// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ipnserver import ( "bufio" "bytes" "context" "encoding/json" "errors" "fmt" "io" "log" "net" "net/http" "os" "os/exec" "os/signal" "os/user" "path/filepath" "runtime" "strings" "sync" "syscall" "time" "unicode" "go4.org/mem" "tailscale.com/control/controlclient" "tailscale.com/envknob" "tailscale.com/ipn" "tailscale.com/ipn/ipnauth" "tailscale.com/ipn/ipnlocal" "tailscale.com/ipn/localapi" "tailscale.com/logtail/backoff" "tailscale.com/net/dnsfallback" "tailscale.com/net/netutil" "tailscale.com/net/tsdial" "tailscale.com/safesocket" "tailscale.com/smallzstd" "tailscale.com/types/logger" "tailscale.com/util/systemd" "tailscale.com/version" "tailscale.com/version/distro" "tailscale.com/wgengine" "tailscale.com/wgengine/monitor" "tailscale.com/wgengine/netstack" ) // Options is the configuration of the Tailscale node agent. type Options struct { // VarRoot is the Tailscale daemon's private writable // directory (usually "/var/lib/tailscale" on Linux) that // contains the "tailscaled.state" file, the "certs" directory // for TLS certs, and the "files" directory for incoming // Taildrop files before they're moved to a user directory. // If empty, Taildrop and TLS certs don't function. VarRoot string // AutostartStateKey, if non-empty, immediately starts the agent // using the given StateKey. If empty, the agent stays idle and // waits for a frontend to start it. AutostartStateKey ipn.StateKey // SurviveDisconnects specifies how the server reacts to its // frontend disconnecting. If true, the server keeps running on // its existing state, and accepts new frontend connections. If // false, the server dumps its state and becomes idle. // // This is effectively whether the platform is in "server // mode" by default. On Linux, it's true; on Windows, it's // false. But on some platforms (currently only Windows), the // "server mode" can be overridden at runtime with a change in // Prefs.ForceDaemon/WantRunning. // // To support CLI connections (notably, "tailscale status"), // the actual definition of "disconnect" is when the // connection count transitions from 1 to 0. SurviveDisconnects bool // LoginFlags specifies the LoginFlags to pass to the client. LoginFlags controlclient.LoginFlags } // Server is an IPN backend and its set of 0 or more active localhost // TCP or unix socket connections talking to that backend. type Server struct { b *ipnlocal.LocalBackend logf logger.Logf backendLogID string // resetOnZero is whether to call bs.Reset on transition from // 1->0 connections. That is, this is whether the backend is // being run in "client mode" that requires an active GUI // connection (such as on Windows by default). Even if this // is true, the ForceDaemon pref can override this. resetOnZero bool bsMu sync.Mutex // lock order: bsMu, then mu bs *ipn.BackendServer // mu guards the fields that follow. // lock order: mu, then LocalBackend.mu mu sync.Mutex lastUserID string // tracks last userid; on change, Reset state for paranoia allClients map[net.Conn]*ipnauth.ConnIdentity // HTTP or IPN clients map[net.Conn]bool // subset of allClients; only IPN protocol disconnectSub map[chan<- struct{}]struct{} // keys are subscribers of disconnects } // LocalBackend returns the server's LocalBackend. func (s *Server) LocalBackend() *ipnlocal.LocalBackend { return s.b } // blockWhileInUse blocks while until either a Read from conn fails // (i.e. it's closed) or until the server is able to accept ci as a // user. func (s *Server) blockWhileInUse(conn io.Reader, ci *ipnauth.ConnIdentity) { s.logf("blocking client while server in use; connIdentity=%v", ci) connDone := make(chan struct{}) go func() { io.Copy(io.Discard, conn) close(connDone) }() ch := make(chan