpdate]
nodeMutsSub *eventbus.Subscriber[NodeMutationsUpdate]
syncSub *eventbus.Subscriber[syncPoint]
syncPub *eventbus.Publisher[syncPoint]
allocRelayEndpointPub *eventbus.Publisher[UDPRelayAllocReq]
allocRelayEndpointSub *eventbus.Subscriber[UDPRelayAllocResp]
subsDoneCh chan struct{} // closed when consumeEventbusTopics returns
// pconn4 and pconn6 are the underlying UDP sockets used to
// send/receive packets for wireguard and other magicsock
@@ -271,6 +273,14 @@ type Conn struct {
// captureHook, if non-nil, is the pcap logging callback when capturing.
captureHook syncs.AtomicValue[packet.CaptureCallback]
// hasPeerRelayServers is whether [relayManager] is configured with at least
// one peer relay server via [relayManager.handleRelayServersSet]. It is
// only accessed by [Conn.updateRelayServersSet], [endpoint.setDERPHome],
// and [endpoint.discoverUDPRelayPathsLocked]. It exists to suppress
// calls into [relayManager] leading to wasted work involving channel
// operations and goroutine creation.
hasPeerRelayServers atomic.Bool
// discoPrivate is the private naclbox key used for active
// discovery traffic. It is always present, and immutable.
discoPrivate key.DiscoPrivate
@@ -567,6 +577,36 @@ func (s syncPoint) Signal() {
close(s)
}
// UDPRelayAllocReq represents a [*disco.AllocateUDPRelayEndpointRequest]
// reception event. This is signaled over an [eventbus.Bus] from
// [magicsock.Conn] towards [relayserver.extension].
type UDPRelayAllocReq struct {
// RxFromNodeKey is the unauthenticated (DERP server claimed src) node key
// of the transmitting party, noted at disco message reception time over
// DERP. This node key is unambiguously-aligned with RxFromDiscoKey being
// that the disco message is received over DERP.
RxFromNodeKey key.NodePublic
// RxFromDiscoKey is the disco key of the transmitting party, noted and
// authenticated at reception time.
RxFromDiscoKey key.DiscoPublic
// Message is the disco message.
Message *disco.AllocateUDPRelayEndpointRequest
}
// UDPRelayAllocResp represents a [*disco.AllocateUDPRelayEndpointResponse]
// that is yet to be transmitted over DERP (or delivered locally if
// ReqRxFromNodeKey is self). This is signaled over an [eventbus.Bus] from
// [relayserver.extension] towards [magicsock.Conn].
type UDPRelayAllocResp struct {
// ReqRxFromNodeKey is copied from [UDPRelayAllocReq.RxFromNodeKey]. It
// enables peer lookup leading up to transmission over DERP.
ReqRxFromNodeKey key.NodePublic
// ReqRxFromDiscoKey is copied from [UDPRelayAllocReq.RxFromDiscoKey].
ReqRxFromDiscoKey key.DiscoPublic
// Message is the disco message.
Message *disco.AllocateUDPRelayEndpointResponse
}
// newConn is the error-free, network-listening-side-effect-free based
// of NewConn. Mostly for tests.
func newConn(logf logger.Logf) *Conn {
@@ -625,10 +665,40 @@ func (c *Conn) consumeEventbusTopics() {
case syncPoint := <-c.syncSub.Events():
c.dlogf("magicsock: received sync point after reconfig")
syncPoint.Signal()
case allocResp := <-c.allocRelayEndpointSub.Events():
c.onUDPRelayAllocResp(allocResp)
}
}
}
func (c *Conn) onUDPRelayAllocResp(allocResp UDPRelayAllocResp) {
c.mu.Lock()
defer c.mu.Unlock()
ep, ok := c.peerMap.endpointForNodeKey(allocResp.ReqRxFromNodeKey)
if !ok {
// If it's not a peer, it might be for self (we can peer relay through
// ourselves), in which case we want to hand it down to [relayManager]
// now versus taking a network round-trip through DERP.
