Switch deephash to use sha256x.Hash.
We add sha256x.HashString to efficiently hash a string.
It uses unsafe under the hood to convert a string to a []byte.
We also modify sha256x.Hash to export the underlying hash.Hash
for testing purposes so that we can intercept all hash.Hash calls.
Performance:
name old time/op new time/op delta
Hash-24 19.8µs ± 1% 19.2µs ± 1% -3.01% (p=0.000 n=10+10)
HashPacketFilter-24 2.61µs ± 0% 2.53µs ± 1% -3.01% (p=0.000 n=8+10)
HashMapAcyclic-24 31.3µs ± 1% 29.8µs ± 0% -4.80% (p=0.000 n=10+9)
TailcfgNode-24 1.83µs ± 1% 1.82µs ± 2% ~ (p=0.305 n=10+10)
HashArray-24 344ns ± 2% 323ns ± 1% -6.02% (p=0.000 n=9+10)
The performance gains is not as dramatic as sha256x over sha256 due to:
1. most of the hashing already occurring through the direct memory hashing logic, and
2. what does not go through direct memory hashing is slowed down by reflect.
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
In Go 1.19, the reflect.Value.MapRange method uses "function outlining"
so that the allocation of reflect.MapIter is inlinable by the caller.
If the iterator doesn't escape the caller, it can be stack allocated.
See https://go.dev/cl/400675
Performance:
name old time/op new time/op delta
HashMapAcyclic-24 31.9µs ± 2% 32.1µs ± 1% ~ (p=0.075 n=10+10)
name old alloc/op new alloc/op delta
HashMapAcyclic-24 0.00B 0.00B ~ (all equal)
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
The hash.Hash provided by sha256.New is much more efficient
if we always provide it with data a multiple of the block size.
This avoids double-copying of data into the internal block
of sha256.digest.x. Effectively, we are managing a block ourselves
to ensure we only ever call hash.Hash.Write with full blocks.
Performance:
name old time/op new time/op delta
Hash 33.5µs ± 1% 20.6µs ± 1% -38.40% (p=0.000 n=10+9)
The logic has gone through CPU-hours of fuzzing.
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
The logic of deephash is both simpler and easier to reason about
if values are always addressable.
In Go, the composite kinds are slices, arrays, maps, structs,
interfaces, pointers, channels, and functions,
where we define "composite" as a Go value that encapsulates
some other Go value (e.g., a map is a collection of key-value entries).
In the cases of pointers and slices, the sub-values are always addressable.
In the cases of arrays and structs, the sub-values are always addressable
if and only if the parent value is addressable.
In the case of maps and interfaces, the sub-values are never addressable.
To make them addressable, we need to copy them onto the heap.
For the purposes of deephash, we do not care about channels and functions.
For all non-composite kinds (e.g., strings and ints), they are only addressable
if obtained from one of the composite kinds that produce addressable values
(i.e., pointers, slices, addressable arrays, and addressable structs).
A non-addressible, non-composite kind can be made addressable by
allocating it on the heap, obtaining a pointer to it, and dereferencing it.
Thus, if we can ensure that values are addressable at the entry points,
and shallow copy sub-values whenever we encounter an interface or map,
then we can ensure that all values are always addressable and
assume such property throughout all the logic.
Performance:
name old time/op new time/op delta
Hash-24 21.5µs ± 1% 19.7µs ± 1% -8.29% (p=0.000 n=9+9)
HashPacketFilter-24 2.61µs ± 1% 2.62µs ± 0% +0.29% (p=0.037 n=10+9)
HashMapAcyclic-24 30.8µs ± 1% 30.9µs ± 1% ~ (p=0.400 n=9+10)
TailcfgNode-24 1.84µs ± 1% 1.84µs ± 2% ~ (p=0.928 n=10+10)
HashArray-24 324ns ± 2% 332ns ± 2% +2.45% (p=0.000 n=10+10)
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
The Do function assists in calling functions that must succeed.
It only interacts well with functions that return (T, err).
Signatures with more return arguments are not supported.
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
We have very similar code in corp, moving it to util/precompress allows
it to be reused.
Updates #5133
Signed-off-by: Mihai Parparita <mihai@tailscale.com>
Clients may have platform-specific metrics they would like uploaded
(e.g. extracted from MetricKit on iOS). Add a new local API endpoint
that allows metrics to be updated by a simple name/value JSON-encoded
struct.
