cmd/derpprobe,prober: add ability to continuously probe bandwidth and track queuing delay

Setting the bw-interval to a negative value enables continuous bandwidth probing.
When probing bandwidth continuously, the prober also tracks packet transit times,
which can be used as a measure of queuing delay.

Updates tailscale/corp#24522

Signed-off-by: Percy Wegmann <percy@tailscale.com>
This commit is contained in:
Percy Wegmann 2024-11-15 17:48:49 -06:00
parent 1355f622be
commit feaf4743da
No known key found for this signature in database
GPG Key ID: 29D8CDEB4C13D48B
8 changed files with 389 additions and 67 deletions

View File

@ -27,7 +27,7 @@ var (
meshInterval = flag.Duration("mesh-interval", 15*time.Second, "mesh probe interval")
stunInterval = flag.Duration("stun-interval", 15*time.Second, "STUN probe interval")
tlsInterval = flag.Duration("tls-interval", 15*time.Second, "TLS probe interval")
bwInterval = flag.Duration("bw-interval", 0, "bandwidth probe interval (0 = no bandwidth probing)")
bwInterval = flag.Duration("bw-interval", 0, "bandwidth probe interval (0 = no bandwidth probing, > 0 = periodic bandwidth probing, < 0 = continuous bandwidth probing)")
bwSize = flag.Int64("bw-probe-size-bytes", 1_000_000, "bandwidth probe size")
regionCode = flag.String("region-code", "", "probe only this region (e.g. 'lax'); if left blank, all regions will be probed")
)
@ -45,7 +45,7 @@ func main() {
prober.WithSTUNProbing(*stunInterval),
prober.WithTLSProbing(*tlsInterval),
}
if *bwInterval > 0 {
if *bwInterval != 0 {
opts = append(opts, prober.WithBandwidthProbing(*bwInterval, *bwSize))
}
if *regionCode != "" {
@ -106,7 +106,7 @@ func getOverallStatus(p *prober.Prober) (o overallStatus) {
// Do not show probes that have not finished yet.
continue
}
if i.Result {
if i.Status == prober.ProbeStatusSucceeded {
o.addGoodf("%s: %s", p, i.Latency)
} else {
o.addBadf("%s: %s", p, i.Error)

View File

@ -748,7 +748,7 @@ func (c *Client) dialNode(ctx context.Context, n *tailcfg.DERPNode) (net.Conn, e
select {
case <-ctx.Done():
// Either user canceled original context,
// it timed out, or the v6 dial succeeded.
// if timed out, or the v6 dial succeeded.
t.Stop()
return
case <-tChannel:
@ -757,6 +757,9 @@ func (c *Client) dialNode(ctx context.Context, n *tailcfg.DERPNode) (net.Conn, e
}
dst := cmp.Or(dstPrimary, n.HostName)
port := "443"
if !c.useHTTPS() {
port = "3340"
}
if n.DERPPort != 0 {
port = fmt.Sprint(n.DERPPort)
}

