If the network logging configruation changes (and nothing else)
we will tear down the network logger and start it back up.
However, doing so will lose the router configuration state.
Manually reconfigure it with the routing state.
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
There is utility in logging traffic statistics that occurs at the physical layer.
That is, in order to send packets virtually to a particular tailscale IP address,
what physical endpoints did we need to communicate with?
This functionality logs IP addresses identical to
what had always been logged in magicsock prior to #5823,
so there is no increase in PII being logged.
ExtractStatistics returns a mapping of connections to counts.
The source is always a Tailscale IP address (without port),
while the destination is some endpoint reachable on WAN or LAN.
As a special case, traffic routed through DERP will use 127.3.3.40
as the destination address with the port being the DERP region.
This entire feature is only enabled if data-plane audit logging
is enabled on the tailnet (by default it is disabled).
Example of type of information logged:
------------------------------------ Tx[P/s] Tx[B/s] Rx[P/s] Rx[B/s]
PhysicalTraffic: 25.80 3.39Ki 38.80 5.57Ki
100.1.2.3 -> 143.11.22.33:41641 15.40 2.00Ki 23.20 3.37Ki
100.4.5.6 -> 192.168.0.100:41641 10.20 1.38Ki 15.60 2.20Ki
100.7.8.9 -> 127.3.3.40:2 0.20 6.40 0.00 0.00
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
This sets up Logger to handle statistics at the magicsock layer,
where we can correlate traffic between a particular tailscale IP address
and any number of physical endpoints used to contact the node
that hosts that tailscale address.
We also export Message and TupleCounts to better document the JSON format
that is being sent to the logging infrastructure.
This commit does NOT yet enable the actual logging of magicsock statistics.
That will be a future commit.
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
If the wgcfg.Config is specified with network logging arguments,
then Userspace.Reconfig starts up an asynchronous network logger,
which is shutdown either upon Userspace.Close or when Userspace.Reconfig
is called again without network logging or route arguments.
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
Most visible when using tsnet.Server, but could have resulted in dropped
messages in a few other places too.
Fixes#5743
Signed-off-by: Mihai Parparita <mihai@tailscale.com>
Avoid contention from fetching status for all peers, and instead fetch
status for a single peer.
Updates tailscale/coral#72
Signed-off-by: James Tucker <james@tailscale.com>
Hashing []any is slow since hashing of interfaces is slow.
Hashing of interfaces is slow since we pessimistically assume
that cycles can occur through them and start cycle tracking.
Drop the variadic signature of Update and fix callers to pass in
an anonymous struct so that we are hashing concrete types
near the root of the value tree.
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
We were marking them as gauges, but they are only ever incremented,
thus counter is more appropriate.
Signed-off-by: Mihai Parparita <mihai@tailscale.com>
This change wires netstack with a hook for traffic coming from the host
into the tun, allowing interception and handling of traffic to quad-100.
With this hook wired, magicDNS queries over UDP are now handled within
netstack. The existing logic in wgengine to handle magicDNS remains for now,
but its hook operates after the netstack hook so the netstack implementation
takes precedence. This is done in case we need to support platforms with
netstack longer than expected.
Signed-off-by: Tom DNetto <tom@tailscale.com>
A subsequent commit implements handling of magicDNS traffic via netstack.
Implementing this requires a hook for traffic originating from the host and
hitting the tun, so we make another hook to support this.
Signed-off-by: Tom DNetto <tom@tailscale.com>
* net/dns, net/dns/resolver, wgengine: refactor DNS request path
Previously, method calls into the DNS manager/resolver types handled DNS
requests rather than DNS packets. This is fine for UDP as one packet
corresponds to one request or response, however will not suit an
implementation that supports DNS over TCP.
To support PRs implementing this in the future, wgengine delegates
all handling/construction of packets to the magic DNS endpoint, to
the DNS types themselves. Handling IP packets at this level enables
future support for both UDP and TCP.
Signed-off-by: Tom DNetto <tom@tailscale.com>
When `setWgengineStatus` is invoked concurrently from multiple
goroutines, it is possible that the call invoked with a newer status is
processed before a call with an older status. e.g. a status that has
endpoints might be followed by a status without endpoints. This causes
unnecessary work in the engine and can result in packet loss.
This patch adds an `AsOf time.Time` field to the status to specifiy when the
status was calculated, which later allows `setWgengineStatus` to ignore
any status messages it receives that are older than the one it has
already processed.
