util/topk: add package containing a probabilistic top-K tracker

This package uses a count-min sketch and a heap to track the top K items
in a stream of data. Tracking a new item and adding a count to an
existing item both require no memory allocations and is at worst
O(log(k)) complexity.

Change-Id: I0553381be3fef2470897e2bd806d43396f2dbb36
Signed-off-by: Andrew Dunham <andrew@du.nham.ca>
This commit is contained in:
Andrew Dunham 2024-02-02 23:31:17 -05:00
parent 7ad2bb87a6
commit b7104cde4a
2 changed files with 396 additions and 0 deletions

261
util/topk/topk.go Normal file
View File

@ -0,0 +1,261 @@
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package topk defines a count-min sketch and a cheap probabilistic top-K data
// structure that uses the count-min sketch to track the top K items in
// constant memory and O(log(k)) time.
package topk
import (
"container/heap"
"hash/maphash"
"math"
"slices"
"sync"
)
// TopK is a probabilistic counter of the top K items, using a count-min sketch
// to keep track of item counts and a heap to track the top K of them.
type TopK[T any] struct {
heap minHeap[T]
k int
sf SerializeFunc[T]
cms CountMinSketch
}
// HashFunc is responsible for providing a []byte serialization of a value,
// appended to the provided byte slice. This is used for hashing the value when
// adding to a CountMinSketch.
type SerializeFunc[T any] func([]byte, T) []byte
// New creates a new TopK that stores k values. Parameters for the underlying
// count-min sketch are chosen for a 0.1% error rate and a 0.1% probability of
// error.
func New[T any](k int, sf SerializeFunc[T]) *TopK[T] {
hashes, buckets := PickParams(0.001, 0.001)
return NewWithParams(k, sf, hashes, buckets)
}
// NewWithParams creates a new TopK that stores k values, and additionally
// allows customizing the parameters for the underlying count-min sketch.
func NewWithParams[T any](k int, sf SerializeFunc[T], numHashes, numCols int) *TopK[T] {
ret := &TopK[T]{
heap: make(minHeap[T], 0, k),
k: k,
sf: sf,
}
ret.cms.init(numHashes, numCols)
return ret
}
// Add calls AddN(val, 1).
func (tk *TopK[T]) Add(val T) uint64 {
return tk.AddN(val, 1)
}
var hashPool = &sync.Pool{
New: func() any {
buf := make([]byte, 0, 128)
return &buf
},
}
// AddN adds the given item to the set with the provided count, returning the
// new estimated count.
func (tk *TopK[T]) AddN(val T, count uint64) uint64 {
buf := hashPool.Get().(*[]byte)
defer hashPool.Put(buf)
ser := tk.sf((*buf)[:0], val)
vcount := tk.cms.AddN(ser, count)
// If we don't have a full heap, just push it.
if len(tk.heap) < tk.k {
heap.Push(&tk.heap, mhValue[T]{
count: vcount,
val: val,
})
return vcount
}
// If this item's count surpasses the heap's minimum, update the heap.
if vcount > tk.heap[0].count {
tk.heap[0] = mhValue[T]{
count: vcount,
val: val,
}
heap.Fix(&tk.heap, 0)
}
return vcount
}
// Top returns the estimated top K items as stored by this TopK.
func (tk *TopK[T]) Top() []T {
ret := make([]T, 0, tk.k)
for _, item := range tk.heap {
ret = append(ret, item.val)
}
return ret
}
// AppendTop appends the estimated top K items as stored by this TopK to the
// provided slice, allocating only if the slice does not have enough capacity
// to store all items. The provided slice can be nil.
func (tk *TopK[T]) AppendTop(sl []T) []T {
sl = slices.Grow(sl, tk.k)
for _, item := range tk.heap {
sl = append(sl, item.val)
}
return sl
}
// CountMinSketch implements a count-min sketch, a probabilistic data structure
// that tracks the frequency of events in a stream of data.
//
// See: https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
type CountMinSketch struct {
hashes []maphash.Seed
nbuckets int
matrix []uint64
}
// NewCountMinSketch creates a new CountMinSketch with the provided number of
// hashes and buckets. Hashes and buckets are often called "depth" and "width",
// or "d" and "w", respectively.
func NewCountMinSketch(hashes, buckets int) *CountMinSketch {
ret := &CountMinSketch{}
ret.init(hashes, buckets)