Signed-off-by: Mihai Parparita <mihai@tailscale.com>
And rewrite cloud detection to try to do only zero or one metadata
discovery request for all clouds, only doing a first (or second) as
confidence increases. Work remains for Windows, but a start.
And add Cloud to tailcfg.Hostinfo, which helped with testing using
"tailcfg debug hostinfo".
Updates #4983 (Linux only)
Updates #4984
Change-Id: Ib03337089122ce0cb38c34f724ba4b4812bc614e
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
And remove the GCP special-casing from ipn/ipnlocal; do it only in the
forwarder for *.internal.
Fixes#4980Fixes#4981
Change-Id: I5c481e96d91f3d51d274a80fbd37c38f16dfa5cb
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
This does three things:
* If you're on GCP, it adds a *.internal DNS split route to the
metadata server, so we never break GCP DNS names. This lets people
have some Tailscale nodes on GCP and some not (e.g. laptops at home)
without having to add a Tailnet-wide *.internal DNS route.
If you already have such a route, though, it won't overwrite it.
* If the 100.100.100.100 DNS forwarder has nowhere to forward to,
it forwards it to the GCP metadata IP, which forwards to 8.8.8.8.
This means there are never errNoUpstreams ("upstream nameservers not set")
errors on GCP due to e.g. mangled /etc/resolv.conf (GCP default VMs
don't have systemd-resolved, so it's likely a DNS supremacy fight)
* makes the DNS fallback mechanism use the GCP metadata IP as a
fallback before our hosted HTTP-based fallbacks
I created a default GCP VM from their web wizard. It has no
systemd-resolved.
I then made its /etc/resolv.conf be empty and deleted its GCP
hostnames in /etc/hosts.
I then logged in to a tailnet with no global DNS settings.
With this, tailscaled writes /etc/resolv.conf (direct mode, as no
systemd-resolved) and sets it to 100.100.100.100, which then has
regular DNS via the metadata IP and *.internal DNS via the metadata IP
as well. If the tailnet configures explicit DNS servers, those are used
instead, except for *.internal.
This also adds a new util/cloudenv package based on version/distro
where the cloud type is only detected once. We'll likely expand it in
the future for other clouds, doing variants of this change for other
popular cloud environments.
Fixes#4911
RELNOTES=Google Cloud DNS improvements
Change-Id: I19f3c2075983669b2b2c0f29a548da8de373c7cf
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
(breaking up parts of another change)
This adds a PacketFilter hashing benchmark with an input that both
contains every possible field, but also is somewhat representative in
the shape of what real packet filters contain.
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Regression from 09afb8e35b, in which the
same reflect.Value scratch value was being used as the map iterator
copy destination.
Also: make nil and empty maps hash differently, add test.
Fixes#4871
Co-authored-by: Josh Bleecher Snyder <josharian@gmail.com>
Change-Id: I67f42524bc81f694c1b7259d6682200125ea4a66
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
AFAICT this isn't documented on MSDN, but based on the issue referenced below,
NRPT rules are not working when a rule specifies > 50 domains.
This patch modifies our NRPT rule generator to split the list of domains
into chunks as necessary, and write a separate rule for each chunk.
For compatibility reasons, we continue to use the hard-coded rule ID, but
as additional rules are required, we generate new GUIDs. Those GUIDs are
stored under the Tailscale registry path so that we know which rules are ours.
I made some changes to winutils to add additional helper functions in support
of both the code and its test: I added additional registry accessors, and also
moved some token accessors from paths to util/winutil.
Fixes https://github.com/tailscale/coral/issues/63
Signed-off-by: Aaron Klotz <aaron@tailscale.com>
I wrote this code way back at the beginning of my tenure at Tailscale when we
had concerns about needing to restore deleted machine keys from backups.
We never ended up using this functionality, and the code is now getting in the
way, so we might as well remove it.
Signed-off-by: Aaron Klotz <aaron@tailscale.com>
The prefix is a signal to tsweb to treat this as a gauge metric when
generating the Prometheus version.
Signed-off-by: Mihai Parparita <mihai@tailscale.com>
goimports is a superset of gofmt that also groups imports.
(the goimports tool also adds/removes imports as needed, but that
part is disabled here)
Change-Id: Iacf0408dfd9497f4ed3da4fa50e165359ce38498
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
This reverts commit 8d6793fd70.
Reason: breaks Android build (cgo/pthreads addition)
We can try again next cycle.