struct{}, 1) s.registerDisconnectSub(ch, true) defer s.registerDisconnectSub(ch, false) for { select { case <-connDone: s.logf("blocked client Read completed; connIdentity=%v", ci) return case <-ch: s.mu.Lock() err := s.checkConnIdentityLocked(ci) s.mu.Unlock() if err == nil { s.logf("unblocking client, server is free; connIdentity=%v", ci) // Server is now available again for a new user. // TODO(bradfitz): keep this connection alive. But for // now just return and have our caller close the connection // (which unblocks the io.Copy goroutine we started above) // and then the client (e.g. Windows) will reconnect and // discover that it works. return } } } } // bufferHasHTTPRequest reports whether br looks like it has an HTTP // request in it, without reading any bytes from it. func bufferHasHTTPRequest(br *bufio.Reader) bool { peek, _ := br.Peek(br.Buffered()) return mem.HasPrefix(mem.B(peek), mem.S("GET ")) || mem.HasPrefix(mem.B(peek), mem.S("POST ")) || mem.Contains(mem.B(peek), mem.S(" HTTP/")) } // bufferIsConnect reports whether br looks like it's likely an HTTP // CONNECT request. // // Invariant: br has already had at least 4 bytes Peek'ed. func bufferIsConnect(br *bufio.Reader) bool { peek, _ := br.Peek(br.Buffered()) return mem.HasPrefix(mem.B(peek), mem.S("CONN")) } // permitOldProtocol is whether we permit the old pre-HTTP protocol from the // client (cmd/tailscale or GUI client) to the tailscaled server. // // This is currently (2022-11-24) only permitted on Windows. There is an // outstanding change to the Windows GUI to finish the migration to the // HTTP-based protocol. Once it's in, this constant will go away and the old // protocol will not be permitted for any platform. const permitOldProtocol = runtime.GOOS == "windows" // ipnProtoAndMethodSniffTimeout returns the read timeout to try to read a few // bytes from incoming IPN connection to determine whether it's an old-style // IPN bus connection or a new-style HTTP connection. And if an HTTP connection, // what its HTTP method is. func ipnProtoAndMethodSniffTimeout() time.Duration { if permitOldProtocol { // In the old protocol, the client might not be sending anything at all // and only receiving, so keep a short timeout as to not delay // connecting to the IPN bus and getting ipn.Notify messages. return 1 * time.Second } // But in the new protocol, there will always be an HTTP request to start, // so we can take a long time to receive the first few bytes. 30s is // overkill. return 30 * time.Second } func (s *Server) serveConn(ctx context.Context, c net.Conn, logf logger.Logf) { // First sniff a few bytes to see if it's an HTTP request. And if so, which // HTTP method. br := bufio.NewReader(c) c.SetReadDeadline(time.Now().Add(ipnProtoAndMethodSniffTimeout())) br.Peek(4) // either 4 bytes old protocol length header, or HTTP "GET " etc. c.SetReadDeadline(time.Time{}) // Handle logtail CONNECT requests early. (See docs on handleProxyConnectConn) if bufferIsConnect(br) { s.handleProxyConnectConn(ctx, br, c, logf) return } // If we don't permit the old "IPN bus" JSON bidi stream protocol, then // assume it's HTTP. Otherwise sniff the first few bytes to see if it looks // like HTTP. isHTTPReq := !permitOldProtocol || bufferHasHTTPRequest(br) ci, err := s.addConn(c, isHTTPReq) if err != nil { if isHTTPReq { fmt.Fprintf(c, "HTTP/1.0 500 Nope\r\nContent-Type: text/plain\r\nX-Content-Type-Options: nosniff\r\n\r\n%s\n", err.Error()) c.Close() return } defer c.Close() bs := ipn.NewBackendServer(logf, nil, jsonNotifier(c, s.logf)) _, occupied := err.