return ret
}
// PickParams provides good parameters for 'hashes' and 'buckets' when
// constructing a CountMinSketch, given an estimated total number of counts
// (i.e. the sum of all counts ever stored), the error factor ϵ as a float
// (e.g. 1% is 0.001), and the probability factor δ.
//
// Parameters are chosen such that with a probability of 1δ, the error is at
// most ϵtotalCount. Or, in other words: if N is the true count of an event,
// E is the estimate given by a sketch and T the total count of items in the
// sketch, E ≤ N + T*ϵ with probability (1 - δ).
func PickParams(err, probability float64) (hashes, buckets int) {
d := math.Ceil(math.Log(1 / probability))
w := math.Ceil(math.E / err)
return int(d), int(w)
}
func (cms *CountMinSketch) init(hashes, buckets int) {
for i := 0; i < hashes; i++ {
cms.hashes = append(cms.hashes, maphash.MakeSeed())
}
// Need a matrix of hashes * buckets to store counts
cms.nbuckets = buckets
cms.matrix = make([]uint64, hashes*buckets)
}
// Add calls AddN(val, 1).
func (cms *CountMinSketch) Add(val []byte) uint64 {
return cms.AddN(val, 1)
}
// AddN increments the count for the given value by the provided count,
// returning the new count.
func (cms *CountMinSketch) AddN(val []byte, count uint64) uint64 {
var (
mh maphash.Hash
ret uint64 = math.MaxUint64
)
for i, seed := range cms.hashes {
mh.SetSeed(seed)
// Generate a hash for this value using Lemire's alternative to modular reduction:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
mh.Write(val)
hash := mh.Sum64()
hash = multiplyHigh64(hash, uint64(cms.nbuckets))
// The index in our matrix is (i * buckets) to move "down" i
// rows in our matrix to the row for this hash, plus 'hash' to
// move inside this row.
idx := (i * cms.nbuckets) + int(hash)
// Add to this row
cms.matrix[idx] += count
ret = min(ret, cms.matrix[idx])
}
return ret
}
// Get returns the count for the provided value.
func (cms *CountMinSketch) Get(val []byte) uint64 {
var (
mh maphash.Hash
ret uint64 = math.MaxUint64
)
for i, seed := range cms.hashes {
mh.SetSeed(seed)
// Generate a hash for this value using Lemire's alternative to modular reduction:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
mh.Write(val)
hash := mh.Sum64()
hash = multiplyHigh64(hash, uint64(cms.nbuckets))
// The index in our matrix is (i * buckets) to move "down" i
// rows in our matrix to the row for this hash, plus 'hash' to
// move inside this row.
idx := (i * cms.nbuckets) + int(hash)
// Select the minimal value among all rows
ret = min(ret, cms.matrix[idx])
}
return ret
}
// multiplyHigh64 implements (x * y) >> 64 "the long way" without access to a
// 128-bit type. This function is adapted from something similar in Tensorflow:
//
// https://github.com/tensorflow/tensorflow/commit/a47a300185026fe7829990def9113bf3a5109fed
//
// TODO(andrew-d): this could be replaced with a single "MULX" instruction on
// x86_64 platforms, which we can do if this ever turns out to be a performance
// bottleneck.
func multiplyHigh64(x, y uint64) uint64 {
x_lo := x & 0xffffffff
x_hi := x >> 32
buckets_lo := y & 0xffffffff
buckets_hi := y >> 32
prod_hi := x_hi * buckets_hi
prod_lo := x_lo * buckets_lo
prod_mid1 := x_hi * buckets_lo
prod_mid2 := x_lo * buckets_hi
carry := ((prod_mid1 & 0xffffffff) + (prod_mid2 & 0xffffffff) + (prod_lo >> 32)) >> 32
return prod_hi + (prod_mid1 >> 32) + (prod_mid2 >> 32) + carry
}
type mhValue[T any] struct {
count uint64
val T
}
// An minHeap is a min-heap of ints and associated values.
type minHeap[T any] []mhValue[T]
func (h minHeap[T]) Len() int { return len(h) }
func (h minHeap[T]) Less(i, j int) bool { return h[i].count < h[j].count }
func (h minHeap[T]) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *minHeap[T]) Push(x any) {
// Push and Pop use pointer receivers because they modify the slice's length,
// not just its contents.
*h = append(*h, x.(mhValue[T]))
}
func (h *minHeap[T]) Pop() any {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}