View File

@ -8,6 +8,7 @@ import (
"cmp"
"context"
crand "crypto/rand"
"encoding/binary"
"encoding/json"
"errors"
"expvar"
@ -15,10 +16,12 @@ import (
"log"
"net"
"net/http"
"reflect"
"strconv"
"strings"
"sync"
"time"
"unsafe"
"github.com/prometheus/client_golang/prometheus"
"tailscale.com/client/tailscale"
@ -55,7 +58,7 @@ type derpProber struct {
tlsProbeFn func(string) ProbeClass
udpProbeFn func(string, int) ProbeClass
meshProbeFn func(string, string) ProbeClass
bwProbeFn func(string, string, int64) ProbeClass
bwProbeFn func(string, string, int64, bool) ProbeClass
sync.Mutex
lastDERPMap *tailcfg.DERPMap
@ -69,6 +72,11 @@ type DERPOpt func(*derpProber)
// WithBandwidthProbing enables bandwidth probing. When enabled, a payload of
// `size` bytes will be regularly transferred through each DERP server, and each
// pair of DERP servers in every region.
//
// If `size` is less than 0, this will trigger the probe to continuously send
// data as fast as possible. Continuous mode can consume huge amounts of
// network bandwidth, so it is best used when probing DERP servers on the same
// LAN/datacenter.
func WithBandwidthProbing(interval time.Duration, size int64) DERPOpt {
return func(d *derpProber) {
d.bwInterval = interval
@ -94,7 +102,7 @@ func WithSTUNProbing(interval time.Duration) DERPOpt {
// WithTLSProbing enables TLS probing that will check TLS certificate on port
// 443 of each DERP server every `interval`.
func WithTLSProbing(interval time.Duration) DERPOpt {
func WithTLSProbing(interval time.Duration, regions ...string) DERPOpt {
return func(d *derpProber) {
d.tlsInterval = interval
}
@ -196,12 +204,12 @@ func (d *derpProber) probeMapFn(ctx context.Context) error {
}
}
if d.bwInterval > 0 && d.bwProbeSize > 0 {
if d.bwInterval != 0 && d.bwProbeSize > 0 {
n := fmt.Sprintf("derp/%s/%s/%s/bw", region.RegionCode, server.Name, to.Name)
wantProbes[n] = true
if d.probes[n] == nil {
log.Printf("adding DERP bandwidth probe for %s->%s (%s) %v bytes every %v", server.Name, to.Name, region.RegionName, d.bwProbeSize, d.bwInterval)
d.probes[n] = d.p.Run(n, d.bwInterval, labels, d.bwProbeFn(server.Name, to.Name, d.bwProbeSize))
d.probes[n] = d.p.Run(n, d.bwInterval, labels, d.bwProbeFn(server.Name, to.Name, d.bwProbeSize, d.bwInterval < 0))
}
}
}
@ -246,11 +254,19 @@ func (d *derpProber) probeMesh(from, to string) ProbeClass {
// through a pair of DERP servers (or just one server, if 'from' and 'to' are
// the same). 'from' and 'to' are expected to be names (DERPNode.Name) of two
// DERP servers in the same region.
func (d *derpProber) probeBandwidth(from, to string, size int64) ProbeClass {
func (d *derpProber) probeBandwidth(from, to string, size int64, continuous bool) ProbeClass {
derpPath := "mesh"
if from == to {
derpPath = "single"
}
if continuous {
return d.probeBandwidthContinuous(from, to, derpPath, size)
} else {
return d.probeBandwidthOnce(from, to, derpPath, size)
}
}
func (d *derpProber) probeBandwidthOnce(from, to, derpPath string, size int64) ProbeClass {
var transferTime expvar.Float
return ProbeClass{
Probe: func(ctx context.Context) error {
@ -258,7 +274,7 @@ func (d *derpProber) probeBandwidth(from, to string, size int64) ProbeClass {
if err != nil {
return err
}
return derpProbeBandwidth(ctx, d.lastDERPMap, fromN, toN, size, &transferTime)
return derpProbeBandwidthOnce(ctx, d.lastDERPMap, fromN, toN, size, &transferTime)
},
Class: "derp_bw",
Labels: Labels{"derp_path": derpPath},
@ -271,6 +287,76 @@ func (d *derpProber) probeBandwidth(from, to string, size int64) ProbeClass {
}
}