(inUseOtherUserError) if occupied { bs.SendInUseOtherUserErrorMessage(err.Error()) s.blockWhileInUse(c, ci) } else { bs.SendErrorMessage(err.Error()) time.Sleep(time.Second) } return } // Tell the LocalBackend about the identity we're now running as. s.b.SetCurrentUserID(ci.UserID()) if isHTTPReq { httpServer := &http.Server{ // Localhost connections are cheap; so only do // keep-alives for a short period of time, as these // active connections lock the server into only serving // that user. If the user has this page open, we don't // want another switching user to be locked out for // minutes. 5 seconds is enough to let browser hit // favicon.ico and such. IdleTimeout: 5 * time.Second, ErrorLog: logger.StdLogger(logf), Handler: s.localhostHandler(ci), } httpServer.Serve(netutil.NewOneConnListener(&protoSwitchConn{s: s, br: br, Conn: c}, nil)) return } defer s.removeAndCloseConn(c) logf("[v1] incoming control connection") if ci.IsReadonlyConn(s.b.OperatorUserID(), logf) { ctx = ipn.ReadonlyContextOf(ctx) } for ctx.Err() == nil { msg, err := ipn.ReadMsg(br) if err != nil { if errors.Is(err, io.EOF) { logf("[v1] ReadMsg: %v", err) } else if ctx.Err() == nil { logf("ReadMsg: %v", err) } return } s.bsMu.Lock() if err := s.bs.GotCommandMsg(ctx, msg); err != nil { logf("GotCommandMsg: %v", err) } gotQuit := s.bs.GotQuit s.bsMu.Unlock() if gotQuit { return } } } // inUseOtherUserError is the error type for when the server is in use // by a different local user. type inUseOtherUserError struct{ error } func (e inUseOtherUserError) Unwrap() error { return e.error } // checkConnIdentityLocked checks whether the provided identity is // allowed to connect to the server. // // The returned error, when non-nil, will be of type inUseOtherUserError. // // s.mu must be held. func (s *Server) checkConnIdentityLocked(ci *ipnauth.ConnIdentity) error { // If clients are already connected, verify they're the same user. // This mostly matters on Windows at the moment. if len(s.allClients) > 0 { var active *ipnauth.ConnIdentity for _, active = range s.allClients { break } if active != nil && ci.UserID() != active.UserID() { return inUseOtherUserError{fmt.Errorf("Tailscale already in use by %s, pid %d", active.User().Username, active.Pid())} } } if err := s.b.CheckIPNConnectionAllowed(ci); err != nil { return inUseOtherUserError{err} } return nil } // localAPIPermissions returns the permissions for the given identity accessing // the Tailscale local daemon API. // // s.mu must not be held. func (s *Server) localAPIPermissions(ci *ipnauth.ConnIdentity) (read, write bool) { switch runtime.GOOS { case "windows": s.mu.Lock() defer s.mu.Unlock() if s.checkConnIdentityLocked(ci) == nil { return true, true } return false, false case "js": return true, true } if ci.IsUnixSock() { return true, !ci.IsReadonlyConn(s.b.OperatorUserID(), logger.Discard) } return false, false } // userIDFromString maps from either a numeric user id in string form // ("998") or username ("caddy") to its string userid ("998"). // It returns the empty string on error. func userIDFromString(v string) string { if v == "" || isAllDigit(v) { return v } u, err := user.Lookup(v) if err != nil { return "" } return u.Uid } func isAllDigit(s string) bool { for i := 0; i < len(s); i++ { if b := s[i]; b < '0' || b > '9' { return false } } return true } // connCanFetchCerts reports whether ci is allowed to fetch HTTPS // certs from this server when it wouldn't otherwise be able to. // // That is, this reports whether ci should grant additional // capabilities over what the conn would otherwise be able to do. // // For now this only returns true on Unix machines when // TS_PERMIT_CERT_UID is set the to the userid of the peer // connection. It's intended to give your non-root webserver access // (www-data, caddy, nginx, etc) to certs. func (s *Server) connCanFetchCerts(ci *ipnauth.ConnIdentity) bool { if ci.IsUnixSock() && ci.Creds() != nil { connUID, ok := ci.Creds().UserID() if ok && connUID == userIDFromString(envknob.String("TS_PERMIT_CERT_UID")) { return true } } return false } // registerDisconnectSub adds ch as a subscribe to connection disconnect // events. If add is false, the subscriber is removed. func (s *Server) registerDisconnectSub(ch chan<- struct{}, add bool) { s.mu.Lock() defer s.mu.Unlock() if add { if s.disconnectSub == nil { s.disconnectSub = make(map[chan<- struct{}]struct{}) } s.disconnectSub[ch] = struct{}{} } else { delete(s.disconnectSub, ch) } } // addConn adds c to the server's list of clients. // // If the returned error is of type inUseOtherUserError then the // returned connIdentity is also valid. func (s *Server) addConn(c net.Conn, isHTTP bool) (ci *ipnauth.ConnIdentity, err error) { ci, err = ipnauth.GetConnIdentity(s.logf, c) if err != nil { return } // If the connected user changes, reset the backend server state to make // sure node keys don't leak between users. var doReset bool defer func() { if doReset { s.logf("identity changed; resetting server") s.b.ResetForClientDisconnect() } }() s.mu.Lock() defer s.mu.Unlock() if s.clients == nil { s.clients = map[net.Conn]bool{} } if s.allClients == nil { s.allClients = map[net.Conn]*ipnauth.ConnIdentity{} } if err := s.checkConnIdentityLocked(ci); err != nil { return ci, err } if !isHTTP { s.clients[c] = true } s.allClients[c] = ci if s.lastUserID != ci.UserID() { if s.lastUserID != "" { doReset = true } s.lastUserID = ci.UserID() } return ci, nil } func (s *Server) removeAndCloseConn(c net.Conn) { s.mu.Lock() delete(s.clients, c) delete(s.allClients, c) remain := len(s.allClients) for sub := range s.disconnectSub { select { case sub <- struct{}{}: default: } } s.mu.Unlock() if remain == 0 && s.resetOnZero { if s.b.InServerMode() { s.logf("client disconnected; staying alive in server mode") } else { s.logf("client disconnected; stopping server") s.b.ResetForClientDisconnect() } } c.Close() } func (s *Server) stopAll() { s.mu.Lock() defer s.mu.Unlock() for c := range s.clients { safesocket.ConnCloseRead(c) safesocket.ConnCloseWrite(c) } s.clients = nil } var jsonEscapedZero = []byte(`\u0000`) func (s *Server) writeToClients(n ipn.Notify) { s.mu.Lock() defer s.mu.Unlock() if len(s.clients) == 0 { // Common case (at least on busy servers): nobody // connected (no GUI, etc), so return before // serializing JSON. return } if b, ok := marshalNotify(n, s.logf); ok { for c := range s.clients { ipn.WriteMsg(c, b) } } } // Run runs a Tailscale backend service. // The getEngine func is called repeatedly, once per connection, until it returns an engine successfully. // // Deprecated: use New and Server.Run instead. func Run(ctx context.Context, logf logger.Logf, ln net.Listener, store ipn.StateStore, linkMon *monitor.Mon, dialer *tsdial.Dialer, logid string, getEngine func() (wgengine.Engine, *netstack.Impl, error), opts Options) error { getEngine = getEngineUntilItWorksWrapper(getEngine) runDone := make(chan struct{}) defer close(runDone) var serverMu sync.Mutex var serverOrNil *Server // When the context is closed or when we return, whichever is first, close our listener // and all open connections. go func() { select { case <-ctx.Done(): case <-runDone: } serverMu.Lock() if s := serverOrNil; s != nil { s.stopAll() } serverMu.Unlock() ln.Close() }() logf("Listening on %v", ln.Addr()) bo := backoff.NewBackoff("ipnserver", logf, 30*time.Second) var unservedConn net.Conn // if non-nil, accepted, but hasn't served yet eng, ns, err := getEngine() if err != nil { logf("ipnserver: initial getEngine call: %v", err) for i := 1; ctx.Err() == nil; i++ { c, err := ln.Accept() if err != nil { logf("%d: Accept: %v", i, err) bo.BackOff(ctx, err) continue } logf("ipnserver: try%d: trying getEngine again...", i) eng, ns, err = getEngine() if err == nil { logf("%d: GetEngine worked; exiting failure loop", i) unservedConn = c break } logf("ipnserver%d: getEngine failed again: %v", i, err) errMsg := err.Error() go func() { defer c.Close() bs := ipn.NewBackendServer(logf, nil, jsonNotifier(c, logf)) bs.SendErrorMessage(errMsg) time.Sleep(time.Second) }() } if err := ctx.Err(); err != nil { return err } } if unservedConn != nil { ln = &listenerWithReadyConn{ Listener: ln, c: unservedConn, } } server, err := New(logf, logid, store, eng, dialer, opts) if err != nil { return err } if ns != nil { ns.SetLocalBackend(server.LocalBackend()) } serverMu.Lock() serverOrNil = server serverMu.Unlock() return server.Run(ctx, ln) } // New returns a new Server. // // To start it, use the Server.Run method. func New(logf logger.Logf, logid string, store ipn.StateStore, eng wgengine.Engine, dialer *tsdial.Dialer, opts Options) (*Server, error) { b, err := ipnlocal.NewLocalBackend(logf, logid, store, opts.AutostartStateKey, dialer, eng, opts.LoginFlags) if err != nil { return nil, fmt.Errorf("NewLocalBackend: %v", err) } b.SetVarRoot(opts.VarRoot) b.SetDecompressor(func() (controlclient.Decompressor, error) { return smallzstd.NewDecoder(nil) }) if root := b.TailscaleVarRoot(); root != "" { dnsfallback.SetCachePath(filepath.Join(root, "derpmap.cached.json")) } dg := distro.Get() switch dg { case distro.Synology, distro.TrueNAS, distro.QNAP: // See if they have a "Taildrop" share. // See https://github.com/tailscale/tailscale/issues/2179#issuecomment-982821319 path, err := findTaildropDir(dg) if err != nil { logf("%s Taildrop support: %v", dg, err) } else { logf("%s Taildrop: using %v", dg, path) b.SetDirectFileRoot(path) b.SetDirectFileDoFinalRename(true) } } server := &Server{ b: b, backendLogID: logid, logf: logf, resetOnZero: !opts.SurviveDisconnects, } server.bs = ipn.NewBackendServer(logf, b, server.writeToClients) return server, nil } // Run runs the server, accepting connections from ln forever. // // If the context is done, the listener is closed. func (s *Server) Run(ctx context.Context, ln net.Listener) error { defer s.b.Shutdown() runDone := make(chan struct{}) defer close(runDone) // When the context is closed or when we return, whichever is first, close our listener // and all open connections. go func() { select { case <-ctx.Done(): case <-runDone: } s.stopAll() ln.Close() }() if s.b.Prefs().Valid() { s.bs.GotCommand(ctx, &ipn.Command{ Version: version.Long, Start: &ipn.StartArgs{ Opts: ipn.Options{}, }, }) } systemd.Ready() bo := backoff.NewBackoff("ipnserver", s.logf, 30*time.Second) var connNum int for { if ctx.Err() != nil { return ctx.Err() } c, err := ln.Accept() if err != nil { if ctx.Err() != nil { return ctx.Err() } s.logf("ipnserver: Accept: %v", err) bo.BackOff(ctx, err) continue } connNum++ go s.serveConn(ctx, c, logger.WithPrefix(s.logf, fmt.Sprintf("ipnserver: conn%d: ", connNum))) } } // BabysitProc runs the current executable as a child process with the // provided args, capturing its output, writing it to files, and // restarting the process on any crashes. // // It's only currently (2020-10-29) used on Windows. func BabysitProc(ctx context.Context, args []string, logf logger.Logf) { executable, err := os.Executable() if err != nil { panic("cannot determine executable: " + err.Error()) } var proc struct { mu sync.Mutex p *os.Process } done := make(chan struct{}) go func() { interrupt := make(chan os.Signal, 1) signal.Notify(interrupt, syscall.SIGINT, syscall.SIGTERM) var sig os.Signal select { case sig = <-interrupt: logf("BabysitProc: got signal: %v", sig) close(done) case <-ctx.Done(): logf("BabysitProc: context done") sig = os.Kill