135
util/topk/topk_test.go Normal file
View File

@ -0,0 +1,135 @@
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package topk
import (
"encoding/binary"
"fmt"
"slices"
"testing"
)
func TestCountMinSketch(t *testing.T) {
cms := NewCountMinSketch(4, 10)
items := []string{"foo", "bar", "baz", "asdf", "quux"}
for _, item := range items {
cms.Add([]byte(item))
}
for _, item := range items {
count := cms.Get([]byte(item))
if count < 1 {
t.Errorf("item %q should have count >= 1", item)
} else if count > 1 {
t.Logf("item %q has count > 1: %d", item, count)
}
}
// Test that an item that's *not* in the set has a value lower than the
// total number of items we inserted (in the case that all items
// collided).
noItemCount := cms.Get([]byte("doesn't exist"))
if noItemCount > uint64(len(items)) {
t.Errorf("expected nonexistent item to have value < %d; got %d", len(items), noItemCount)
}
}
func TestTopK(t *testing.T) {
// This is probabilistic, so we're going to try 10 times to get the
// "right" value; the likelihood that we fail on all attempts is
// vanishingly small since the number of hash buckets is drastically
// larger than the number of items we're inserting.
var (
got []int
want = []int{5, 6, 7, 8, 9}
)
for try := 0; try < 10; try++ {
topk := NewWithParams[int](5, func(in []byte, val int) []byte {
return binary.LittleEndian.AppendUint64(in, uint64(val))
}, 4, 1000)
// Add the first 10 integers with counts equal to 2x their value
for i := 0; i < 10; i++ {
topk.AddN(i, uint64(i*2))
}
got = topk.Top()
t.Logf("top K items: %+v", got)
slices.Sort(got)
if slices.Equal(got, want) {
// All good!
return
}
// continue and retry or fail
}
t.Errorf("top K mismatch\ngot: %v\nwant: %v", got, want)
}
func TestPickParams(t *testing.T) {
hashes, buckets := PickParams(
0.001, // 0.1% error rate
0.001, // 0.1% chance of having an error, or 99.9% chance of not having an error
)
t.Logf("hashes = %d, buckets = %d", hashes, buckets)
}
func BenchmarkCountMinSketch(b *testing.B) {
cms := NewCountMinSketch(PickParams(0.001, 0.001))
b.ResetTimer()
b.ReportAllocs()
var enc [8]byte
for i := 0; i < b.N; i++ {
binary.LittleEndian.PutUint64(enc[:], uint64(i))
cms.Add(enc[:])
}
}
func BenchmarkTopK(b *testing.B) {
for _, n := range []int{
10,
128,
256,
1024,
8192,
} {
b.Run(fmt.Sprintf("Top%d", n), func(b *testing.B) {
out := make([]int, 0, n)
topk := New[int](n, func(in []byte, val int) []byte {
return binary.LittleEndian.AppendUint64(in, uint64(val))
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
topk.Add(i)
}
out = topk.AppendTop(out[:0]) // should not allocate
_ = out // appease linter
})
}
}
func TestMultiplyHigh64(t *testing.T) {
testCases := []struct {
x, y uint64
want uint64
}{
{0, 0, 0},
{0xffffffff, 0xffffffff, 0},
{0x2, 0xf000000000000000, 1},
{0x3, 0xf000000000000000, 2},
{0x3, 0xf000000000000001, 2},
{0x3, 0xffffffffffffffff, 2},
{0xffffffffffffffff, 0xffffffffffffffff, 0xfffffffffffffffe},
}
for _, tc := range testCases {
got := multiplyHigh64(tc.x, tc.y)
if got != tc.want {
t.Errorf("got multiplyHigh64(%x, %x) = %x, want %x", tc.x, tc.y, got, tc.want)
}
}
}