Right now, filtering and packet injection in wgengine depend
on a patch to wireguard-go that probably isn't suitable for upstreaming.
This need not be the case: wireguard-go/tun.Device is an interface.
For example, faketun.go implements it to mock a TUN device for testing.
This patch implements the same interface to provide filtering
and packet injection at the tunnel device level,
at which point the wireguard-go patch should no longer be necessary.
This patch has the following performance impact on i7-7500U @ 2.70GHz,
tested in the following namespace configuration:
┌────────────────┐ ┌─────────────────────────────────┐ ┌────────────────┐
│ $ns1 │ │ $ns0 │ │ $ns2 │
│ client0 │ │ tailcontrol, logcatcher │ │ client1 │
│ ┌─────┐ │ │ ┌──────┐ ┌──────┐ │ │ ┌─────┐ │
│ │vethc│───────┼────┼──│vethrc│ │vethrs│──────┼─────┼──│veths│ │
│ ├─────┴─────┐ │ │ ├──────┴────┐ ├──────┴────┐ │ │ ├─────┴─────┐ │
│ │10.0.0.2/24│ │ │ │10.0.0.1/24│ │10.0.1.1/24│ │ │ │10.0.1.2/24│ │
│ └───────────┘ │ │ └───────────┘ └───────────┘ │ │ └───────────┘ │
└────────────────┘ └─────────────────────────────────┘ └────────────────┘
Before:
---------------------------------------------------
| TCP send | UDP send |
|------------------------|------------------------|
| 557.0 (±8.5) Mbits/sec | 3.03 (±0.02) Gbits/sec |
---------------------------------------------------
After:
---------------------------------------------------
| TCP send | UDP send |
|------------------------|------------------------|
| 544.8 (±1.6) Mbits/sec | 3.13 (±0.02) Gbits/sec |
---------------------------------------------------
The impact on receive performance is similar.
Signed-off-by: Dmytro Shynkevych <dmytro@tailscale.com>
It used to make assumptions based on having Anycast IPs that are super
near. Now we're intentionally going to a bunch of different distant
IPs to measure latency.
Also, optimize how the hairpin detection works. No need to STUN on
that socket. Just use that separate socket for sending, once we know
the other UDP4 socket's endpoint. The trick is: make our test probe
also a STUN packet, so it fits through magicsock's existing STUN
routing.
This drops netcheck from ~5 seconds to ~250-500ms.
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Failure to do this leads to fd exhaustion at -count=10000,
and increasingly poor execution north of -count=100.
Signed-off-by: David Anderson <danderson@tailscale.com>
Failure to do so triggers either a data race or a panic
in the testing package, due to racey use of t.Logf.
Signed-off-by: David Anderson <danderson@tailscale.com>
wireguard-go closes magicsock, and expects this to unblock reads
so that its internal goroutines can wind down. We were incorrectly
blocking the read indefinitey and breaking this contract.
Signed-off-by: David Anderson <danderson@tailscale.com>
It's extremely flaky in several dimensions, as well as very slow.
It's making the CI completely red all the time without telling us
useful information.
Set RUN_CURSED_TESTS=1 to run locally.
This change just alters the semantics of the one flaky test, without
trying to speed up timeouts on the others. Empirically, speeding up
the timeouts causes _more_ flakes right now :(
The remaining flake occurs due to a mysterious packet loss. This
doesn't affect normal tailscaled operations, so until I track down
where the loss occurs and fix it, the flaky test is going to be
lenient about packet loss (but not about whether the spray logic
worked).
Signed-off-by: David Anderson <danderson@tailscale.com>
It previously passed incorrectly due to bugs. With those fixed,
it becomes flaky for 2 reasons. One of them is the wireguard handshake
race, which can eat the 1st sprayed packet and prevent roamAddr
discovery. This change fixes that failure, by spreading the test
traffic out enough that additional spraying occurs.
Signed-Off-By: David Anderson <danderson@tailscale.com>