func (d *derpProber) probeBandwidthContinuous(from, to, derpPath string, size int64) ProbeClass {
var bytesTransferred expvar.Float
var transferTime expvar.Float
var qdh queuingDelayHistogram
qdh.reset()
return ProbeClass{
Probe: func(ctx context.Context) error {
fromN, toN, err := d.getNodePair(from, to)
if err != nil {
return err
}
return derpProbeBandwidthContinuous(ctx, d.lastDERPMap, fromN, toN, size, &bytesTransferred, &transferTime, &qdh)
},
Class: "derp_bw",
Labels: Labels{"derp_path": derpPath},
Metrics: func(l prometheus.Labels) []prometheus.Metric {
qdh.mx.Lock()
result := []prometheus.Metric{
prometheus.MustNewConstMetric(prometheus.NewDesc("derp_bw_probe_continuous_size_bytes", "Payload size of the bandwidth prober", nil, l), prometheus.GaugeValue, float64(size)),
prometheus.MustNewConstMetric(prometheus.NewDesc("derp_bw_probe_continuous_bytes_total", "Total data transferred", nil, l), prometheus.CounterValue, float64(bytesTransferred.Value())),
prometheus.MustNewConstMetric(prometheus.NewDesc("derp_bw_probe_continuous_transfer_time_seconds_total", "Time it took to transfer data", nil, l), prometheus.CounterValue, transferTime.Value()),
prometheus.MustNewConstHistogram(prometheus.NewDesc("derp_bw_probe_continuous_queuing_delays_seconds", "Distribution of queuing delays", nil, l), qdh.count, qdh.sum, qdh.buckets),
}
qdh.resetLocked()
qdh.mx.Unlock()
return result
},
}
}
// queuingDelayHistogram allows tracking a histogram of queuing delays
type queuingDelayHistogram struct {
count uint64
sum float64
buckets map[float64]uint64
mx sync.Mutex
}
// qdhBuckets defines the buckets (in seconds) for the queuingDelayHistogram.
var qdhBuckets = []float64{0.0001, 0.0002, 0.0005}
func (qdh *queuingDelayHistogram) reset() {
qdh.mx.Lock()
defer qdh.mx.Unlock()
qdh.resetLocked()
}
func (qdh *queuingDelayHistogram) resetLocked() {
qdh.count = 0
qdh.sum = 0
qdh.buckets = make(map[float64]uint64, len(qdhBuckets))
}
func (qdh *queuingDelayHistogram) add(d time.Duration) {
qdh.mx.Lock()
defer qdh.mx.Unlock()
seconds := float64(d.Seconds())
qdh.count++
qdh.sum += seconds
for _, b := range qdhBuckets {
if seconds > b {
continue
}
qdh.buckets[b] += 1
break
}
}
// getNodePair returns DERPNode objects for two DERP servers based on their
// short names.
func (d *derpProber) getNodePair(n1, n2 string) (ret1, ret2 *tailcfg.DERPNode, _ error) {
@ -411,9 +497,9 @@ func derpProbeUDP(ctx context.Context, ipStr string, port int) error {
return nil
}
// derpProbeBandwidth sends a payload of a given size between two local
// derpProbeBandwidthOnce sends a payload of a given size between two local
// DERP clients connected to two DERP servers.
func derpProbeBandwidth(ctx context.Context, dm *tailcfg.DERPMap, from, to *tailcfg.DERPNode, size int64, transferTime *expvar.Float) (err error) {
func derpProbeBandwidthOnce(ctx context.Context, dm *tailcfg.DERPMap, from, to *tailcfg.DERPNode, size int64, transferTime *expvar.Float) (err error) {
// This probe uses clients with isProber=false to avoid spamming the derper logs with every packet
// sent by the bandwidth probe.
fromc, err := newConn(ctx, dm, from, false)
@ -437,7 +523,39 @@ func derpProbeBandwidth(ctx context.Context, dm *tailcfg.DERPMap, from, to *tail
start := time.Now()
defer func() { transferTime.Add(time.Since(start).Seconds()) }()
if err := runDerpProbeNodePair(ctx, from, to, fromc, toc, size); err != nil {
if err := runDerpProbeNodePairOnce(ctx, from, to, fromc, toc, size); err != nil {
// Record pubkeys on failed probes to aid investigation.
return fmt.Errorf("%s -> %s: %w",
