// Copyright (c) Tailscale Inc & AUTHORS // SPDX-License-Identifier: BSD-3-Clause // Package deephash hashes a Go value recursively, in a predictable order, // without looping. The hash is only valid within the lifetime of a program. // Users should not store the hash on disk or send it over the network. // The hash is sufficiently strong and unique such that // Hash(&x) == Hash(&y) is an appropriate replacement for x == y. // // The definition of equality is identical to reflect.DeepEqual except: // - Floating-point values are compared based on the raw bits, // which means that NaNs (with the same bit pattern) are treated as equal. // - time.Time are compared based on whether they are the same instant in time // and also in the same zone offset. Monotonic measurements and zone names // are ignored as part of the hash. // - netip.Addr are compared based on a shallow comparison of the struct. // // WARNING: This package, like most of the tailscale.com Go module, // should be considered Tailscale-internal; we make no API promises. // // # Cycle detection // // This package correctly handles cycles in the value graph, // but in a way that is potentially pathological in some situations. // // The algorithm for cycle detection operates by // pushing a pointer onto a stack whenever deephash is visiting a pointer and // popping the pointer from the stack after deephash is leaving the pointer. // Before visiting a new pointer, deephash checks whether it has already been // visited on the pointer stack. If so, it hashes the index of the pointer // on the stack and avoids visiting the pointer. // // This algorithm is guaranteed to detect cycles, but may expand pointers // more often than a potential alternate algorithm that remembers all pointers // ever visited in a map. The current algorithm uses O(D) memory, where D // is the maximum depth of the recursion, while the alternate algorithm // would use O(P) memory where P is all pointers ever seen, which can be a lot, // and most of which may have nothing to do with cycles. // Also, the alternate algorithm has to deal with challenges of producing // deterministic results when pointers are visited in non-deterministic ways // such as when iterating through a Go map. The stack-based algorithm avoids // this challenge since the stack is always deterministic regardless of // non-deterministic iteration order of Go maps. // // To concretely see how this algorithm can be pathological, // consider the following data structure: // // var big *Item = ... // some large data structure that is slow to hash // var manyBig []*Item // for i := 0; i < 1000; i++ { // manyBig = append(manyBig, &big) // } // deephash.Hash(manyBig) // // Here, the manyBig data structure is not even cyclic. // We have the same big *Item being stored multiple times in a []*Item. // When deephash hashes []*Item, it hashes each individual *Item // not realizing that it had just done the computation earlier. // To avoid the pathological situation, Item should implement [SelfHasher] and // memoize attempts to hash itself. package deephash // TODO: Add option to teach deephash to memoize the Hash result of particular types? import ( "crypto/sha256" "encoding/binary" "encoding/hex" "fmt" "reflect" "sync" "time" "tailscale.com/util/hashx" "tailscale.com/util/set" ) // There is much overlap between the theory of serialization and hashing. // A hash (useful for determining equality) can be produced by printing a value // and hashing the output. The format must: // * be deterministic such that the same value hashes to the same output, and // * be parsable such that the same value can be reproduced by the output. // // The logic below hashes a value by printing it to a hash.Hash. // To be parsable, it assumes that we know the Go type of each value: // * scalar types (e.g., bool or int32) are directly printed as their // underlying memory representation. // * list types (e.g., strings and slices) are prefixed by a // fixed-width length field, followed by the contents of the list. // * slices, arrays, and structs print each element/field consecutively. // * interfaces print with a 1-byte prefix indicating whether it is nil. // If non-nil, it is followed by a fixed-width field of the type index, // followed by the format of