Change-Id: I5e7e1730a8bf399a8acfce546a6d22e11fb835d5
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Attempt to load the xt_mark kernel module when it is not present. If the
load fails, log error information.
It may be tempting to promote this failure to an error once it has been
in use for some time, so as to avoid reaching an error with the iptables
invocation, however, there are conditions under which the two stages may
disagree - this change adds more useful breadcrumbs.
Example new output from tailscaled running under my WSL2:
```
router: ensure module xt_mark: "/usr/sbin/modprobe xt_mark" failed: exit status 1; modprobe: FATAL: Module xt_mark not found in directory /lib/modules/5.10.43.3-microsoft-standard-WSL2
```
Background:
There are two places to lookup modules, one is `/proc/modules` "old",
the other is `/sys/module/` "new".
There was query_modules(2) in linux <2.6, alas, it is gone.
In a docker container in the default configuration, you would get
/proc/modules and /sys/module/ both populated. lsmod may work file,
modprobe will fail with EPERM at `finit_module()` for an unpriviliged
container.
In a priviliged container the load may *succeed*, if some conditions are
met. This condition should be avoided, but the code landing in this
change does not attempt to avoid this scenario as it is both difficult
to detect, and has a very uncertain impact.
In an nspawn container `/proc/modules` is populated, but `/sys/module`
does not exist. Modern `lsmod` versions will fail to gather most module
information, without sysfs being populated with module information.
In WSL2 modules are likely missing, as the in-use kernel typically is
not provided by the distribution filesystem, and WSL does not mount in a
module filesystem of its own. Notably the WSL2 kernel supports iptables
marks without listing the xt_mark module in /sys/module, and
/proc/modules is empty.
On a recent kernel, we can ask the capabilities system about SYS_MODULE,
that will help to disambiguate between the non-privileged container case
and just being root. On older kernels these calls may fail.
Update #4329
Signed-off-by: James Tucker <james@tailscale.com>
It makes the most sense to have all our utility functions reside in one place.
There was nothing in corp that could not reasonably live in OSS.
I also updated `StartProcessAsChild` to no longer depend on `futureexec`,
thus reducing the amount of code that needed migration. I tested this change
with `tswin` and it is working correctly.
I have a follow-up PR to remove the corresponding code from corp.
The migrated code was mostly written by @alexbrainman.
Sourced from corp revision 03e90cfcc4dd7b8bc9b25eb13a26ec3a24ae0ef9
Signed-off-by: Aaron Klotz <aaron@tailscale.com>
This patch adds new functions to be used when accessing system policies,
and revises callers to use the new functions. They first attempt the new
registry path for policies, and if that fails, attempt to fall back to the
legacy path.
We keep non-policy variants of these functions because we should be able to
retain the ability to read settings from locations that are not exposed to
sysadmins for group policy edits.
The remaining changes will be done in corp.
Updates https://github.com/tailscale/tailscale/issues/3584
Signed-off-by: Aaron Klotz <aaron@tailscale.com>
It was broken on Windows:
Error: util\winutil\winutil_windows.go:15:7: regBase redeclared in this block
Error: D:\a\tailscale\tailscale\util\winutil\winutil_notwindows.go:7:17: previous declaration
Error: util\winutil\winutil_windows.go:29:6: getRegString redeclared in this block
Error: D:\a\tailscale\tailscale\util\winutil\winutil_notwindows.go:9:40: previous declaration
Error: util\winutil\winutil_windows.go:47:6: getRegInteger redeclared in this block
Error: D:\a\tailscale\tailscale\util\winutil\winutil_notwindows.go:11:48: previous declaration
Error: util\winutil\winutil_windows.go:77:6: isSIDValidPrincipal redeclared in this block
Error: D:\a\tailscale\tailscale\util\winutil\winutil_notwindows.go:13:38: previous declaration
Change-Id: Ib1ce4b647f5711547840c736b933a6c42bf09583
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Our current workaround made the user check too lax, thus allowing deleted
users. This patch adds a helper function to winutil that checks that the
uid's SID represents a valid Windows security principal.
Now if `lookupUserFromID` determines that the SID is invalid, we simply
propagate the error.
Updates https://github.com/tailscale/tailscale/issues/869
Signed-off-by: Aaron Klotz <aaron@tailscale.com>
And it updates the build tag style on a couple files.
Change-Id: I84478d822c8de3f84b56fa1176c99d2ea5083237
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>