Rename kube/{types,client,api} -> kube/{kubetypes,kubeclient,kubeapi}
so that we don't need to rename the package on each import to
convey that it's kubernetes specific.
Updates#cleanup
Signed-off-by: Irbe Krumina <irbe@tailscale.com>
Further split kube package into kube/{client,api,types}. This is so that
consumers who only need constants/static types don't have to import
the client and api bits.
Updates#cleanup
Signed-off-by: Irbe Krumina <irbe@tailscale.com>
Previously, despite what the commit said, we were using a raw IP socket
that was *not* an AF_PACKET socket, and thus was subject to the host
firewall rules. Switch to using a real AF_PACKET socket to actually get
the functionality we want.
Updates #13140
Signed-off-by: Andrew Dunham <andrew@du.nham.ca>
Change-Id: If657daeeda9ab8d967e75a4f049c66e2bca54b78
Currently, we use PermitRead/PermitWrite/PermitCert permission flags to determine which operations are allowed for a LocalAPI client.
These checks are performed when localapi.Handler handles a request. Additionally, certain operations (e.g., changing the serve config)
requires the connected user to be a local admin. This approach is inherently racey and is subject to TOCTOU issues.
We consider it to be more critical on Windows environments, which are inherently multi-user, and therefore we prevent more than one
OS user from connecting and utilizing the LocalBackend at the same time. However, the same type of issues is also applicable to other
platforms when switching between profiles that have different OperatorUser values in ipn.Prefs.
We'd like to allow more than one Windows user to connect, but limit what they can see and do based on their access rights on the device
(e.g., an local admin or not) and to the currently active LoginProfile (e.g., owner/operator or not), while preventing TOCTOU issues on Windows
and other platforms. Therefore, we'd like to pass an actor from the LocalAPI to the LocalBackend to represent the user performing the operation.
The LocalBackend, or the profileManager down the line, will then check the actor's access rights to perform a given operation on the device
and against the current (and/or the target) profile.
This PR does not change the current permission model in any way, but it introduces the concept of an actor and includes some preparatory
work to pass it around. Temporarily, the ipnauth.Actor interface has methods like IsLocalSystem and IsLocalAdmin, which are only relevant
to the current permission model. It also lacks methods that will actually be used in the new model. We'll be adding these gradually in the next
PRs and removing the deprecated methods and the Permit* flags at the end of the transition.
Updates tailscale/corp#18342
Signed-off-by: Nick Khyl <nickk@tailscale.com>
This commit adds a new usermetric package and wires
up metrics across the tailscale client.
Updates tailscale/corp#22075
Co-authored-by: Anton Tolchanov <anton@tailscale.com>
Signed-off-by: Kristoffer Dalby <kristoffer@tailscale.com>
After the upstream PR is merged, we can point directly at github.com/vishvananda/netlink
and retire github.com/tailscale/netlink.
See https://github.com/vishvananda/netlink/pull/1006
Updates #12298
Signed-off-by: Percy Wegmann <percy@tailscale.com>
In 2f27319baf we disabled GRO due to a
data race around concurrent calls to tstun.Wrapper.Write(). This commit
refactors GRO to be thread-safe, and re-enables it on Linux.
This refactor now carries a GRO type across tstun and netstack APIs
with a lifetime that is scoped to a single tstun.Wrapper.Write() call.
In 25f0a3fc8f we used build tags to
prevent importation of gVisor's GRO package on iOS as at the time we
believed it was contributing to additional memory usage on that
platform. It wasn't, so this commit simplifies and removes those
build tags.
Updates tailscale/corp#22353
Updates tailscale/corp#22125
Updates #6816
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Coder has just adopted nhooyr/websocket which unfortunately changes the import path.
`github.com/coder/coder` imports `tailscale.com/net/wsconn` which was still pointing
to `nhooyr.io/websocket`, but this change updates it.
See https://coder.com/blog/websocket
Updates #13154
Change-Id: I3dec6512472b14eae337ae22c5bcc1e3758888d5
Signed-off-by: Kyle Carberry <kyle@carberry.com>
cmd/k8s-operator,k8s-operator/sessionrecording: support recording WebSocket sessions
Kubernetes currently supports two streaming protocols, SPDY and WebSockets.
WebSockets are replacing SPDY, see
https://github.com/kubernetes/enhancements/issues/4006.
We were currently only supporting SPDY, erroring out if session
was not SPDY and relying on the kube's built-in SPDY fallback.
This PR:
- adds support for parsing contents of 'kubectl exec' sessions streamed
over WebSockets
- adds logic to distinguish 'kubectl exec' requests for a SPDY/WebSockets
sessions and call the relevant handler
Updates tailscale/corp#19821
Signed-off-by: Irbe Krumina <irbe@tailscale.com>
Co-authored-by: Tom Proctor <tomhjp@users.noreply.github.com>
Package setting contains types for defining and representing policy settings.
It facilitates the registration of setting definitions using Register and RegisterDefinition,
and the retrieval of registered setting definitions via Definitions and DefinitionOf.
