// Copyright (c) 2021 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package controlhttp implements the Tailscale 2021 control protocol // base transport over HTTP. // // This tunnels the protocol in control/controlbase over HTTP with a // variety of compatibility fallbacks for handling picky or deep // inspecting proxies. // // In the happy path, a client makes a single cleartext HTTP request // to the server, the server responds with 101 Switching Protocols, // and the control base protocol takes place over plain TCP. // // In the compatibility path, the client does the above over HTTPS, // resulting in double encryption (once for the control transport, and // once for the outer TLS layer). package controlhttp import ( "context" "crypto/tls" "encoding/base64" "errors" "fmt" "io" "log" "net" "net/http" "net/http/httptrace" "net/url" "tailscale.com/control/controlbase" "tailscale.com/net/dnscache" "tailscale.com/net/dnsfallback" "tailscale.com/net/netns" "tailscale.com/net/tlsdial" "tailscale.com/net/tshttpproxy" "tailscale.com/types/key" ) const ( // upgradeHeader is the value of the Upgrade HTTP header used to // indicate the Tailscale control protocol. upgradeHeaderValue = "tailscale-control-protocol" // handshakeHeaderName is the HTTP request header that can // optionally contain base64-encoded initial handshake // payload, to save an RTT. handshakeHeaderName = "X-Tailscale-Handshake" // serverUpgradePath is where the server-side HTTP handler to // to do the protocol switch is located. serverUpgradePath = "/ts2021" ) // Dial connects to the HTTP server at addr, requests to switch to the // Tailscale control protocol, and returns an established control // protocol connection. // // If Dial fails to connect using addr, it also tries to tunnel over // TLS to :443 as a compatibility fallback. // // The provided ctx is only used for the initial connection, until // Dial returns. It does not affect the connection once established. func Dial(ctx context.Context, addr string, machineKey key.MachinePrivate, controlKey key.MachinePublic) (*controlbase.Conn, error) { host, port, err := net.SplitHostPort(addr) if err != nil { return nil, err } a := &dialParams{ ctx: ctx, host: host, httpPort: port, httpsPort: "443", machineKey: machineKey, controlKey: controlKey, proxyFunc: tshttpproxy.ProxyFromEnvironment, } return a.dial() } type dialParams struct { ctx context.Context host string httpPort string httpsPort string machineKey key.MachinePrivate controlKey key.MachinePublic proxyFunc func(*http.Request) (*url.URL, error) // or nil // For tests only insecureTLS bool } func (a *dialParams) dial() (*controlbase.Conn, error) { init, cont, err := controlbase.ClientDeferred(a.machineKey, a.controlKey) if err != nil { return nil, err } u := &url.URL{ Scheme: "http", Host: net.JoinHostPort(a.host, a.httpPort), Path: serverUpgradePath, } conn, httpErr := a.tryURL(u, init) if httpErr == nil { ret, err := cont(a.ctx, conn) if err != nil { conn.Close() return nil, err } return ret, nil } // Connecting over plain HTTP failed, assume it's an HTTP proxy // being difficult and see if we can get through over HTTPS. u.Scheme = "https" u.Host = net.JoinHostPort(a.host, a.httpsPort) init, cont, err = controlbase.ClientDeferred(a.machineKey, a.controlKey) if err != nil { return nil, err } conn, tlsErr := a.tryURL(u, init) if tlsErr == nil { ret, err := cont(a.ctx, conn) if err != nil { conn.Close() return nil, err } return ret, nil } return nil, fmt.Errorf("all connection attempts failed (HTTP: %v, HTTPS: %v)", httpErr, tlsErr) } func (a *dialParams) tryURL(u *url.URL, init []byte) (net.Conn, error) { dns := &dnscache.Resolver{ Forward: dnscache.Get().Forward, LookupIPFallback: dnsfallback.Lookup, UseLastGood: true, } dialer := netns.NewDialer(log.Printf) tr := http.DefaultTransport.(*http.Transport).Clone() defer tr.CloseIdleConnections() tr.Proxy = a.proxyFunc tshttpproxy.SetTransportGetProxyConnectHeader(tr) tr.DialContext = dnscache.Dialer(dialer.DialContext, dns) // Disable HTTP2, since h2 can't do protocol switching. tr.TLSClientConfig.NextProtos = []string{} tr.TLSNextProto = map[string]func(string, *tls.Conn) http.RoundTripper{} tr.TLSClientConfig = tlsdial.Config(a.host, tr.TLSClientConfig) if a.insecureTLS { tr.TLSClientConfig.InsecureSkipVerify = true tr.TLSClientConfig.VerifyConnection = nil } tr.DialTLSContext = dnscache.TLSDialer(dialer.DialContext, dns, tr.TLSClientConfig) tr.DisableCompression = true // (mis)use httptrace to extract the underlying net.Conn from the // transport. We make exactly 1 request using this transport, so // there will be exactly 1 GotConn call. Additionally, the // transport handles 101 Switching Protocols correctly, such that // the Conn will not be reused or kept alive by the transport once // the response has been handed back from RoundTrip. // // In theory, the machinery of net/http should make it such that // the trace callback happens-before we get the response, but // there's no promise of that. So, to make sure, we use a buffered // channel as a synchronization step to avoid data races. // // Note that even though we're able to extract a net.Conn via this // mechanism, we must still keep using the eventual resp.Body to // read from, because it includes a buffer we can't get rid of. If // the server never sends any data after sending the HTTP // response, we could get away with it, but violating this // assumption leads to very mysterious transport errors (lockups, // unexpected EOFs...), and we're bound to forget someday and // introduce a protocol optimization at a higher level that starts // eagerly transmitting from the server. connCh := make(chan net.Conn, 1) trace := httptrace.ClientTrace{ GotConn: func(info httptrace.GotConnInfo) { connCh <- info.Conn }, } ctx := httptrace.WithClientTrace(a.ctx, &trace) req := &http.Request{ Method: "POST", URL: u, Header: http.Header{ "Upgrade": []string{upgradeHeaderValue}, "Connection": []string{"upgrade"}, handshakeHeaderName: []string{base64.StdEncoding.EncodeToString(init)}, }, } req = req.WithContext(ctx) resp, err := tr.RoundTrip(req) if err != nil { return nil, err } if resp.StatusCode != http.StatusSwitchingProtocols { return nil, fmt.Errorf("unexpected HTTP response: %s", resp.Status) } // From here on, the underlying net.Conn is ours to use, but there // is still a read buffer attached to it within resp.Body. So, we // must direct I/O through resp.Body, but we can still use the // underlying net.Conn for stuff like deadlines. var switchedConn net.Conn select { case switchedConn = <-connCh: default: } if switchedConn == nil { resp.Body.Close() return nil, fmt.Errorf("httptrace didn't provide a connection") } if next := resp.Header.Get("Upgrade"); next != upgradeHeaderValue { resp.Body.Close() return nil, fmt.Errorf("server switched to unexpected protocol %q", next) } rwc, ok := resp.Body.(io.ReadWriteCloser) if !ok { resp.Body.Close() return nil, errors.New("http Transport did not provide a writable body") } return &wrappedConn{switchedConn, rwc}, nil } type wrappedConn struct { net.Conn rwc io.ReadWriteCloser } func (w *wrappedConn) Read(bs []byte) (int, error) { return w.rwc.Read(bs) } func (w *wrappedConn) Write(bs []byte) (int, error) { return w.rwc.Write(bs) } func (w *wrappedConn) Close() error { return w.rwc.Close() }