selfNodeKey := c.publicKeyAtomic.Load()
if selfNodeKey.Compare(allocResp.ReqRxFromNodeKey) == 0 &&
allocResp.ReqRxFromDiscoKey.Compare(c.discoPublic) == 0 {
c.relayManager.handleRxDiscoMsg(c, allocResp.Message, selfNodeKey, allocResp.ReqRxFromDiscoKey, epAddr{})
}
return
}
disco := ep.disco.Load()
if disco == nil {
return
}
if disco.key.Compare(allocResp.ReqRxFromDiscoKey) != 0 {
return
}
ep.mu.Lock()
defer ep.mu.Unlock()
derpAddr := ep.derpAddr
go c.sendDiscoMessage(epAddr{ap: derpAddr}, ep.publicKey, disco.key, allocResp.Message, discoVerboseLog)
}
// Synchronize waits for all [eventbus] events published
// prior to this call to be processed by the receiver.
func (c *Conn) Synchronize() {
@@ -670,6 +740,8 @@ func NewConn(opts Options) (*Conn, error) {
c.nodeMutsSub = eventbus.Subscribe[NodeMutationsUpdate](c.eventClient)
c.syncSub = eventbus.Subscribe[syncPoint](c.eventClient)
c.syncPub = eventbus.Publish[syncPoint](c.eventClient)
c.allocRelayEndpointPub = eventbus.Publish[UDPRelayAllocReq](c.eventClient)
c.allocRelayEndpointSub = eventbus.Subscribe[UDPRelayAllocResp](c.eventClient)
c.subsDoneCh = make(chan struct{})
go c.consumeEventbusTopics()
}
@@ -1847,6 +1919,24 @@ func (v *virtualNetworkID) get() uint32 {
return v._vni & vniGetMask
}
// sendDiscoAllocateUDPRelayEndpointRequest is primarily an alias for
// sendDiscoMessage, but it will alternatively send m over the eventbus if dst
// is a DERP IP:port, and dstKey is self. This saves a round-trip through DERP
// when we are attempting to allocate on a self (in-process) peer relay server.
func (c *Conn) sendDiscoAllocateUDPRelayEndpointRequest(dst epAddr, dstKey key.NodePublic, dstDisco key.DiscoPublic, allocReq *disco.AllocateUDPRelayEndpointRequest, logLevel discoLogLevel) (sent bool, err error) {
isDERP := dst.ap.Addr() == tailcfg.DerpMagicIPAddr
selfNodeKey := c.publicKeyAtomic.Load()
if isDERP && dstKey.Compare(selfNodeKey) == 0 {
c.allocRelayEndpointPub.Publish(UDPRelayAllocReq{
RxFromNodeKey: selfNodeKey,
RxFromDiscoKey: c.discoPublic,
Message: allocReq,
})
return true, nil
}
return c.sendDiscoMessage(dst, dstKey, dstDisco, allocReq, logLevel)
}
// sendDiscoMessage sends discovery message m to dstDisco at dst.
//
// If dst.ap is a DERP IP:port, then dstKey must be non-zero.
@@ -2176,7 +2266,7 @@ func (c *Conn) handleDiscoMessage(msg []byte, src epAddr, shouldBeRelayHandshake
c.logf("[unexpected] %T packets should not come from a relay server with Geneve control bit set", dm)
return
}
c.relayManager.handleGeneveEncapDiscoMsg(c, challenge, di, src)
c.relayManager.handleRxDiscoMsg(c, challenge, key.NodePublic{}, di.discoKey, src)
return
}
@@ -2201,7 +2291,7 @@ func (c *Conn) handleDiscoMessage(msg []byte, src epAddr, shouldBeRelayHandshake
// If it's an unknown TxID, and it's Geneve-encapsulated, then
// make [relayManager] aware. It might be in the middle of probing
// src.