fromc.SelfPublicKey().ShortString(),
toc.SelfPublicKey().ShortString(), err)
}
return nil
}
// derpProbeBandwidthContinuous continuously sends data between two local
// DERP clients connected to two DERP servers.
func derpProbeBandwidthContinuous(ctx context.Context, dm *tailcfg.DERPMap, from, to *tailcfg.DERPNode, size int64, bytesTransferred, transferTime *expvar.Float, qdh *queuingDelayHistogram) (err error) {
// This probe uses clients with isProber=false to avoid spamming the derper logs with every packet
// sent by the bandwidth probe.
fromc, err := newConn(ctx, dm, from, false)
if err != nil {
return err
}
defer fromc.Close()
toc, err := newConn(ctx, dm, to, false)
if err != nil {
return err
}
defer toc.Close()
// Wait a bit for from's node to hear about to existing on the
// other node in the region, in the case where the two nodes
// are different.
if from.Name != to.Name {
time.Sleep(100 * time.Millisecond) // pretty arbitrary
}
if err := runDerpProbeNodePairContinuously(ctx, from, to, fromc, toc, size, bytesTransferred, transferTime, qdh); err != nil {
// Record pubkeys on failed probes to aid investigation.
return fmt.Errorf("%s -> %s: %w",
fromc.SelfPublicKey().ShortString(),
@ -468,7 +586,7 @@ func derpProbeNodePair(ctx context.Context, dm *tailcfg.DERPMap, from, to *tailc
}
const meshProbePacketSize = 8
if err := runDerpProbeNodePair(ctx, from, to, fromc, toc, meshProbePacketSize); err != nil {
if err := runDerpProbeNodePairOnce(ctx, from, to, fromc, toc, meshProbePacketSize); err != nil {
// Record pubkeys on failed probes to aid investigation.
return fmt.Errorf("%s -> %s: %w",
fromc.SelfPublicKey().ShortString(),
@ -504,10 +622,10 @@ func packetsForSize(size int64) [][]byte {
return pkts
}
// runDerpProbeNodePair takes two DERP clients (fromc and toc) connected to two
// runDerpProbeNodePairOnce takes two DERP clients (fromc and toc) connected to two
// DERP servers (from and to) and sends a test payload of a given size from one
// to another.
func runDerpProbeNodePair(ctx context.Context, from, to *tailcfg.DERPNode, fromc, toc *derphttp.Client, size int64) error {
func runDerpProbeNodePairOnce(ctx context.Context, from, to *tailcfg.DERPNode, fromc, toc *derphttp.Client, size int64) error {
// To avoid derper dropping enqueued packets, limit the number of packets in flight.
// The value here is slightly smaller than perClientSendQueueDepth in derp_server.go
inFlight := syncs.NewSemaphore(30)
@ -544,6 +662,8 @@ func runDerpProbeNodePair(ctx context.Context, from, to *tailcfg.DERPNode, fromc
recvc <- fmt.Errorf("got data packet %d from unexpected source, %v", idx, v.Source)
return
}
// This assumes that the packets are received reliably and in order.
// The DERP protocol does not guarantee this, but this probe assumes it.
if got, want := v.Data, pkts[idx]; !bytes.Equal(got, want) {
recvc <- fmt.Errorf("unexpected data packet %d (out of %d)", idx, len(pkts))
return
@ -577,6 +697,91 @@ func runDerpProbeNodePair(ctx context.Context, from, to *tailcfg.DERPNode, fromc
return nil
}
func runDerpProbeNodePairContinuously(ctx context.Context, from, to *tailcfg.DERPNode, fromc, toc *derphttp.Client, pktSize int64, bytesTransferred, transferTime *expvar.Float, qdh *queuingDelayHistogram) error {
// To avoid derper dropping enqueued packets, limit the number of packets in flight.
// The value here is slightly smaller than perClientSendQueueDepth in derp_server.go
inFlight := syncs.NewSemaphore(30)
// Send the packets.
sendc := make(chan error, 1)
pkt := make([]byte, pktSize) // sized slightly smaller than MTU to avoid fragmentation