close(done) } proc.mu.Lock() proc.p.Signal(sig) proc.mu.Unlock() }() bo := backoff.NewBackoff("BabysitProc", logf, 30*time.Second) for { startTime := time.Now() log.Printf("exec: %#v %v", executable, args) cmd := exec.Command(executable, args...) // Create a pipe object to use as the subproc's stdin. // When the writer goes away, the reader gets EOF. // A subproc can watch its stdin and exit when it gets EOF; // this is a very reliable way to have a subproc die when // its parent (us) disappears. // We never need to actually write to wStdin. rStdin, wStdin, err := os.Pipe() if err != nil { log.Printf("os.Pipe 1: %v", err) return } // Create a pipe object to use as the subproc's stdout/stderr. // We'll read from this pipe and send it to logf, line by line. // We can't use os.exec's io.Writer for this because it // doesn't care about lines, and thus ends up merging multiple // log lines into one or splitting one line into multiple // logf() calls. bufio is more appropriate. rStdout, wStdout, err := os.Pipe() if err != nil { log.Printf("os.Pipe 2: %v", err) } go func(r *os.File) { defer r.Close() rb := bufio.NewReader(r) for { s, err := rb.ReadString('\n') if s != "" { logf("%s", s) } if err != nil { break } } }(rStdout) cmd.Stdin = rStdin cmd.Stdout = wStdout cmd.Stderr = wStdout err = cmd.Start() // Now that the subproc is started, get rid of our copy of the // pipe reader. Bad things happen on Windows if more than one // process owns the read side of a pipe. rStdin.Close() wStdout.Close() if err != nil { log.Printf("starting subprocess failed: %v", err) } else { proc.mu.Lock() proc.p = cmd.Process proc.mu.Unlock() err = cmd.Wait() log.Printf("subprocess exited: %v", err) } // If the process finishes, clean up the write side of the // pipe. We'll make a new one when we restart the subproc. wStdin.Close() if os.Getenv("TS_DEBUG_RESTART_CRASHED") == "0" { log.Fatalf("Process ended.") } if time.Since(startTime) < 60*time.Second { bo.BackOff(ctx, fmt.Errorf("subproc early exit: %v", err)) } else { // Reset the timeout, since the process ran for a while. bo.BackOff(ctx, nil) } select { case <-done: return default: } } } // getEngineUntilItWorksWrapper returns a getEngine wrapper that does // not call getEngine concurrently and stops calling getEngine once // it's returned a working engine. func getEngineUntilItWorksWrapper(getEngine func() (wgengine.Engine, *netstack.Impl, error)) func() (wgengine.Engine, *netstack.Impl, error) { var mu sync.Mutex var engGood wgengine.Engine var nsGood *netstack.Impl return func() (wgengine.Engine, *netstack.Impl, error) { mu.Lock() defer mu.Unlock() if engGood != nil { return engGood, nsGood, nil } e, ns, err := getEngine() if err != nil { return nil, nil, err } engGood = e nsGood = ns return e, ns, nil } } // protoSwitchConn is a net.Conn that's we want to speak HTTP to but // it's already had a few bytes read from it to determine that it's // HTTP. So we Read from its bufio.Reader. On Close, we we tell the // server it's closed, so the server can account the who's connected. type protoSwitchConn struct { s *Server net.Conn br *bufio.Reader closeOnce sync.Once } func (psc *protoSwitchConn) Read(p []byte) (int, error) { return psc.br.Read(p) } func (psc *protoSwitchConn) Close() error { psc.closeOnce.Do(func() { psc.s.removeAndCloseConn(psc.Conn) }) return nil } func (s *Server) localhostHandler(ci *ipnauth.ConnIdentity) http.Handler { lah := localapi.NewHandler(s.b, s.logf, s.backendLogID) lah.PermitRead, lah.PermitWrite = s.localAPIPermissions(ci) lah.PermitCert = s.connCanFetchCerts(ci) return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { if strings.HasPrefix(r.URL.Path, "/localapi/") { lah.ServeHTTP(w, r) return } if ci.NotWindows() { io.WriteString(w, "