c.relayManager.handleGeneveEncapDiscoMsg(c, dm, di, src)
c.relayManager.handleRxDiscoMsg(c, dm, key.NodePublic{}, di.discoKey, src)
}
case *disco.CallMeMaybe, *disco.CallMeMaybeVia:
var via *disco.CallMeMaybeVia
@@ -2276,7 +2366,95 @@ func (c *Conn) handleDiscoMessage(msg []byte, src epAddr, shouldBeRelayHandshake
len(cmm.MyNumber))
go ep.handleCallMeMaybe(cmm)
}
case *disco.AllocateUDPRelayEndpointRequest, *disco.AllocateUDPRelayEndpointResponse:
var resp *disco.AllocateUDPRelayEndpointResponse
isResp := false
msgType := "AllocateUDPRelayEndpointRequest"
req, ok := dm.(*disco.AllocateUDPRelayEndpointRequest)
if ok {
metricRecvDiscoAllocUDPRelayEndpointRequest.Add(1)
} else {
metricRecvDiscoAllocUDPRelayEndpointResponse.Add(1)
resp = dm.(*disco.AllocateUDPRelayEndpointResponse)
msgType = "AllocateUDPRelayEndpointResponse"
isResp = true
}
if !isDERP {
// These messages should only come via DERP.
c.logf("[unexpected] %s packets should only come via DERP", msgType)
return
}
nodeKey := derpNodeSrc
ep, ok := c.peerMap.endpointForNodeKey(nodeKey)
if !ok {
c.logf("magicsock: disco: ignoring %s from %v; %v is unknown", msgType, sender.ShortString(), derpNodeSrc.ShortString())
return
}
epDisco := ep.disco.Load()
if epDisco == nil {
return
}
if epDisco.key != di.discoKey {
if isResp {
metricRecvDiscoAllocUDPRelayEndpointResponseBadDisco.Add(1)
} else {
metricRecvDiscoAllocUDPRelayEndpointRequestBadDisco.Add(1)
}
c.logf("[unexpected] %s from peer via DERP whose netmap discokey != disco source", msgType)
return
}
if isResp {
c.dlogf("[v1] magicsock: disco: %v<-%v (%v, %v) got %s, %d endpoints",
c.discoShort, epDisco.short,
ep.publicKey.ShortString(), derpStr(src.String()),
msgType,
len(resp.AddrPorts))
c.relayManager.handleRxDiscoMsg(c, resp, nodeKey, di.discoKey, src)
return
} else if sender.Compare(req.ClientDisco[0]) != 0 && sender.Compare(req.ClientDisco[1]) != 0 {
// An allocation request must contain the sender's disco key in
// ClientDisco. One of the relay participants must be the sender.
c.logf("magicsock: disco: %s from %v; %v does not contain sender's disco key",
msgType, sender.ShortString(), derpNodeSrc.ShortString())
return
} else {
c.dlogf("[v1] magicsock: disco: %v<-%v (%v, %v) got %s, for %d<->%d",
c.discoShort, epDisco.short,
ep.publicKey.ShortString(), derpStr(src.String()),
msgType,
req.ClientDisco[0], req.ClientDisco[1])
}
if c.filt == nil {
return
}
// Binary search of peers is O(log n) while c.mu is held.
// TODO: We might be able to use ep.nodeAddr instead of all addresses,
// or we might be able to release c.mu before doing this work. Keep it
// simple and slow for now. c.peers.AsSlice is a copy. We may need to
// write our own binary search for a [views.Slice].
peerI, ok := slices.BinarySearchFunc(c.peers.AsSlice(), ep.nodeID, func(peer tailcfg.NodeView, target tailcfg.NodeID) int {
if peer.ID() < target {
return -1
} else if peer.ID() > target {
return 1
}
return 0
})
if !ok {
// unexpected
return
}
if !nodeHasCap(c.filt, c.peers.At(peerI), c.self, tailcfg.PeerCapabilityRelay) {
return
}
c.allocRelayEndpointPub.Publish(UDPRelayAllocReq{
RxFromDiscoKey: sender,
RxFromNodeKey: nodeKey,
Message: req,
})
}
return
}
@@ -2337,7 +2515,7 @@ func (c *Conn) handlePingLocked(dm *disco.Ping, src epAddr, di *discoInfo, derpN
// Geneve-encapsulated [disco.Ping] messages in the interest of
// simplicity. It might be in the middle of probing src, so it must be
// made aware.