crand.Read(pkt)
go func() {
for {
inFlight.AcquireContext(ctx)
now := time.Now()
// Write the monotonic time into the first 16 bytes of the packet
wall, ext := wallAndExt(now)
binary.BigEndian.PutUint64(pkt, wall)
binary.BigEndian.PutUint64(pkt[8:], uint64(ext))
if err := fromc.Send(toc.SelfPublicKey(), pkt); err != nil {
sendc <- fmt.Errorf("sending packet %w", err)
return
}
}
}()
// Increment transfer time every 1 second.
ticker := time.NewTicker(1 * time.Second)
go func() {
for {
select {
case <-ticker.C:
transferTime.Add(1)
case <-ctx.Done():
return
}
}
}()
// Receive the packets.
recvc := make(chan error, 1)
go func() {
defer close(recvc) // to break out of 'select' below.
for {
m, err := toc.Recv()
if err != nil {
recvc <- err
return
}
switch v := m.(type) {
case derp.ReceivedPacket:
now := time.Now()
inFlight.Release()
if v.Source != fromc.SelfPublicKey() {
recvc <- fmt.Errorf("got data packet from unexpected source, %v", v.Source)
return
}
wall := binary.BigEndian.Uint64(v.Data)
ext := int64(binary.BigEndian.Uint64(v.Data[8:]))
sent := fromWallAndExt(wall, ext)
qdh.add(now.Sub(sent))
bytesTransferred.Add(float64(pktSize))
case derp.KeepAliveMessage:
// Silently ignore.
default:
log.Printf("%v: ignoring Recv frame type %T", to.Name, v)
// Loop.
}
}
}()
select {
case <-ctx.Done():
return fmt.Errorf("timeout: %w", ctx.Err())
case err := <-sendc:
if err != nil {
return fmt.Errorf("error sending via %q: %w", from.Name, err)
}
case err := <-recvc:
if err != nil {
return fmt.Errorf("error receiving from %q: %w", to.Name, err)
}
}
return nil
}
func newConn(ctx context.Context, dm *tailcfg.DERPMap, n *tailcfg.DERPNode, isProber bool) (*derphttp.Client, error) {
// To avoid spamming the log with regular connection messages.
l := logger.Filtered(log.Printf, func(s string) bool {
@ -597,18 +802,22 @@ func newConn(ctx context.Context, dm *tailcfg.DERPMap, n *tailcfg.DERPNode, isPr
if err != nil {
return nil, err
}
cs, ok := dc.TLSConnectionState()
if !ok {
dc.Close()
return nil, errors.New("no TLS state")
}
if len(cs.PeerCertificates) == 0 {
dc.Close()
return nil, errors.New("no peer certificates")
}
if cs.ServerName != n.HostName {
dc.Close()
return nil, fmt.Errorf("TLS server name %q != derp hostname %q", cs.ServerName, n.HostName)
// Only verify TLS state if this is a prober.
if isProber {
cs, ok := dc.TLSConnectionState()
if !ok {
dc.Close()
return nil, errors.New("no TLS state")
}
if len(cs.PeerCertificates) == 0 {
dc.Close()
return nil, errors.New("no peer certificates")
}
if cs.ServerName != n.HostName {
dc.Close()
return nil, fmt.Errorf("TLS server name %q != derp hostname %q", cs.ServerName, n.HostName)
}
}
errc := make(chan error, 1)
@ -645,3 +854,27 @@ func httpOrFileTransport() http.RoundTripper {
tr.RegisterProtocol("file", http.NewFileTransport(http.Dir("/")))
return tr
}
// wallAndExt extracts the wall and ext fields from a time.Time,
// allowing us to marshal a monotonic clock reading.
func wallAndExt(t time.Time) (uint64, int64) {
v := reflect.ValueOf(&t).Elem()
return exposeField(v.Field(0)).Uint(), exposeField(v.Field(1)).Int()
}
// fromWallAndExt constructs a time.Time from wall and ext fields,
// allowing us to unmarshal a monotonic clock reading.
func fromWallAndExt(wall uint64, ext int64) time.Time {
var t time.Time
v := reflect.ValueOf(&t).Elem()
exposeField(v.Field(0)).SetUint(wall)
exposeField(v.Field(1)).SetInt(ext)
return t
}
func exposeField(v reflect.Value) reflect.Value {
if v.CanSet() {
return v
}
return reflect.NewAt(v.Type(), unsafe.Pointer(v.UnsafeAddr())).Elem()
}