This package is intended for use primarily within the syspolicy package hierarchy,
and added in a preparation for the next PRs.
Updates #12687
Signed-off-by: Nick Khyl <nickk@tailscale.com>
This commit implements TCP GRO for packets being written to gVisor on
Linux. Windows support will follow later. The wireguard-go dependency is
updated in order to make use of newly exported IP checksum functions.
gVisor is updated in order to make use of newly exported
stack.PacketBuffer GRO logic.
TCP throughput towards gVisor, i.e. TUN write direction, is dramatically
improved as a result of this commit. Benchmarks show substantial
improvement, sometimes as high as 2x. High bandwidth-delay product
paths remain receive window limited, bottlenecked by gVisor's default
TCP receive socket buffer size. This will be addressed in a follow-on
commit.
The iperf3 results below demonstrate the effect of this commit between
two Linux computers with i5-12400 CPUs. There is roughly ~13us of round
trip latency between them.
The first result is from commit 57856fc without TCP GRO.
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 4.77 GBytes 4.10 Gbits/sec 20 sender
[ 5] 0.00-10.00 sec 4.77 GBytes 4.10 Gbits/sec receiver
The second result is from this commit with TCP GRO.
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 10.6 GBytes 9.14 Gbits/sec 20 sender
[ 5] 0.00-10.00 sec 10.6 GBytes 9.14 Gbits/sec receiver
Updates #6816
Signed-off-by: Jordan Whited <jordan@tailscale.com>
This commit implements TCP GSO for packets being read from gVisor on
Linux. Windows support will follow later. The wireguard-go dependency is
updated in order to make use of newly exported GSO logic from its tun
package.
A new gVisor stack.LinkEndpoint implementation has been established
(linkEndpoint) that is loosely modeled after its predecessor
(channel.Endpoint). This new implementation supports GSO of monster TCP
segments up to 64K in size, whereas channel.Endpoint only supports up to
32K. linkEndpoint will also be required for GRO, which will be
implemented in a follow-on commit.
TCP throughput from gVisor, i.e. TUN read direction, is dramatically
improved as a result of this commit. Benchmarks show substantial
improvement through a wide range of RTT and loss conditions, sometimes
as high as 5x.
The iperf3 results below demonstrate the effect of this commit between
two Linux computers with i5-12400 CPUs. There is roughly ~13us of round
trip latency between them.
The first result is from commit 57856fc without TCP GSO.
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 2.51 GBytes 2.15 Gbits/sec 154 sender
[ 5] 0.00-10.00 sec 2.49 GBytes 2.14 Gbits/sec receiver
The second result is from this commit with TCP GSO.
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 12.6 GBytes 10.8 Gbits/sec 6 sender
[ 5] 0.00-10.00 sec 12.6 GBytes 10.8 Gbits/sec receiver
Updates #6816
Signed-off-by: Jordan Whited <jordan@tailscale.com>
cmd/k8s-operator,k8s-operator/sessionrecording,sessionrecording,ssh/tailssh: refactor session recording functionality
Refactor SSH session recording functionality (mostly the bits related to
Kubernetes API server proxy 'kubectl exec' session recording):
- move the session recording bits used by both Tailscale SSH
and the Kubernetes API server proxy into a shared sessionrecording package,
to avoid having the operator to import ssh/tailssh
- move the Kubernetes API server proxy session recording functionality
into a k8s-operator/sessionrecording package, add some abstractions
in preparation for adding support for a second streaming protocol (WebSockets)
Updates tailscale/corp#19821
Signed-off-by: Irbe Krumina <irbe@tailscale.com>
Updates tailscale/tailscale#1634
This PR introduces a new `captive-portal-detected` Warnable which is set to an unhealthy state whenever a captive portal is detected on the local network, preventing Tailscale from connecting.
ipn/ipnlocal: fix captive portal loop shutdown
Change-Id: I7cafdbce68463a16260091bcec1741501a070c95
net/captivedetection: fix mutex misuse
ipn/ipnlocal: ensure that we don't fail to start the timer
Change-Id: I3e43fb19264d793e8707c5031c0898e48e3e7465
Signed-off-by: Andrew Dunham <andrew@du.nham.ca>
Signed-off-by: Andrea Gottardo <andrea@gottardo.me>
cmd/k8s-operator,ssh/tailssh,tsnet: optionally record kubectl exec sessions
The Kubernetes operator's API server proxy, when it receives a request
for 'kubectl exec' session now reads 'RecorderAddrs', 'EnforceRecorder'
fields from tailcfg.KubernetesCapRule.
If 'RecorderAddrs' is set to one or more addresses (of a tsrecorder instance(s)),
it attempts to connect to those and sends the session contents
to the recorder before forwarding the request to the kube API
server. If connection cannot be established or fails midway,
it is only allowed if 'EnforceRecorder' is not true (fail open).
Updates tailscale/corp#19821
Signed-off-by: Irbe Krumina <irbe@tailscale.com>
Co-authored-by: Maisem Ali <maisem@tailscale.com>