c.relayManager.handleGeneveEncapDiscoMsg(c, dm, di, src)
c.relayManager.handleRxDiscoMsg(c, dm, key.NodePublic{}, di.discoKey, src)
return
}
@@ -2687,7 +2865,7 @@ func (c *Conn) SetProbeUDPLifetime(v bool) {
// capVerIsRelayCapable returns true if version is relay client and server
// capable, otherwise it returns false.
func capVerIsRelayCapable(version tailcfg.CapabilityVersion) bool {
return version >= 120
return version >= 121
}
// onFilterUpdate is called when a [FilterUpdate] is received over the
@@ -2715,6 +2893,11 @@ func (c *Conn) onFilterUpdate(f FilterUpdate) {
// peers are passed as args (vs c.mu-guarded fields) to enable callers to
// release c.mu before calling as this is O(m * n) (we iterate all cap rules 'm'
// in filt for every peer 'n').
//
// Calls to updateRelayServersSet must never run concurrent to
// [endpoint.setDERPHome], otherwise [candidatePeerRelay] DERP home changes may
// be missed from the perspective of [relayManager].
//
// TODO: Optimize this so that it's not O(m * n). This might involve:
// 1. Changes to [filter.Filter], e.g. adding a CapsWithValues() to check for
// a given capability instead of building and returning a map of all of
@@ -2722,69 +2905,75 @@ func (c *Conn) onFilterUpdate(f FilterUpdate) {
// 2. Moving this work upstream into [nodeBackend] or similar, and publishing
// the computed result over the eventbus instead.
func (c *Conn) updateRelayServersSet(filt *filter.Filter, self tailcfg.NodeView, peers views.Slice[tailcfg.NodeView]) {
relayServers := make(set.Set[netip.AddrPort])
relayServers := make(set.Set[candidatePeerRelay])
nodes := append(peers.AsSlice(), self)
for _, maybeCandidate := range nodes {
peerAPI := peerAPIIfCandidateRelayServer(filt, self, maybeCandidate)
if peerAPI.IsValid() {
relayServers.Add(peerAPI)
}
}
c.relayManager.handleRelayServersSet(relayServers)
}
// peerAPIIfCandidateRelayServer returns the peer API address of maybeCandidate
// if it is considered to be a candidate relay server upon evaluation against
// filt and self, otherwise it returns a zero value. self and maybeCandidate
// may be equal.
func peerAPIIfCandidateRelayServer(filt *filter.Filter, self, maybeCandidate tailcfg.NodeView) netip.AddrPort {
if filt == nil ||
!self.Valid() ||
!maybeCandidate.Valid() ||
!maybeCandidate.Hostinfo().Valid() {
return netip.AddrPort{}
}
if maybeCandidate.ID() != self.ID() && !capVerIsRelayCapable(maybeCandidate.Cap()) {
// If maybeCandidate's [tailcfg.CapabilityVersion] is not relay-capable,
// we skip it. If maybeCandidate happens to be self, then this check is
// unnecessary as self is always capable from this point (the statically
// compiled [tailcfg.CurrentCapabilityVersion]) forward.
return netip.AddrPort{}
}
for _, maybeCandidatePrefix := range maybeCandidate.Addresses().All() {
if !maybeCandidatePrefix.IsSingleIP() {
if maybeCandidate.ID() != self.ID() && !capVerIsRelayCapable(maybeCandidate.Cap()) {
// If maybeCandidate's [tailcfg.CapabilityVersion] is not relay-capable,
// we skip it. If maybeCandidate happens to be self, then this check is
// unnecessary as self is always capable from this point (the statically
// compiled [tailcfg.CurrentCapabilityVersion]) forward.
continue
}
maybeCandidateAddr := maybeCandidatePrefix.Addr()
for _, selfPrefix := range self.Addresses().All() {
if !selfPrefix.IsSingleIP() {
if !nodeHasCap(filt, maybeCandidate, self, tailcfg.PeerCapabilityRelayTarget) {
continue
}
relayServers.Add(candidatePeerRelay{
nodeKey: maybeCandidate.Key(),
discoKey: maybeCandidate.DiscoKey(),
derpHomeRegionID: uint16(maybeCandidate.HomeDERP()),
})
}
c.relayManager.handleRelayServersSet(relayServers)
if len(relayServers) > 0 {
c.hasPeerRelayServers.Store(true)
} else {
c.hasPeerRelayServers.Store(false)
}
}
// nodeHasCap returns true if src has cap on dst, otherwise it returns false.