View File

@ -192,7 +192,7 @@ func TestRunDerpProbeNodePair(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 15*time.Second)
defer cancel()
err = runDerpProbeNodePair(ctx, &tailcfg.DERPNode{Name: "c1"}, &tailcfg.DERPNode{Name: "c2"}, c1, c2, 100_000_000)
err = runDerpProbeNodePairOnce(ctx, &tailcfg.DERPNode{Name: "c1"}, &tailcfg.DERPNode{Name: "c2"}, c1, c2, 100_000_000)
if err != nil {
t.Error(err)
}
@ -237,3 +237,12 @@ func Test_packetsForSize(t *testing.T) {
})
}
}
func TestWallAndExt(t *testing.T) {
now := time.Now()
now2 := fromWallAndExt(wallAndExt(now))
diff := now2.Sub(now)
if now2.Sub(now) != 0 {
t.Fatalf("fromWallAndExt(wallAndExt(now)) = %v; want 0", diff)
}
}

View File

@ -256,6 +256,11 @@ type Probe struct {
latencyHist *ring.Ring
}
// IsContinuous indicates that this is a continuous probe.
func (p *Probe) IsContinuous() bool {
return p.interval < 0
}
// Close shuts down the Probe and unregisters it from its Prober.
// It is safe to Run a new probe of the same name after Close returns.
func (p *Probe) Close() error {
@ -288,6 +293,22 @@ func (p *Probe) loop() {
return
}
if p.IsContinuous() {
// Probe function is going to run continuously.
for {
p.run()
// Wait and then retry if probe fails. We use the inverse of the
// configured negative interval as our sleep period.
// TODO(percy):implement exponential backoff.
select {
case <-time.After(-1 * p.interval):
p.run()
case <-p.ctx.Done():
return
}
}
}
p.tick = p.prober.newTicker(p.interval)
defer p.tick.Stop()
for {
@ -323,9 +344,17 @@ func (p *Probe) run() (pi ProbeInfo, err error) {
p.recordEnd(err)
}
}()
timeout := time.Duration(float64(p.interval) * 0.8)
ctx, cancel := context.WithTimeout(p.ctx, timeout)
defer cancel()
ctx := p.ctx
if p.IsContinuous() {
p.mu.Lock()
p.lastErr = nil
p.mu.Unlock()
} else {
timeout := time.Duration(float64(p.interval) * 0.8)
var cancel func()
ctx, cancel = context.WithTimeout(ctx, timeout)
defer cancel()
}
err = p.probeClass.Probe(ctx)
p.recordEnd(err)
@ -365,6 +394,16 @@ func (p *Probe) recordEnd(err error) {
p.successHist = p.successHist.Next()
}
// ProbeStatus indicates the status of a probe.
type ProbeStatus string
const (
ProbeStatusUnknown = "unknown"
ProbeStatusRunning = "running"
ProbeStatusFailed = "failed"
ProbeStatusSucceeded = "succeeded"
)
// ProbeInfo is a snapshot of the configuration and state of a Probe.
type ProbeInfo struct {
Name string
@ -374,7 +413,7 @@ type ProbeInfo struct {
Start time.Time
End time.Time
Latency time.Duration
Result bool
Status ProbeStatus
Error string
RecentResults []bool
RecentLatencies []time.Duration
@ -402,6 +441,10 @@ func (pb ProbeInfo) RecentMedianLatency() time.Duration {
return pb.RecentLatencies[len(pb.RecentLatencies)/2]
}
func (pb ProbeInfo) Continuous() bool {
return pb.Interval < 0
}
// ProbeInfo returns the state of all probes.
func (p *Prober) ProbeInfo() map[string]ProbeInfo {
out := map[string]ProbeInfo{}
@ -429,9 +472,14 @@ func (probe *Probe) probeInfoLocked() ProbeInfo {
Labels: probe.metricLabels,
Start: probe.start,
End: probe.end,
Result: probe.succeeded,
}
if probe.lastErr != nil {
inf.Status = ProbeStatusUnknown
if probe.end.Before(probe.start) {
inf.Status = ProbeStatusRunning
} else if probe.succeeded {
inf.Status = ProbeStatusSucceeded
} else if probe.lastErr != nil {
inf.Status = ProbeStatusFailed
inf.Error = probe.lastErr.Error()
}
if probe.latency > 0 {
@ -467,7 +515,7 @@ func (p *Prober) RunHandler(w http.ResponseWriter, r *http.Request) error {
p.mu.Lock()
probe, ok := p.probes[name]
p.mu.Unlock()
if !ok {
if !ok || probe.IsContinuous() {
return tsweb.Error(http.StatusNotFound, fmt.Sprintf("unknown probe %q", name), nil)
}
@ -531,7 +579,8 @@ func (p *Probe) Collect(ch chan<- prometheus.Metric) {
if !p.start.IsZero() {
ch <- prometheus.MustNewConstMetric(p.mStartTime, prometheus.GaugeValue, float64(p.start.Unix()))
}
if p.end.IsZero() {
// For periodic probes that haven't ended, don't collect probe metrics yet.
if p.end.IsZero() && !p.IsContinuous() {
return
}
ch <- prometheus.MustNewConstMetric(p.mEndTime, prometheus.GaugeValue, float64(p.end.Unix()))