the underlying value. // * pointers print with a 1-byte prefix indicating whether the pointer is // 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers are // followed by a fixed-width field with the index of the previous pointer. // Newly seen pointers are followed by the format of the underlying value. // * maps print with a 1-byte prefix indicating whether the map pointer is // 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers // are followed by a fixed-width field of the index of the previous pointer. // Newly seen maps are printed with a fixed-width length field, followed by // a fixed-width field with the XOR of the hash of every map entry. // With a sufficiently strong hash, this value is theoretically "parsable" // by looking up the hash in a magical map that returns the set of entries // for that given hash. // SelfHasher is implemented by types that can compute their own hash // by writing values through the provided [Hasher] parameter. // Implementations must not leak the provided [Hasher]. // // If the implementation of SelfHasher recursively calls [deephash.Hash], // then infinite recursion is quite likely to occur. // To avoid this, use a type definition to drop methods before calling [deephash.Hash]: // // func (v *MyType) Hash(h deephash.Hasher) { // v.hashMu.Lock() // defer v.hashMu.Unlock() // if v.dirtyHash { // type MyTypeWithoutMethods MyType // type define MyType to drop Hash method // v.dirtyHash = false // clear out dirty bit to avoid hashing over it // v.hashSum = deephash.Sum{} // clear out hashSum to avoid hashing over it // v.hashSum = deephash.Hash((*MyTypeWithoutMethods)(v)) // } // h.HashSum(v.hashSum) // } // // In the above example, we acquire a lock since it is possible that deephash // is called in a concurrent manner, which implies that MyType.Hash may also // be called in a concurrent manner. Whether this lock is necessary is // application-dependent and left as an exercise to the reader. // Also, the example assumes that dirtyHash is set elsewhere by application // logic whenever a mutation is made to MyType that would alter the hash. type SelfHasher interface { Hash(Hasher) } // Hasher is a value passed to [SelfHasher.Hash] that allow implementations // to hash themselves in a structured manner. type Hasher struct{ h *hashx.Block512 } // HashBytes hashes a sequence of bytes b. // The length of b is not explicitly hashed. func (h Hasher) HashBytes(b []byte) { h.h.HashBytes(b) } // HashString hashes the string data of s // The length of s is not explicitly hashed. func (h Hasher) HashString(s string) { h.h.HashString(s) } // HashUint8 hashes a uint8. func (h Hasher) HashUint8(n uint8) { h.h.HashUint8(n) } // HashUint16 hashes a uint16. func (h Hasher) HashUint16(n uint16) { h.h.HashUint16(n) } // HashUint32 hashes a uint32. func (h Hasher) HashUint32(n uint32) { h.h.HashUint32(n) } // HashUint64 hashes a uint64. func (h Hasher) HashUint64(n uint64) { h.h.HashUint64(n) } // HashSum hashes a [Sum]. func (h Hasher) HashSum(s Sum) { // NOTE: Avoid calling h.HashBytes since it escapes b, // which would force s to be heap allocated. h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[0:8])) h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[8:16])) h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[16:24])) h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[24:32])) } // hasher is reusable state for hashing a value. // Get one via hasherPool. type hasher struct { hashx.Block512 visitStack visitStack } var hasherPool = &sync.Pool{ New: func() any { return new(hasher) }, } func (h *hasher) reset() { if h.Block512.Hash == nil { h.Block512.Hash = sha256.New() } h.Block512.Reset() } // hashType hashes a reflect.Type. // The hash is only consistent within the lifetime of a program. func (h *hasher) hashType(t reflect.Type) { // This approach relies on reflect.Type always being backed by a unique // *reflect.rtype pointer. A safer approach is to use a global sync.Map // that maps reflect.Type to some arbitrary and unique index. // While safer, it requires global state with memory that can never be GC'd. rtypeAddr := reflect.ValueOf(t).Pointer() // address of *reflect.rtype h.HashUint64(uint64(rtypeAddr)) } func (h *hasher) sum() (s Sum) { h.Sum(s.sum[:0]) return