func nodeHasCap(filt *filter.Filter, src, dst tailcfg.NodeView, cap tailcfg.PeerCapability) bool {
if filt == nil ||
!src.Valid() ||
!dst.Valid() {
return false
}
for _, srcPrefix := range src.Addresses().All() {
if !srcPrefix.IsSingleIP() {
continue
}
srcAddr := srcPrefix.Addr()
for _, dstPrefix := range dst.Addresses().All() {
if !dstPrefix.IsSingleIP() {
continue
}
selfAddr := selfPrefix.Addr()
if selfAddr.BitLen() == maybeCandidateAddr.BitLen() { // same address family
if filt.CapsWithValues(maybeCandidateAddr, selfAddr).HasCapability(tailcfg.PeerCapabilityRelayTarget) {
for _, s := range maybeCandidate.Hostinfo().Services().All() {
if maybeCandidateAddr.Is4() && s.Proto == tailcfg.PeerAPI4 ||
maybeCandidateAddr.Is6() && s.Proto == tailcfg.PeerAPI6 {
return netip.AddrPortFrom(maybeCandidateAddr, s.Port)
}
}
return netip.AddrPort{} // no peerAPI
} else {
// [nodeBackend.peerCapsLocked] only returns/considers the
// [tailcfg.PeerCapMap] between the passed src and the
// _first_ host (/32 or /128) address for self. We are
// consistent with that behavior here. If self and
// maybeCandidate host addresses are of the same address
// family they either have the capability or not. We do not
// check against additional host addresses of the same
// address family.
return netip.AddrPort{}
}
dstAddr := dstPrefix.Addr()
if dstAddr.BitLen() == srcAddr.BitLen() { // same address family
// [nodeBackend.peerCapsLocked] only returns/considers the
// [tailcfg.PeerCapMap] between the passed src and the _first_
// host (/32 or /128) address for self. We are consistent with
// that behavior here. If src and dst host addresses are of the
// same address family they either have the capability or not.
// We do not check against additional host addresses of the same
// address family.
return filt.CapsWithValues(srcAddr, dstAddr).HasCapability(cap)
}
}
}
return netip.AddrPort{}
return false
}
// candidatePeerRelay represents the identifiers and DERP home region ID for a
// peer relay server.
type candidatePeerRelay struct {
nodeKey key.NodePublic
discoKey key.DiscoPublic
derpHomeRegionID uint16
}
func (c *candidatePeerRelay) isValid() bool {
return !c.nodeKey.IsZero() && !c.discoKey.IsZero()
}
// onNodeViewsUpdate is called when a [NodeViewsUpdate] is received over the
@@ -3792,18 +3981,22 @@ var (
metricRecvDiscoBadKey = clientmetric.NewCounter("magicsock_disco_recv_bad_key")
metricRecvDiscoBadParse = clientmetric.NewCounter("magicsock_disco_recv_bad_parse")
metricRecvDiscoUDP = clientmetric.NewCounter("magicsock_disco_recv_udp")
metricRecvDiscoDERP = clientmetric.NewCounter("magicsock_disco_recv_derp")
metricRecvDiscoPing = clientmetric.NewCounter("magicsock_disco_recv_ping")
metricRecvDiscoPong = clientmetric.NewCounter("magicsock_disco_recv_pong")
metricRecvDiscoCallMeMaybe = clientmetric.NewCounter("magicsock_disco_recv_callmemaybe")
metricRecvDiscoCallMeMaybeVia = clientmetric.NewCounter("magicsock_disco_recv_callmemaybevia")
metricRecvDiscoCallMeMaybeBadNode = clientmetric.NewCounter("magicsock_disco_recv_callmemaybe_bad_node")