View File

@ -316,7 +316,7 @@ func TestProberProbeInfo(t *testing.T) {
Interval: probeInterval,
Labels: map[string]string{"class": "", "name": "probe1"},
Latency: 500 * time.Millisecond,
Result: true,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true},
RecentLatencies: []time.Duration{500 * time.Millisecond},
},
@ -324,6 +324,7 @@ func TestProberProbeInfo(t *testing.T) {
Name: "probe2",
Interval: probeInterval,
Labels: map[string]string{"class": "", "name": "probe2"},
Status: ProbeStatusFailed,
Error: "error2",
RecentResults: []bool{false},
RecentLatencies: nil, // no latency for failed probes
@ -349,7 +350,7 @@ func TestProbeInfoRecent(t *testing.T) {
}{
{
name: "no_runs",
wantProbeInfo: ProbeInfo{},
wantProbeInfo: ProbeInfo{Status: ProbeStatusUnknown},
wantRecentSuccessRatio: 0,
wantRecentMedianLatency: 0,
},
@ -358,7 +359,7 @@ func TestProbeInfoRecent(t *testing.T) {
results: []probeResult{{latency: 100 * time.Millisecond, err: nil}},
wantProbeInfo: ProbeInfo{
Latency: 100 * time.Millisecond,
Result: true,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true},
RecentLatencies: []time.Duration{100 * time.Millisecond},
},
@ -369,7 +370,7 @@ func TestProbeInfoRecent(t *testing.T) {
name: "single_failure",
results: []probeResult{{latency: 100 * time.Millisecond, err: errors.New("error123")}},
wantProbeInfo: ProbeInfo{
Result: false,
Status: ProbeStatusFailed,
RecentResults: []bool{false},
RecentLatencies: nil,
Error: "error123",
@ -390,7 +391,7 @@ func TestProbeInfoRecent(t *testing.T) {
{latency: 80 * time.Millisecond, err: nil},
},
wantProbeInfo: ProbeInfo{
Result: true,
Status: ProbeStatusSucceeded,
Latency: 80 * time.Millisecond,
RecentResults: []bool{false, true, true, false, true, true, false, true},
RecentLatencies: []time.Duration{
@ -420,7 +421,7 @@ func TestProbeInfoRecent(t *testing.T) {
{latency: 110 * time.Millisecond, err: nil},
},
wantProbeInfo: ProbeInfo{
Result: true,
Status: ProbeStatusSucceeded,
Latency: 110 * time.Millisecond,
RecentResults: []bool{true, true, true, true, true, true, true, true, true, true},
RecentLatencies: []time.Duration{
@ -483,7 +484,7 @@ func TestProberRunHandler(t *testing.T) {
ProbeInfo: ProbeInfo{
Name: "success",
Interval: probeInterval,
Result: true,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true, true},
},
PreviousSuccessRatio: 1,
@ -498,7 +499,7 @@ func TestProberRunHandler(t *testing.T) {
ProbeInfo: ProbeInfo{
Name: "failure",
Interval: probeInterval,
Result: false,
Status: ProbeStatusFailed,
Error: "error123",
RecentResults: []bool{false, false},
},