s } // Sum is an opaque checksum type that is comparable. type Sum struct { sum [sha256.Size]byte } func (s1 *Sum) xor(s2 Sum) { for i := 0; i < sha256.Size; i++ { s1.sum[i] ^= s2.sum[i] } } func (s Sum) String() string { // Note: if we change this, keep in sync with AppendTo return hex.EncodeToString(s.sum[:]) } // AppendTo appends the string encoding of this sum (as returned by the String // method) to the provided byte slice and returns the extended buffer. func (s Sum) AppendTo(b []byte) []byte { // TODO: switch to upstream implementation if accepted: // https://github.com/golang/go/issues/53693 var lb [len(s.sum) * 2]byte hex.Encode(lb[:], s.sum[:]) return append(b, lb[:]...) } var ( seedOnce sync.Once seed uint64 ) func initSeed() { seed = uint64(time.Now().UnixNano()) } // Hash returns the hash of v. func Hash[T any](v *T) Sum { h := hasherPool.Get().(*hasher) defer hasherPool.Put(h) h.reset() seedOnce.Do(initSeed) h.HashUint64(seed) // Always treat the Hash input as if it were an interface by including // a hash of the type. This ensures that hashing of two different types // but with the same value structure produces different hashes. t := reflect.TypeOf(v).Elem() h.hashType(t) if v == nil { h.HashUint8(0) // indicates nil } else { h.HashUint8(1) // indicates visiting pointer element p := pointerOf(reflect.ValueOf(v)) hash := lookupTypeHasher(t) hash(h, p) } return h.sum() } // Option is an optional argument to HasherForType. type Option interface { isOption() } type fieldFilterOpt struct { t reflect.Type fields set.Set[string] includeOnMatch bool // true to include fields, false to exclude them } func (fieldFilterOpt) isOption() {} func (f fieldFilterOpt) filterStructField(sf reflect.StructField) (include bool) { if f.fields.Contains(sf.Name) { return f.includeOnMatch } return !f.includeOnMatch } // IncludeFields returns an option that modifies the hashing for T to only // include the named struct fields. // // T must be a struct type, and must match the type of the value passed to // HasherForType. func IncludeFields[T any](fields ...string) Option { return newFieldFilter[T](true, fields) } // ExcludeFields returns an option that modifies the hashing for T to include // all struct fields of T except those provided in fields. // // T must be a struct type, and must match the type of the value passed to // HasherForType. func ExcludeFields[T any](fields ...string) Option { return newFieldFilter[T](false, fields) } func newFieldFilter[T any](include bool, fields []string) Option { var zero T t := reflect.TypeOf(&zero).Elem() fieldSet := set.Set[string]{} for _, f := range fields { if _, ok := t.FieldByName(f); !ok { panic(fmt.Sprintf("unknown field %q for type %v", f, t)) } fieldSet.Add(f) } return fieldFilterOpt{t, fieldSet, include} } // HasherForType returns a hash that is specialized for the provided type. // // HasherForType panics if the opts are invalid for the provided type. // // Currently, at most one option can be provided (IncludeFields or // ExcludeFields) and its type must match the type of T. Those restrictions may // be removed in the future, along with documentation about their precedence // when combined. func HasherForType[T any](opts ...Option) func(*T) Sum { var v *T seedOnce.Do(initSeed) if len(opts) > 1 { panic("HasherForType only accepts one optional argument") // for now } t := reflect.TypeOf(v).Elem() var hash typeHasherFunc for _, o := range opts { switch o := o.(type) { default: panic(fmt.Sprintf("unknown HasherOpt %T", o)) case fieldFilterOpt: if t.Kind() != reflect.Struct { panic("HasherForStructTypeWithFieldFilter requires T of kind struct") } if t != o.t { panic(fmt.Sprintf("field filter for type %v does not match HasherForType type %v", o.t, t)) } hash = makeStructHasher(t, o.filterStructField) } } if hash == nil { hash = lookupTypeHasher(t) } return func(v *T) (s Sum) { // This logic is identical to Hash, but pull out a few statements. h := hasherPool.Get().