Updates tailscale/corp#2579
Signed-off-by: Maisem Ali <maisem@tailscale.com>
A new package can also later record/report which knobs are checked and
set. It also makes the code cleaner & easier to grep for env knobs.
Change-Id: Id8a123ab7539f1fadbd27e0cbeac79c2e4f09751
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Fixes#3660
RELNOTE=MagicDNS now works over IPv6 when CGNAT IPv4 is disabled.
Change-Id: I001e983df5feeb65289abe5012dedd177b841b45
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Allow users of CallbackRouter to supply a GetBaseConfig
implementation. This is expected to be used on Android,
which currently lacks both a) platform support for
Split-DNS and b) a way to retrieve the current DNS
servers.
iOS/macOS also use the CallbackRouter but have platform
support for SplitDNS, so don't need getBaseConfig.
Updates https://github.com/tailscale/tailscale/issues/2116
Updates https://github.com/tailscale/tailscale/issues/988
Signed-off-by: Denton Gentry <dgentry@tailscale.com>
In prep for moving stuff out of LocalBackend.
Change-Id: I9725aa9c3ebc7275f8c40e040b326483c0340127
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Not done yet, but this move more of the outbound dial special casing
from random packages into tsdial, which aspires to be the one unified
place for all outbound dialing shenanigans.
Then this plumbs it all around, so everybody is ultimately
holding on to the same dialer.
As of this commit, macOS/iOS using an exit node should be able to
reach to the exit node's DoH DNS proxy over peerapi, doing the sockopt
to stay within the Network Extension.
A number of steps remain, including but limited to:
* move a bunch more random dialing stuff
* make netstack-mode tailscaled be able to use exit node's DNS proxy,
teaching tsdial's resolver to use it when an exit node is in use.
Updates #1713
Change-Id: I1e8ee378f125421c2b816f47bc2c6d913ddcd2f5
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
wgengine/wgcfg: introduce wgcfg.NewDevice helper to disable roaming
at all call sites (one real plus several tests).
Fixestailscale/corp#3016.
Signed-off-by: David Anderson <danderson@tailscale.com>
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Just something I ran across while debugging an unrelated failure. This
is not in response to any bug/issue.
Signed-off-by: Maisem Ali <maisem@tailscale.com>
On iOS (and possibly other platforms), sometimes our UDP socket would
get stuck in a state where it was bound to an invalid interface (or no
interface) after a network reconfiguration. We can detect this by
actually checking the error codes from sending our STUN packets.
If we completely fail to send any STUN packets, we know something is
very broken. So on the next STUN attempt, let's rebind the UDP socket
to try to correct any problems.
This fixes a problem where iOS would sometimes get stuck using DERP
instead of direct connections until the backend was restarted.
Fixes#2994
Signed-off-by: Avery Pennarun <apenwarr@tailscale.com>
Windows has a public dns.Flush used in router_windows.go.
However that won't work for platforms like Linux, where
we need a different flush mechanism for resolved versus
other implementations.
We're instead adding a FlushCaches method to the dns Manager,
which can be made to work on all platforms as needed.
Fixes https://github.com/tailscale/tailscale/issues/2132
Signed-off-by: Denton Gentry <dgentry@tailscale.com>
We currently plumb full URLs for DNS resolvers from the control server
down to the client. But when we pass the values into the net/dns
package, we throw away any URL that isn't a bare IP. This commit
continues the plumbing, and gets the URL all the way to the built in
forwarder. (It stops before plumbing URLs into the OS configurations
that can handle them.)
For #2596
Signed-off-by: David Crawshaw <crawshaw@tailscale.com>
And in the process, fix the related confusing error messages from
pinging your own IP or hostname.
Fixes#2803
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Having removed magicconn.Start, there's no need to synchronize startup
of other things to it any more.
Signed-off-by: David Anderson <danderson@tailscale.com>
Over time, other magicsock refactors have made Start effectively a
no-op, except that some other functions choose to panic if called
before Start.
Signed-off-by: David Anderson <danderson@tailscale.com>
The number of peers we have will be pretty stable across time.
Allocate roughly the right slice size.
This reduces memory usage when there are many peers.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Two optimizations.
Use values instead of pointers.
We were using pointers to make track the "peer in progress" easier.
It's not too hard to do it manually, though.