View File

@ -62,8 +62,9 @@ func (p *Prober) StatusHandler(opts ...statusHandlerOpt) tsweb.ReturnHandlerFunc
return func(w http.ResponseWriter, r *http.Request) error {
type probeStatus struct {
ProbeInfo
TimeSinceLast time.Duration
Links map[string]template.URL
TimeSinceLastStart time.Duration
TimeSinceLastEnd time.Duration
Links map[string]template.URL
}
vars := struct {
Title string
@ -81,12 +82,15 @@ func (p *Prober) StatusHandler(opts ...statusHandlerOpt) tsweb.ReturnHandlerFunc
for name, info := range p.ProbeInfo() {
vars.TotalProbes++
if !info.Result {
if info.Error != "" {
vars.UnhealthyProbes++
}
s := probeStatus{ProbeInfo: info}
if !info.Start.IsZero() {
s.TimeSinceLastStart = time.Since(info.Start).Truncate(time.Second)
}
if !info.End.IsZero() {
s.TimeSinceLast = time.Since(info.End).Truncate(time.Second)
s.TimeSinceLastEnd = time.Since(info.End).Truncate(time.Second)
}
for textTpl, urlTpl := range params.probeLinks {
text, err := renderTemplate(textTpl, info)

View File

@ -73,8 +73,9 @@
<th>Name</th>
<th>Probe Class & Labels</th>
<th>Interval</th>
<th>Last Attempt</th>
<th>Success</th>
<th>Last Finished</th>
<th>Last Started</th>
<th>Status</th>
<th>Latency</th>
<th>Last Error</th>
</tr></thead>
@ -85,9 +86,11 @@
{{$name}}
{{range $text, $url := $probeInfo.Links}}
<br/>
<button onclick="location.href='{{$url}}';" type="button">
{{$text}}
</button>
{{if not $probeInfo.Continuous}}
<button onclick="location.href='{{$url}}';" type="button">
{{$text}}
</button>
{{end}}
{{end}}
</td>
<td>{{$probeInfo.Class}}<br/>
@ -97,28 +100,48 @@
{{end}}
</div>
</td>
<td>{{$probeInfo.Interval}}</td>
<td data-sort="{{$probeInfo.TimeSinceLast.Milliseconds}}">
{{if $probeInfo.TimeSinceLast}}
{{$probeInfo.TimeSinceLast.String}} ago<br/>
<td>
{{if $probeInfo.Continuous}}
Continuous
{{else}}
{{$probeInfo.Interval}}
{{end}}
</td>
<td data-sort="{{$probeInfo.TimeSinceLastEnd.Milliseconds}}">
{{if $probeInfo.TimeSinceLastEnd}}
{{$probeInfo.TimeSinceLastEnd.String}} ago<br/>
<span class="small">{{$probeInfo.End.Format "2006-01-02T15:04:05Z07:00"}}</span>
{{else}}
Never
{{end}}
</td>
<td>
{{if $probeInfo.Result}}
{{$probeInfo.Result}}
<td data-sort="{{$probeInfo.TimeSinceLastStart.Milliseconds}}">
{{if $probeInfo.TimeSinceLastStart}}
{{$probeInfo.TimeSinceLastStart.String}} ago<br/>
<span class="small">{{$probeInfo.Start.Format "2006-01-02T15:04:05Z07:00"}}</span>
{{else}}
<span class="error">{{$probeInfo.Result}}</span>
Never
{{end}}
</td>
<td>
{{if $probeInfo.Error}}
<span class="error">{{$probeInfo.Status}}</span>
{{else}}
{{$probeInfo.Status}}
{{end}}<br/>
<div class="small">Recent: {{$probeInfo.RecentResults}}</div>
<div class="small">Mean: {{$probeInfo.RecentSuccessRatio}}</div>
{{if not $probeInfo.Continuous}}
<div class="small">Recent: {{$probeInfo.RecentResults}}</div>
<div class="small">Mean: {{$probeInfo.RecentSuccessRatio}}</div>
{{end}}
</td>
<td data-sort="{{$probeInfo.Latency.Milliseconds}}">
{{$probeInfo.Latency.String}}
<div class="small">Recent: {{$probeInfo.RecentLatencies}}</div>
<div class="small">Median: {{$probeInfo.RecentMedianLatency}}</div>
{{if $probeInfo.Continuous}}
n/a
{{else}}
{{$probeInfo.Latency.String}}
<div class="small">Recent: {{$probeInfo.RecentLatencies}}</div>
<div class="small">Median: {{$probeInfo.RecentMedianLatency}}</div>
{{end}}
</td>
<td class="small">{{$probeInfo.Error}}</td>
</tr>