(*hasher) defer hasherPool.Put(h) h.reset() h.HashUint64(seed) h.hashType(t) if v == nil { h.HashUint8(0) // indicates nil } else { h.HashUint8(1) // indicates visiting pointer element p := pointerOf(reflect.ValueOf(v)) hash(h, p) } return h.sum() } } // Update sets last to the hash of v and reports whether its value changed. func Update[T any](last *Sum, v *T) (changed bool) { sum := Hash(v) changed = sum != *last if changed { *last = sum } return changed } // typeHasherFunc hashes the value pointed at by p for a given type. // For example, if t is a bool, then p is a *bool. // The provided pointer must always be non-nil. type typeHasherFunc func(h *hasher, p pointer) var typeHasherCache sync.Map // map[reflect.Type]typeHasherFunc func lookupTypeHasher(t reflect.Type) typeHasherFunc { if v, ok := typeHasherCache.Load(t); ok { return v.(typeHasherFunc) } hash := makeTypeHasher(t) v, _ := typeHasherCache.LoadOrStore(t, hash) return v.(typeHasherFunc) } func makeTypeHasher(t reflect.Type) typeHasherFunc { // Types with specific hashing. switch t { case timeTimeType: return hashTime case netipAddrType: return hashAddr } // Types that implement their own hashing. if t.Kind() != reflect.Pointer && t.Kind() != reflect.Interface { // A method can be implemented on either the value receiver or pointer receiver. if t.Implements(selfHasherType) || reflect.PointerTo(t).Implements(selfHasherType) { return makeSelfHasher(t) } } // Types that can have their memory representation directly hashed. if typeIsMemHashable(t) { return makeMemHasher(t.Size()) } switch t.Kind() { case reflect.String: return hashString case reflect.Array: return makeArrayHasher(t) case reflect.Slice: return makeSliceHasher(t) case reflect.Struct: return makeStructHasher(t, keepAllStructFields) case reflect.Map: return makeMapHasher(t) case reflect.Pointer: return makePointerHasher(t) case reflect.Interface: return makeInterfaceHasher(t) default: // Func, Chan, UnsafePointer return func(*hasher, pointer) {} } } func hashTime(h *hasher, p pointer) { // Include the zone offset (but not the name) to keep // Hash(t1) == Hash(t2) being semantically equivalent to // t1.Format(time.RFC3339Nano) == t2.Format(time.RFC3339Nano). t := *p.asTime() _, offset := t.Zone() h.HashUint64(uint64(t.Unix())) h.HashUint32(uint32(t.Nanosecond())) h.HashUint32(uint32(offset)) } func hashAddr(h *hasher, p pointer) { // The formatting of netip.Addr covers the // IP version, the address, and the optional zone name (for v6). // This is equivalent to a1.MarshalBinary() == a2.MarshalBinary(). ip := *p.asAddr() switch { case !ip.IsValid(): h.HashUint64(0) case ip.Is4(): b := ip.As4() h.HashUint64(4) h.HashUint32(binary.LittleEndian.Uint32(b[:])) case ip.Is6(): b := ip.As16() z := ip.Zone() h.HashUint64(16 + uint64(len(z))) h.HashUint64(binary.LittleEndian.Uint64(b[:8])) h.HashUint64(binary.LittleEndian.Uint64(b[8:])) h.HashString(z) } } func makeSelfHasher(t reflect.Type) typeHasherFunc { return func(h *hasher, p pointer) { p.asValue(t).Interface().(SelfHasher).Hash(Hasher{&h.Block512}) } } func hashString(h *hasher, p pointer) { s := *p.asString() h.HashUint64(uint64(len(s))) h.HashString(s) } func makeMemHasher(n uintptr) typeHasherFunc { return func(h *hasher, p pointer) { h.HashBytes(p.asMemory(n)) } } func makeArrayHasher(t reflect.Type) typeHasherFunc { var once sync.Once var hashElem typeHasherFunc init := func() { hashElem = lookupTypeHasher(t.Elem()) } n := t.Len() // number of array elements nb := t.Elem().Size() // byte size of each array element return func(h *hasher, p pointer) { once.Do(init) for i := 0; i < n; i++ { hashElem(h, p.arrayIndex(i, nb)) } } } func makeSliceHasher(t reflect.Type) typeHasherFunc { nb := t.Elem().Size() // byte size of each slice element if typeIsMemHashable(t.Elem()) { return func(h *hasher, p pointer) { pa := p.sliceArray() if pa.isNil() { h.HashUint8(0) // indicates nil return } h.HashUint8(1) // indicates visiting slice n := p.sliceLen() b := pa.asMemory(uintptr(n) * nb) h.HashUint64(uint64(n)) h.HashBytes(b) } } var once sync.Once var hashElem typeHasherFunc init := func() { hashElem = lookupTypeHasher(t.Elem()) if typeIsRecursive(t) { hashElemDefault := hashElem hashElem = func(h *hasher, p pointer) { if idx, ok := h.visitStack.seen(p.p); ok { h.HashUint8(2) // indicates cycle h.HashUint64(uint64(idx)) return } h.HashUint8(1) // indicates visiting slice element h.visitStack.push(p.p) defer h.visitStack.pop(p.p) hashElemDefault(h, p) } } } return func(h *hasher, p pointer) { pa := p.sliceArray() if pa.isNil() { h.HashUint8(0) // indicates nil return } once.Do(init) h.HashUint8(1) // indicates visiting slice n := p.sliceLen() h.HashUint64(uint64(n)) for i := 0; i < n; i++ { pe := pa.arrayIndex(i, nb) hashElem(h, pe) } } } func keepAllStructFields(keepField reflect.StructField) bool { return true } func makeStructHasher(t reflect.Type, keepField func(reflect.StructField) bool) typeHasherFunc { type fieldHasher struct { idx int // index of field for reflect.Type.Field(n); negative if memory is directly hashable keep bool hash typeHasherFunc // only valid if idx is not negative offset uintptr size uintptr } var once sync.Once var fields []fieldHasher init := func() { for i, numField := 0, t.NumField(); i < numField; i++ { sf := t.Field(i) f := fieldHasher{i, keepField(sf), nil, sf.Offset, sf.Type.Size()} if f.keep && typeIsMemHashable(sf.Type) { f.idx = -1 } // Combine with previous field if both contiguous and mem-hashable. if f.idx < 0 && len(fields) > 0 { if last := &fields[len(fields)-1]; last.idx < 0 && last.offset+last.size == f.offset { last.size += f.size continue } } fields = append(fields, f) } for i, f := range fields { if f.idx >= 0 { fields[i].hash = lookupTypeHasher(t.Field(f.idx).Type) } } } return func(h *hasher, p pointer) { once.Do(init) for _, field := range fields { if !field.keep { continue } pf := p.structField(field.idx, field.offset, field.size) if field.idx < 0 { h.HashBytes(pf.asMemory(field.size)) } else { field.hash(h, pf) } } } } func makeMapHasher(t reflect.Type) typeHasherFunc { var once sync.Once var hashKey, hashValue typeHasherFunc var isRecursive bool init := func() { hashKey = lookupTypeHasher(t.Key()) hashValue = lookupTypeHasher(t.Elem()) isRecursive = typeIsRecursive(t) } return func(h *hasher, p pointer) { v := p.asValue(t).Elem() // reflect.Map kind if v.IsNil() { h.HashUint8(0) // indicates nil return } once.Do(init) if isRecursive { pm := v.UnsafePointer() // underlying pointer of map if idx, ok := h.visitStack.seen(pm); ok { h.HashUint8(2) // indicates cycle h.HashUint64(uint64(idx)) return } h.visitStack.push(pm) defer h.visitStack.pop(pm) } h.HashUint8(1) // indicates visiting map entries h.HashUint64(uint64(v.Len())) mh := mapHasherPool.Get().(*mapHasher) defer mapHasherPool.Put(mh) // Hash a map in a sort-free manner. // It relies on a map being a an unordered set of KV entries. // So long as we hash each KV entry together, we can XOR all the // individual hashes to produce a unique hash for the entire map. k := mh.valKey.get(v.Type().Key()) e := mh.valElem.get(v.Type().Elem()) mh.sum = Sum{} mh.h.visitStack = h.visitStack // always use the parent's visit stack to avoid cycles for iter := v.MapRange(); iter.Next(); { k.SetIterKey(iter) e.SetIterValue(iter) mh.h.reset() hashKey(&mh.h, pointerOf(k.Addr())) hashValue(&mh.h, pointerOf(e.Addr())) mh.sum.xor(mh.h.sum()) } h.HashBytes(mh.sum.sum[:]) } } func makePointerHasher(t reflect.Type) typeHasherFunc { var once sync.Once var hashElem typeHasherFunc var isRecursive bool init := func() { hashElem = lookupTypeHasher(t.Elem()) isRecursive = typeIsRecursive(t) } return func(h *hasher, p pointer) { pe := p.pointerElem() if pe.isNil() { h.HashUint8(0) // indicates nil return } once.Do(init) if isRecursive { if idx, ok := h.visitStack.seen(pe.p); ok { h.HashUint8(2) // indicates cycle h.HashUint64(uint64(idx)) return } h.visitStack.push(pe.p) defer h.visitStack.pop(pe.p) } h.HashUint8(1) // indicates visiting a pointer element hashElem(h, pe) } } func makeInterfaceHasher(t reflect.Type) typeHasherFunc { return func(h *hasher, p pointer) { v := p.asValue(t).Elem() // reflect.Interface kind if v.IsNil() { h.HashUint8(0) // indicates nil return } h.HashUint8(1) // indicates visiting an interface value v = v.Elem() t := v.Type() h.hashType(t) va := reflect.New(t).Elem() va.Set(v) hashElem := lookupTypeHasher(t) hashElem(h, pointerOf(va.Addr())) } } type mapHasher struct { h hasher valKey valueCache valElem valueCache sum Sum } var mapHasherPool = &sync.Pool{ New: func() any { return new(mapHasher) }, } type valueCache map[reflect.Type]reflect.Value // get returns an addressable reflect.Value for the given type. func (c *valueCache) get(t reflect.Type) reflect.Value { v, ok := (*c)[t] if !ok { v = reflect.New(t).Elem() if *c == nil { *c = make(valueCache) } (*c)[t] = v } return v }