Make two passes through the data, so that we can size our
return value accurately from the beginning.
This is cheap enough compared to the allocation,
which grows linearly in the number of peers,
that it is worth doing.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Still very much a prototype (hard-coded IPs, etc) but should be
non-invasive enough to submit at this point and iterate from here.
Updates #2589
Co-Author: David Crawshaw <crawshaw@tailscale.com>
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
The fact that Hash returns a [sha256.Size]byte leaks details about
the underlying hash implementation. This could very well be any other
hashing algorithm with a possible different block size.
Abstract this implementation detail away by declaring an opaque type
that is comparable. While we are changing the signature of UpdateHash,
rename it to just Update to reduce stutter (e.g., deephash.Update).
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
Pull in the latest version of wireguard-windows.
Switch to upstream wireguard-go.
This requires reverting all of our import paths.
Unfortunately, this has to happen at the same time.
The wireguard-go change is very low risk,
as that commit matches our fork almost exactly.
(The only changes are import paths, CI files, and a go.mod entry.)
So if there are issues as a result of this commit,
the first place to look is wireguard-windows changes.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
magicsock.Conn.ParseEndpoint requires a peer's public key,
disco key, and legacy ip/ports in order to do its job.
We currently accomplish that by:
* adding the public key in our wireguard-go fork
* encoding the disco key as magic hostname
* using a bespoke comma-separated encoding
It's a bit messy.
Instead, switch to something simpler: use a json-encoded struct
containing exactly the information we need, in the form we use it.
Our wireguard-go fork still adds the public key to the
address when it passes it to ParseEndpoint, but now the code
compensating for that is just a couple of simple, well-commented lines.
Once this commit is in, we can remove that part of the fork
and remove the compensating code.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
Yes, it printed, but that was an implementation detail for hashing.
And coming optimization will make it print even less.
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
On benchmark completion, we shut down the wgengine.
If we happen to poll for status during shutdown,
we get an "engine closing" error.
It doesn't hurt anything; ignore it.
Fixestailscale/corp#1776
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
It is unused, and has been since early Feb 2021 (Tailscale 1.6).
We can't get delete the DeviceOptions entirely yet;
first #1831 and #1839 need to go in, along with some wireguard-go changes.
Deleting this chunk of code now will make the later commits more clearly correct.
Pingers can now go too.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
We had a long-standing bug in which our TUN events channel
was being received from simultaneously in two places.
The first is wireguard-go.
At wgengine/userspace.go:366, we pass e.tundev to wireguard-go,
which starts a goroutine (RoutineTUNEventReader)
that receives from that channel and uses events to adjust the MTU
and bring the device up/down.
At wgengine/userspace.go:374, we launch a goroutine that
receives from e.tundev, logs MTU changes, and triggers
state updates when up/down changes occur.
Events were getting delivered haphazardly between the two of them.
We don't really want wireguard-go to receive the up/down events;
we control the state of the device explicitly by calling device.Up.
And the userspace.go loop MTU logging duplicates logging that
wireguard-go does when it received MTU updates.
So this change splits the single TUN events channel into up/down
and other (aka MTU), and sends them to the parties that ought
to receive them.
I'm actually a bit surprised that this hasn't caused more visible trouble.
If a down event went to wireguard-go but the subsequent up event
went to userspace.go, we could end up with the wireguard-go device disappearing.
I believe that this may also (somewhat accidentally) be a fix for #1790.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
Track endpoints internally with a new tailcfg.Endpoint type that
includes a typed netaddr.IPPort (instead of just a string) and
includes a type for how that endpoint was discovered (STUN, local,
etc).
Use []tailcfg.Endpoint instead of []string internally.
At the last second, send it to the control server as the existing
[]string for endpoints, but also include a new parallel
MapRequest.EndpointType []tailcfg.EndpointType, so the control server
can start filtering out less-important endpoint changes from
new-enough clients. Notably, STUN-discovered endpoints can be filtered
out from 1.6+ clients, as they can discover them amongst each other
via CallMeMaybe disco exchanges started over DERP. And STUN endpoints
change a lot, causing a lot of MapResposne updates. But portmapped
endpoints are worth keeping for now, as they they work right away
without requiring the firewall traversal extra RTT dance.
End result will be less control->client bandwidth. (despite negligible
increase in client->control bandwidth)
Updates tailscale/corp#1543
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>