metricRecvDiscoCallMeMaybeViaBadNode = clientmetric.NewCounter("magicsock_disco_recv_callmemaybevia_bad_node")
metricRecvDiscoCallMeMaybeBadDisco = clientmetric.NewCounter("magicsock_disco_recv_callmemaybe_bad_disco")
metricRecvDiscoCallMeMaybeViaBadDisco = clientmetric.NewCounter("magicsock_disco_recv_callmemaybevia_bad_disco")
metricRecvDiscoDERPPeerNotHere = clientmetric.NewCounter("magicsock_disco_recv_derp_peer_not_here")
metricRecvDiscoDERPPeerGoneUnknown = clientmetric.NewCounter("magicsock_disco_recv_derp_peer_gone_unknown")
metricRecvDiscoUDP = clientmetric.NewCounter("magicsock_disco_recv_udp")
metricRecvDiscoDERP = clientmetric.NewCounter("magicsock_disco_recv_derp")
metricRecvDiscoPing = clientmetric.NewCounter("magicsock_disco_recv_ping")
metricRecvDiscoPong = clientmetric.NewCounter("magicsock_disco_recv_pong")
metricRecvDiscoCallMeMaybe = clientmetric.NewCounter("magicsock_disco_recv_callmemaybe")
metricRecvDiscoCallMeMaybeVia = clientmetric.NewCounter("magicsock_disco_recv_callmemaybevia")
metricRecvDiscoCallMeMaybeBadNode = clientmetric.NewCounter("magicsock_disco_recv_callmemaybe_bad_node")
metricRecvDiscoCallMeMaybeViaBadNode = clientmetric.NewCounter("magicsock_disco_recv_callmemaybevia_bad_node")
metricRecvDiscoCallMeMaybeBadDisco = clientmetric.NewCounter("magicsock_disco_recv_callmemaybe_bad_disco")
metricRecvDiscoCallMeMaybeViaBadDisco = clientmetric.NewCounter("magicsock_disco_recv_callmemaybevia_bad_disco")
metricRecvDiscoAllocUDPRelayEndpointRequest = clientmetric.NewCounter("magicsock_disco_recv_alloc_udp_relay_endpoint_request")
metricRecvDiscoAllocUDPRelayEndpointRequestBadDisco = clientmetric.NewCounter("magicsock_disco_recv_alloc_udp_relay_endpoint_request_bad_disco")
metricRecvDiscoAllocUDPRelayEndpointResponseBadDisco = clientmetric.NewCounter("magicsock_disco_recv_alloc_udp_relay_endpoint_response_bad_disco")
metricRecvDiscoAllocUDPRelayEndpointResponse = clientmetric.NewCounter("magicsock_disco_recv_alloc_udp_relay_endpoint_response")
metricRecvDiscoDERPPeerNotHere = clientmetric.NewCounter("magicsock_disco_recv_derp_peer_not_here")
metricRecvDiscoDERPPeerGoneUnknown = clientmetric.NewCounter("magicsock_disco_recv_derp_peer_gone_unknown")
// metricDERPHomeChange is how many times our DERP home region DI has
// changed from non-zero to a different non-zero.
metricDERPHomeChange = clientmetric.NewCounter("derp_home_change")
@@ -3985,6 +4178,22 @@ func (le *lazyEndpoint) FromPeer(peerPublicKey [32]byte) {
}
// PeerRelays returns the current set of candidate peer relays.
func (c *Conn) PeerRelays() set.Set[netip.AddrPort] {
return c.relayManager.getServers()
func (c *Conn) PeerRelays() set.Set[netip.Addr] {
candidatePeerRelays := c.relayManager.getServers()
servers := make(set.Set[netip.Addr], len(candidatePeerRelays))
c.mu.Lock()
defer c.mu.Unlock()
for relay := range candidatePeerRelays {
pi, ok := c.peerMap.byNodeKey[relay.nodeKey]
if !ok {
if c.self.Key().Compare(relay.nodeKey) == 0 {
if c.self.Addresses().Len() > 0 {
servers.Add(c.self.Addresses().At(0).Addr())
}
}
continue
}
servers.Add(pi.ep.nodeAddr)
}
return servers
}